Análisis termodinámico y metabólico de un sistema biológico células de insecto Spodoptera frugiperda (sf9) y su infección con un virus recombinante Autographa californica nucleopolyhedrovirus (BvGCN4-NA1)

dc.contributor.advisorSuárez Méndez, Camilo Alberto
dc.contributor.authorFajardo Figueroa, Lina Maria
dc.contributor.researchgroupBioprocesos y Flujos Reactivosspa
dc.date.accessioned2023-01-25T21:41:23Z
dc.date.available2023-01-25T21:41:23Z
dc.date.issued2022-10-10
dc.descriptionilustraciones, diagramasspa
dc.description.abstractEn el presente trabajo se aborda el análisis de la producción de proteínas recombinantes con interés bio-farmacéutico a través de la tecnología de expresión en células de insecto mediante la infección con baculovirus recombinantes. Esta es una estrategia ampliamente utilizada que aún tiene desafíos en el diseño, modelamiento y entendimiento (Monteiro, 2015). En primer lugar, se analiza bajo una perspectiva termodinámica de caja negra la etapa de crecimiento celular encontrando que su modelamiento es posible a través de una metodología, dirigida principalmente a microorganismos, la cual se puede adaptar a eucariotas con especial consideración en la definición y diferenciación de la fuente de energía, carbono y nitrógeno. En particular, cuando se considera en el análisis una fuente de nitrógeno orgánica, la cual induce un sobreflujo de electrones que pueden terminar en biomasa o en subrpoductos carbonados como lactato. Aunque no fue posible reproducir los escenarios planteados en un modelo metabólico, mediante el análisis metabólico se identificó la importancia de considerar las rutas de asimilación de nitrógeno (orgánico e inorgánico) y el uso de métodos estadísticos como herramienta para la mejora de estos procesos. Finalmente, basado en el análisis de tiempos característicos derivados de cinéticas reportadas para la etapa de infección y producción en la literatura, se encontró que el evento celular que principalmente afecta la homogeneidad y la productividad de las proteínas recombinantes es el evento de unión virus-célula ya que su tiempo característico puede variar considerablemente y afectar otros subprocesos. Además, se encontró que, en la producción de proteínas complejas a nivel intracelular, su expresión se ve favorecida en linajes celulares con velocidades de internalización más bajas. (Texto tomado de la fuente)spa
dc.description.abstractHere, the analysis of producing recombinant proteins of bio-pharmaceutical interest based on its expression in insect cells through infection with recombinant baculoviruses was addressed. This approach is a widely used strategy that still has challenges in design, modeling and understanding (Monteiro, 2015). First, the cell growth stage was analyzed from a black box thermodynamic perspective, showing that this modeling approach may be used to this biological model, even though it was formerly meant for microorganisms. The methodology can be applied to eukaryotes having special consideration on the definition and differentiation of the energy, carbon, and nitrogen sources. When an organic nitrogen source is considered in the analysis, it induces an overflow of electrons that can end up in biomass or in carbon by-products such as lactate. Although it was not possible to reproduce some scenarios proposed in a metabolic model, the metabolic analysis did show the importance of considering nitrogen assimilation routes (organic and inorganic) and the use of statistical methods as a tool to improve these processes. Finally, based on the analysis of characteristic times derived from kinetics reported for the infection and production stage in literature, it was found that the virus-cell union is the cellular event that mainly affects homogeneity and productivity of recombinant proteins since its characteristic time can vary considerably affecting other subsequent subprocesses. In addition, it is shown that their expression is favored in cell lines with lower internalization rates in the production of complex proteins at the intracellular level.eng
dc.description.curricularareaÁrea curricular de Ingeniería Química e Ingeniería de Petróleosspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería Químicaspa
dc.description.researchareaBioprocess Intensification and Rational Designspa
dc.format.extentxx, 88 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83129
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Ingeniería Químicaspa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAdnan, N. A. A., Suhaimi, S. N., Abd-Aziz, S., Hassan, M. A., & Phang, L. Y. (2014). Optimization of bioethanol production from glycerol by Escheric h ia coli SS1.Renewable Energy, 66, 625–633. https://doi.org/10.1016/j.renene.2013.12.032spa
dc.relation.referencesAlmudena, L. M. (1999). Desarrollo de Modelos Cinéticos para Bioprocesos: Aplicación a la Producción de Xantano. Universidad Complutense de Madridspa
dc.relation.referencesAntoniewicz, M. R. (2015). Methods and advances in metabolic flux analysis: a mini-review. Journal of Industrial Microbiology and Biotechnology, 42(3), 317–325.https://doi.org/10.1007/s10295-015-1585-xspa
dc.relation.referencesAntoniewicz, M. R. (2021). A guide to metabolic flux analysis in metabolic engineering:Methods, tools and applications. Metabolic Engineering, 63(October 2020), 2–12.https://doi.org/10.1016/j.ymben.2020.11.002spa
dc.relation.referencesBédard, C., Tom, R., & Kamen, A. (1993). Growth, Nutrient Consumption, and End‐Product Accumulation in Sf‐9 and BTI‐EAA Insect Cell Cultures: Insights into Growth Limitation and Metabolism. Biotechnology Progress, 9(6), 615–624.https://doi.org/10.1021/bp00024a008spa
dc.relation.referencesBernal, V., Carinhas, N., Yokomizo, A. Y., Carrondo, M. J. T., & Alves, P. M. (2009). Cell density effect in the baculovirus-insect cells system: A quantitative analysis of energetic metabolism. Biotechnology and Bioengineering, 104(1), 162–180. https://doi.org/10.1002/bit.22364spa
dc.relation.referencesBerretta, M. F., López, M. G., Taboga, O., Sciocco-Cap, A., & Romanowski, V. (2013).Functional analysis of Spodoptera frugiperda nucleopolyhedrovirus late expression factors in Sf9 cells. Virus Genes, 46(1), 152–161. https://doi.org/10.1007/s11262-012-0843-5spa
dc.relation.referencesBhatia, R., Jesionowski, G., Ferrance, J., & Ataai, M. M. (1997). Insect cell physiology. In Cytotechnology (Vol. 24, Issue 1, pp. 1–9). https://doi.org/10.1023/A:1007985208221spa
dc.relation.referencesBlissard, G. W., & Theilmann, D. A. (2018). Baculovirus entry and egress from insect cells. Annual Review of Virology, 5, 113–139. https://doi.org/10.1146/annurev- virology-092917-043356spa
dc.relation.referencesBosma, B., du Plessis, F., Ehlert, E., Nijmeijer, B., de Haan, M., Petry, H., & Lubelski, J. (2018). Optimization of viral protein ratios for production of rAAV serotype 5 in the baculovirus system. Gene Therapy, 25(6), 415–424. https://doi.org/10.1038/s41434- 018-0034-7spa
dc.relation.referencesCarinhas, N., Bernal, V., Monteiro, F., Carrondo, M. J. T., Oliveira, R., & Alves, P. M. (2010). Improving baculovirus production at high cell density through manipulation of energy metabolism. Metabolic Engineering, 12(1), 39–52. https://doi.org/10.1016/j.ymben.2009.08.008spa
dc.relation.referencesCarinhas, N., Bernal, V., Teixeira, A. P., Carrondo, M. J. T., Alves, P. M., & Oliveira, R. (2011). Hybrid metabolic flux analysis: Combining stoichiometric and statistical constraints to model the formation of complex recombinant products. BMC Systems Biology, 5. https://doi.org/10.1186/1752-0509-5-34spa
dc.relation.referencesChang, D., Liu, Y., Chen, Y., Hu, X., Burov, A., Puzyr, A., Bondar, V., & Yao, L. (2020).Study of the immunogenicity of the VP2 protein of canine parvovirus produced using an improved Baculovirus expression system. BMC Veterinary Research, 16(1), 1–9. https://doi.org/10.1186/s12917-020-02422-3spa
dc.relation.referencesChiou, T. W., Hsieh, Y. C., & Ho, C. S. (2000). High density culture of insect cells using rational medium design and feeding strategy. Bioprocess Engineering, 22(6), 483– 491. https://doi.org/10.1007/s004499900091spa
dc.relation.referencesContreras-Gómez, A., Sánchez-Mirón, A., García-Camacho, F., Molina-Grima, E., & Chisti, Y. (2014). Protein production using the baculovirus-insect cell expression system. Biotechnology Progress, 30(1), 1–18. https://doi.org/10.1002/btpr.1842spa
dc.relation.referencesContreras-Gómez, Antonio, Beas-Catena, A., Sánchez-Mirón, A., García-Camacho, F., & Molina Grima, E. (2018). The use of an artificial neural network to model the infection strategy for baculovirus production in suspended insect cell cultures. Cytotechnology, 70(2), 555–565. https://doi.org/10.1007/s10616-017-0128-xspa
dc.relation.referencesCox, M., Alves, P., Carrondo, M., & Vicente, T. (2014). Industrial Large Scale of Suspension Culture of Insect Cells. In Industrial Scale Suspension Culture of Living Cells (First Edit).spa
dc.relation.referencesCox, M. M. J. (2012). Recombinant protein vaccines produced in insect cells. Vaccine, 30(10), 1759–1766. https://doi.org/10.1016/j.vaccine.2012.01.016spa
dc.relation.referencesCueto Rojas, H. F. (2016). Anaerobic Amino Acid Production in Saccharomyces cerevisiae: A Thermodynamics Approach [Delft University of Technology]. In TU Delft University. https://doi.org/https://doi.org/10.4233/uuid:a565936a-b081-4581- 9eb0-8c66bff307a8spa
dc.relation.referencesde Gooijer, C. D., van Lier, F. L. J., van den End, E. J., Vlak, J. M., & Tramper, J. (1989). A model for baculovirus production with continuous insect cell cultures. Applied Microbiology and Biotechnology, 30(5), 497–501. https://doi.org/10.1007/BF00263855spa
dc.relation.referencesDee, K. U., & Shuler, M. L. (1997). A mathematical model of the trafficking of acid- dependent enveloped viruses: Application to the binding, uptake, and nuclear accumulation of baculovirus. Biotechnology and Bioengineering, 54(5), 468–490. https://doi.org/10.1002/(SICI)1097-0290(19970605)54:5<468::AID-BIT7>3.0.CO;2-Cspa
dc.relation.referencesDoran, M. P. (2013). Engineering Principles Second Edition. In Academic Press.spa
dc.relation.referencesDoverskog, M., Jacobsson, U., Chapman, B. E., Kuchel, P. W., & Häggström, L. (2000). Determination of NADH-dependent glutamate synthase (GOGAT) in Spodoptera frugiperda (Sf9) insect cells by a selective 1H/15N NMR in vitro assay. Journal of Biotechnology, 79(1), 87–97. https://doi.org/10.1016/S0168-1656(00)00215-7spa
dc.relation.referencesDrugmand, J. C. (2007). Characterization of insect cell lines is required for appropriate industrial processes : case study of high-five cells for recombinant protein production. Universidad Católica de Lovaina.spa
dc.relation.referencesDrugmand, J., Schneider, Y., & Agathos, S. N. (2012). Insect cells as factories for biomanufacturing. Biotechnology Advances, 30(5), 1140–1157. https://doi.org/10.1016/j.biotechadv.2011.09.014spa
dc.relation.referencesFabre, L. L., Arrías, P. N., Masson, T., Pidre, M. L., & Romanowski, V. (2019). Baculovirus-derived vectors for immunization and therapeutic applications. Emerging and Reemerging Viral Pathogens: Volume 2: Applied Virology Approaches Related to Human, Animal and Environmental Pathogens, 197–224. https://doi.org/10.1016/B978-0-12-814966-9.00011-1spa
dc.relation.referencesFerrance, J. P., Goel, A., & Ataai, M. M. (1993). Utilization of glucose and amino acids in insect cell cultures: Quantifying the metabolic flows within the primary pathways and medium development. Biotechnology and Bioengineering, 42(6), 697–707spa
dc.relation.referencesGarnier, A., Voyer, R., Tom, R., Perret, S., Jardin, B., & Kamen, A. (1996). Dissolved carbon dioxide accumulation in a large scale and high density production of TGFβ receptor with baculovirus infected Sf-9 cells. Cytotechnology, 22(1–3), 53–63. https://doi.org/10.1007/BF00353924spa
dc.relation.referencesGhosh, A., Dhall, H., & Dietzgen, R. G. (2020). Insect cell culture as a tool in plant virus research : a historical overview.spa
dc.relation.referencesGotoh, T., Chiba, K., & Kikuchi, K. I. (2004). Oxygen consumption profiles of Sf-9 insect cells and their culture at low temperature to circumvent oxygen starvation. Biochemical Engineering Journal, 17(2), 71–78. https://doi.org/10.1016/S1369- 703X(03)00140-2spa
dc.relation.referencesGotoh, T., Fukuhara, M., & Kikuchi, K. I. (2008). Mathematical model for change in diameter distribution of baculovirus-infected Sf-9 insect cells. Biochemical Engineering Journal, 40(2), 379–386. https://doi.org/10.1016/j.bej.2008.01.008spa
dc.relation.referencesGrzywacz, D. (2017). Basic and Applied Research: Baculovirus. In Microbial Control of Insect and Mite Pests: From Theory to Practice. Elsevier Inc. https://doi.org/10.1016/B978-0-12-803527-6.00003-2spa
dc.relation.referencesHefferon, K. L., Oomens, A. G. P., Monsma, S. A., Finnerty, C. M., & Blissard, G. W. (1999). Host cell receptor binding by baculovirus GP64 and kinetics of virion entry. Virology, 258(2), 455–468. https://doi.org/10.1006/viro.1999.9758spa
dc.relation.referencesHeijnen, J. J., & Kleerebezem, R. (2010). Bioenergetics of Microbial Growth. Encyclopedia of Industrial Biotechnology, 1–24. https://doi.org/10.1002/9780470054581.eib084spa
dc.relation.referencesHeinen, J. J. (2010). Impact of thermodynamic principles in systems biology. In Advances in Biochemical Engineering/Biotechnology (Vol. 121, pp. 139–162). Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2009_63spa
dc.relation.referencesHu, Y. C., & Bentley, W. E. (2000). A kinetic and statistical-thermodynamic model for baculovirus infection and virus-like particle assembly in suspended insect cells. Chemical Engineering Science, 55(19), 3991–4008. https://doi.org/10.1016/S0009- 2509(99)00579-5spa
dc.relation.referencesJhaveri, R. (2021). The Next Set of COVID-19 Vaccines: Leveraging New Development Platforms to Increase Access for More People Around the World. Clinical Therapeutics, 1–9. https://doi.org/10.1016/j.clinthera.2021.03.007spa
dc.relation.referencesKamen, A. A., Venereo-sanchez, A., & Chahal, P. S. (2021). Advancements in molecular design and bioprocessing of recombinant adeno-associated virus gene delivery vectors using the insect-cell baculovirus expression platform. Biotechnology Journal, 16(April 2020), 1–17. https://doi.org/10.1002/biot.202000021spa
dc.relation.referencesLiu, F., Wu, X., Li, L., Liu, Z., & Wang, Z. (2013). Use of baculovirus expression system for generation of virus-like particles: Successes and challenges. Protein Expression and Purification, 90(2), 104–116. https://doi.org/10.1016/j.pep.2013.05.009spa
dc.relation.referencesLiu, Y., Yang, C., Liu, C., Shen, C., Shiau, L., & Ioeng, J. B. I. B. (2010). Using a fed- batch culture strategy to enhance rAAV production in the baculovirus / insect cell system. JBIOSC, 110(2), 187–193. https://doi.org/10.1016/j.jbiosc.2010.02.004spa
dc.relation.referencesLubelski, J., Hermens, W., & Petry, H. (2014). Insect Cell-Based Recombinant Adeno- Associated Virus Production: Molecular Process Optimization. BioProcessing Journal, 13(3), 6–11. https://doi.org/10.12665/j133.lubelskispa
dc.relation.referencesMarheineke, K., Grünewald, S., Christie, W., & Reilander, H. (1998). Lipid composition of Spodoptera frugiperda (Sf9) and Trichoplusia ni (Tn) insect cells used for baculovirus infection. FEBS Letters, 441(1), 49–52. https://doi.org/10.1016/S0014- 5793(98)01523-3spa
dc.relation.referencesMiller, W. M., Wilke, C. R., & Blanch, H. W. (1989). Transient responses of hybridoma cells to nutrient additions in continuous culture: I. Glucose pulse and step changes. Biotechnology and Bioengineering, 33(4), 477–486. https://doi.org/10.1002/bit.260330413spa
dc.relation.referencesMonteiro, F. (2015). Rational Design of Insect Cell-based Vaccine Production - Bridging Metabolomics with Mathematical Tools to Study Virus-Host Interactions. 207. www.itqb.unl.pt%5Cnwww.ibet.ptspa
dc.relation.referencesMonteiro, F., Bernal, V., & Alves, P. M. (2017). The role of host cell physiology in the productivity of the baculovirus-insect cell system: Fluxome analysis of Trichoplusia ni and Spodoptera frugiperda cell lines. Biotechnology and Bioengineering, 114(3), 674–684. https://doi.org/10.1002/bit.26089spa
dc.relation.referencesMonteiro, F., Carinhas, N., Carrondo, M. J. T., Bernal, V., & Alves, P. M. (2012). Toward system-level understanding of baculovirus-host cell interactions: From molecular fundamental studies to large-scale proteomics approaches. In Frontiers in Microbiology (Vol. 3, Issue NOV). https://doi.org/10.3389/fmicb.2012.00391spa
dc.relation.referencesMorgenroth, E. (2015). How are characteristic times ( char ) and non-dimensional numbers related ? Fall, 1–8. https://www.ethz.ch/content/dam/ethz/special- interest/baug/ifu/water-management- dam/documents/education/Lectures/UWM3/SAMM.HS15.Handout.CharacteristicTim es.pdfspa
dc.relation.referencesMukhopadhyay, A., Mukhopadhyay, S. N., & Talwar, G. P. (1993). Influence of serum proteins on the kinetics of attachment of vero cells to cytodex microcarriers. Journal of Chemical Technology & Biotechnology, 56(4), 369–374. https://doi.org/10.1002/jctb.280560407spa
dc.relation.referencesNandakumar, S., Ma, H., & Khan, A. S. (2017). Whole-Genome Sequence of the Spodoptera frugiperda Sf9 Insect Cell Line. In American Society for Microbiology.spa
dc.relation.referencesNiklas, J., Schneider, K., & Heinzle, E. (2010). Metabolic flux analysis in eukaryotes. Current Opinion in Biotechnology, 21(1), 63–69. https://doi.org/10.1016/j.copbio.2010.01.011spa
dc.relation.referencesÖhman, L., Ljunggren, J., & Häggström, L. (1995). Induction of a metabolic switch in insect cells by substrate-limited fed batch cultures. Applied Microbiology and Biotechnology, 43(6), 1006–1013. https://doi.org/10.1007/BF00166917spa
dc.relation.referencesÖhman, Lars., Alarcon, M., Ljunggren, J., Ramqvist, A. K., & Häggström, L. (1996). Glutamine is not an essential amino acid for Sf-9 insect cells. Biotechnology Letters, 18(7), 765–770. https://doi.org/10.1007/BF00127885spa
dc.relation.referencesOrtega Quintana, F. A., Álvarez, H., & Botero Castro, H. A. (2017). Enfrentando el modelado de bioprocesos: una revisión de las metodologías de modelado. Revista ION, 30(1), 73–90. https://doi.org/10.18273/revion.v30n1-2017006spa
dc.relation.referencesPaul, A., & Prakash, S. (2010). Baculovirus reveals a new pH-dependent direct cell-fusion pathway for cell entry and transgene delivery. Future Virology, 5(5), 533–537. https://doi.org/10.2217/fvl.10.45spa
dc.relation.referencesPossee, R. D., Chambers, A. C., Graves, L. P., Aksular, M., & King, L. A. (2020). Recent Developments in the Use of Baculovirus Expression Vectors.spa
dc.relation.referencesRoldão, A., Vieira, H. L. A., Charpilienne, A., Poncet, D., Roy, P., Carrondo, M. J. T., Alves, P. M., & Oliveira, R. (2007). Modeling rotavirus-like particles production in a baculovirus expression vector system: Infection kinetics, baculovirus DNA replication, mRNA synthesis and protein production. Journal of Biotechnology, 128(4), 875–894. https://doi.org/10.1016/j.jbiotec.2007.01.003spa
dc.relation.referencesSandler, S. I. (2006). Chemical, Biochemical Engineering, And TermodinamicsChemical, Biochemicai Engineering, And Termodinamic (Wiley (ed.); 4ta Edición).spa
dc.relation.referencesSaxena, A., Byram, P. K., Singh, S. K., Chakraborty, J., Murhammer, D., & Giri, L. (2018). A structured review of baculovirus infection process: Integration of mathematical models and biomolecular information on cell–virus interaction. Journal of General Virology, 99(9), 1151–1171. https://doi.org/10.1099/jgv.0.001108spa
dc.relation.referencesShu, B., Zhang, J., Sethuraman, V., Cui, G., Yi, X., & Zhong, G. (2017). Transcriptome analysis of Spodoptera frugiperda Sf9 cells reveals putative apoptosis-related genes and a preliminary apoptosis mechanism induced by azadirachtin. Scientific Reports, 7(1), 1–13. https://doi.org/10.1038/s41598-017-12713-9spa
dc.relation.referencesSlack, J., Arif, B. M., Monteiro, F., Carinhas, N., Carrondo, M. J. T., Bernal, V., & Alves, P. M. (2006). The Baculoviruses Occlusion-Derived Virus: Virion Structure and Function. Advances in Virus Research, 3(NOV), 99–165. https://doi.org/10.3389/fmicb.2012.00391spa
dc.relation.referencesSokolenko, S., George, S., Wagner, A., Tuladhar, A., Andrich, J. M. S., & Aucoin, M. G. (2012). Co-expression vs. co-infection using baculovirus expression vectors in insect cell culture: Benefits and drawbacks. Biotechnology Advances, 30(3), 766–781. https://doi.org/10.1016/j.biotechadv.2012.01.009spa
dc.relation.referencesStein, R. (2020). Process Intensification of Spodoptera frugiperda ( Sf ) Cell Growth via Multi-Parallel Bioreactor System (Issue 2012). MIT Sloan School of Management.spa
dc.relation.referencesSuarez-Zuluaga, D. A., Borchert, D., Driessen, N. N., Bakker, W. A. M., & Thomassen, Y. E. (2019). Accelerating bioprocess development by analysis of all available data: A USP case study. Vaccine, 37(47), 7081–7089. https://doi.org/10.1016/j.vaccine.2019.07.026spa
dc.relation.referencesSzéliová, D., Štor, J., Thiel, I., Weinguny, M., Hanscho, M., Lhota, G., Borth, N., Zanghellini, J., Ruckerbauer, D. E., & Rocha, I. (2021). Inclusion of maintenance energy improves the intracellular flux predictions of CHO. In PLoS Computational Biology (Vol. 17, Issue 6). https://doi.org/10.1371/journal.pcbi.1009022spa
dc.relation.referencesTripathi, N. K., & Shrivastava, A. (2019). Recent Developments in Bioprocessing of Recombinant Proteins: Expression Hosts and Process Development. Frontiers in Bioengineering and Biotechnology, 7(December). https://doi.org/10.3389/fbioe.2019.00420spa
dc.relation.referencesvan Oers, M. M. (2011). Opportunities and challenges for the baculovirus expression system. Journal of Invertebrate Pathology, 107(SUPPL.), S3–S15. https://doi.org/10.1016/j.jip.2011.05.001spa
dc.relation.referencesVan Oers, M. M., Pijlman, G. P., & Vlak, J. M. (2015). Thirty years of baculovirus-insect cell protein expression: From dark horse to mainstream technology. Journal of General Virology, 96(1), 6–23. https://doi.org/10.1099/vir.0.067108-0spa
dc.relation.referencesVLAK, J. M., de GOOIJER, C. D., TRAMPER, J., & MILTENBURGER, H. G. (2002). Insect Cell Cultures: Fundamental and Applied Aspects. 1, 303.spa
dc.relation.referencesvon Kamp, A., Thiele, S., Hädicke, O., & Klamt, S. (2017). Use of CellNetAnalyzer in biotechnology and metabolic engineering. Journal of Biotechnology, 261(January), 221–228. https://doi.org/10.1016/j.jbiotec.2017.05.001spa
dc.relation.referencesVon Stockar, U. (2013). The role of thermodynamics in biochemical engineering. In Biothermodynamics: The Role of Thermodynamics in Biochemical Engineering. EFPL Press. https://doi.org/10.1201/b15428-3spa
dc.relation.referencesvon Stosch, M., Carinhas, N., & Oliveira, R. (2014). Hybrid modeling for systems biology: Theory and practice. Modeling and Simulation in Science, Engineering and Technology, 65, 367–388. https://doi.org/10.1007/978-3-319-08437-4_7spa
dc.relation.referencesWang, L., Lai, L., Ouyang, Q., & Tang, C. (2011). Flux balance analysis of ammonia assimilation network in E. coli predicts preferred regulation point. PLoS ONE, 6(1). https://doi.org/10.1371/journal.pone.0016362spa
dc.relation.referencesWickham, T. J., Shuler, M. L., Hammer, D. A., Granados, R. R., & Wood, H. A. (1992). Equilibrium and kinetic analysis of Autographa californica nuclear polyhedrosis virus attachment to different insect cell lines. Journal of General Virology, 73(12), 3185– 3194. https://doi.org/10.1099/0022-1317-73-12-3185spa
dc.relation.referencesXie, L., & Wang, D. I. C. (1994). Stoichiometric analysis of animal cell growth and its application in medium design. Biotechnology and Bioengineering, 43(11), 1164– 1174. https://doi.org/10.1002/bit.260431122spa
dc.relation.referencesYu, Q., Xiong, Y., Gao, H., Liu, J., Chen, Z., Wang, Q., & Wen, D. (2015). Comparative proteomics analysis of Spodoptera frugiperda cells during Autographa californica multiple nucleopolyhedrovirus infection. Virology Journal, 12(1), 1–11. https://doi.org/10.1186/s12985-015-0346-9spa
dc.relation.referencesZhang, Y., Enden, G., Wei, W., Zhou, F., Chen, J., & Merchuk, J. C. (2020). Baculovirus transit through insect cell membranes: A mechanistic approach. Chemical Engineering Science, 223, 115727. https://doi.org/10.1016/j.ces.2020.115727spa
dc.relation.referencesHaas, R. (2004). Asynchronies in Synchronous Baculovi rus Infections. The University of Queensland.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/spa
dc.subject.ddc660 - Ingeniería químicaspa
dc.subject.lembBiotecnología celular en insectosspa
dc.subject.lembInsect cell biotechnologyeng
dc.subject.proposalSpodoptera frugiperdaspa
dc.subject.proposalProteínas recombinantesspa
dc.subject.proposalBaculovirusspa
dc.subject.proposalTermodinámicaspa
dc.subject.proposalTiempo característicospa
dc.subject.proposalSpodoptera frugiperdaeng
dc.subject.proposalProtein productioneng
dc.subject.proposalBaculoviruseng
dc.subject.proposalThermodynamiceng
dc.subject.proposalCharacteristic timeeng
dc.titleAnálisis termodinámico y metabólico de un sistema biológico células de insecto Spodoptera frugiperda (sf9) y su infección con un virus recombinante Autographa californica nucleopolyhedrovirus (BvGCN4-NA1)spa
dc.title.translatedThermodynamic and metabolic analysis of a biological system: insect cells Spodoptera frugiperda (sf9) and their infection with a recombinant virus Autographa californica nucleopolyhedrovirus (BvGCN4-NA1)eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentProveedores de ayuda financiera para estudiantesspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1144089629.2022.pdf.pdf
Tamaño:
2.61 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería Química

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: