Cálculo en línea de flexibilidad de un sistema eléctrico de potencia
dc.contributor.advisor | Pérez González, Ernesto | |
dc.contributor.author | Pérez Romero, Brian Camilo | |
dc.contributor.cvlac | Pérez Romero, Brian Camilo [0001716060] | spa |
dc.contributor.googlescholar | Pérez Romero, Brian Camilo [Y8Hf_AoAAAAJ] | spa |
dc.contributor.orcid | Pérez Romero, Brian Camilo [0000-0002-3145-3673] | spa |
dc.contributor.researchgate | Pérez Romero, Brian Camilo [Brian-Perez-Romero] | spa |
dc.contributor.researchgroup | Programa de Investigacion sobre Adquisicion y Analisis de Señales Paas-Un | spa |
dc.contributor.scopus | Pérez Romero, Brian Camilo [57221982027] | spa |
dc.date.accessioned | 2023-01-27T15:19:39Z | |
dc.date.available | 2023-01-27T15:19:39Z | |
dc.date.issued | 2022 | |
dc.description | ilustraciones, diagramas | spa |
dc.description.abstract | La incertidumbre inherente a la generación de las Fuentes de Energía Renovable No Convencional (FERNC) supone retos adicionales en la planeación, programación y operación de los sistemas eléctricos de potencia. Con el fin de garantizar su operación segura y confiable, un sistema eléctrico debe contar con la capacidad de responder ante diferentes condiciones de cambio en el balance generación-demanda en todas las escalas y horizontes de tiempo; esta capacidad ha sido definida como la Flexibilidad del sistema de potencia. En esta tesis se caracterizan y evalúan cuatro indicadores propuestos en la literatura para cuantificar en línea la flexibilidad de una versión modificada del sistema IEEE de 39 barras, con un horizonte de muy corto plazo, ante distintos escenarios de operación. Posteriormente se proponen cambios a la formulación matemática de los indicadores analizados con la finalidad de que consideren variables adicionales a las planteadas inicialmente y, por ende, mejorar la confiabilidad de la información proporcionada a los operadores del sistema. La formulación propuesta en la tesis para los indicadores de flexibilidad es evaluada en la misma versión modificada del sistema IEEE de 39 barras y sus resultados fueron comparados con los resultados obtenidos de la formulación original. Por último, se utilizó el modelo eléctrico del Sistema Interconectado Nacional (SIN) de Colombia para calcular en línea su flexibilidad considerando las FERNC con capacidad superior a 1 MW que a la fecha están declaradas en operación. La implementación se hizo mediante simulaciones en DigSILENT Power Factory, utilizando el lenguaje de programación Python y una librería desarrollada que permite automatizar los comandos de DigSILENT para simular la operación en tiempo real de los sistemas de potencia. (Texto tomadfo de la fuente) | spa |
dc.description.abstract | The inherent uncertainty in the generation of the Variable Renewable Energy (VRE) sources poses additional challenges in the planning, programming and operation of power systems. In order to guarantee its safe and reliable operation, a power system requieres the capability to respond to different changes in the generation-demand balance at all scales and time horizons; this capability has been defined as the Flexibility of the power system. In this thesis, four indicator proposed in the literature have been characterized and evaluated to make an online assessment of the flexibility of a modified version of the IEEE 39-bus system, with a very short-term horizon, in different operating scenarios. Subsequently, modifications to the mathematical formulation of the analyzed indicators have been proposed in order to cosider additional variables to those initially proposed and, therefore, improve the reliability of the information provided to the system operators. The formulation proposed in the thesis for the flexibility indicators is evaluated in the same modified version of the IEEE 39-bus system and its results were compared to the results obtained from the original formulation. Finally, the electrical model of the Colombian power system was used to online assess its flexibility, considering the VRE with capacity greater than 1 MW declared in operation to date. The implementation was done through simulations in DigSILENT Power Factory, using the Python programming language and a developed library which allows to automate DigSILENT commands in order to simulate the real-time operation of power systems. | eng |
dc.description.curriculararea | Área Curricular de Ingeniería Eléctrica e Ingeniería de Control | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ingeniería - Ingeniería Eléctrica | spa |
dc.description.researcharea | Sistemas eléctricos de potencia | spa |
dc.format.extent | xv, 109 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/83166 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | spa |
dc.publisher.faculty | Facultad de Minas | spa |
dc.publisher.place | Medellín, Colombia | spa |
dc.publisher.program | Medellín - Minas - Maestría en Ingeniería - Ingeniería Eléctrica | spa |
dc.relation.indexed | RedCol | spa |
dc.relation.indexed | LaReferencia | spa |
dc.relation.references | A. A. Thatte and L. Xie, “A metric and market construct of inter-temporal flexibility in time-coupled economic dispatch,” IEEE Transactions on Power Systems, vol. 31, pp. 3437–3446, sep 2016. | spa |
dc.relation.references | J. Li, F. Liu, Z. Li, C. Shao, and X. Liu, “Grid-side flexibility of power systems in integrating large-scale renewable generations: A critical review on concepts, formulations and solution approaches,” Renewable and Sustainable Energy Reviews, vol. 93, pp. 272– 284, 2018. | spa |
dc.relation.references | Q.Wang and B. M. Hodge, “Enhancing power system operational flexibility with flexible ramping products: A review,” IEEE Transactions on Industrial Informatics, vol. 13, no. 4, pp. 1652–1664, 2017. | spa |
dc.relation.references | J. Ma, V. Silva, R. Belhomme, D. S. Kirschen, and L. F. Ochoa, “Evaluating and planning flexibility in sustainable power systems,” IEEE Transactions on Sustainable Energy, vol. 4, no. 1, pp. 200–209, 2013. | spa |
dc.relation.references | A. Cruickshank and Y. Phulpin, Electricity Markets and Regulation. No. July, CIGRE. WG C5.27, 2020. | spa |
dc.relation.references | E. Lannoye, D. Flynn, and M. O’Malley, “Evaluation of power system flexibility,” IEEE Transactions on Power Systems, vol. 27, pp. 922–931, may 2012. | spa |
dc.relation.references | H. Nosair and F. Bouffard, “Flexibility Envelopes for Power System Operational Planning,” IEEE Transactions on Sustainable Energy, vol. 6, no. 3, pp. 800–809, 2015. | spa |
dc.relation.references | I. F. Abdin and E. Zio, “An integrated framework for operational flexibility assessment in multi-period power system planning with renewable energy production,” Applied Energy, vol. 222, pp. 898–914, jul 2018. | spa |
dc.relation.references | A. Nikoobakht, J. Aghaei, M. Shafie-Khah, and J. P. Catal˜ao, “Assessing Increased Flexibility of Energy Storage and Demand Response to Accommodate a High Penetration of Renewable Energy Sources,” IEEE Transactions on Sustainable Energy, vol. 10, no. 2, pp. 659–669, 2019. | spa |
dc.relation.references | IRENA, Power system flexibility for the energy transition. No. December, 2018. | spa |
dc.relation.references | IEA, “Status of Power System Transformation 2018 Advanced Power Plant Flexibility- Technical Annexes Annex A. Technical options to enhance flexibility in thermal power plants,” tech. rep., International Energy Agency, 2018. | spa |
dc.relation.references | NERC, “Flexibility Requirements and Metrics for Variable Generation: Implications for System Planning Studies,” Evaluation, no. August, 2010. | spa |
dc.relation.references | EPRI, “Electric Power System Flexibility: Challenges and Opportunities,” Electric Power Research Institute, pp. 1–43, 2016. | spa |
dc.relation.references | X. Tang, Y. Hu, Z. Chen, and G. You, “Flexibility Evaluation Method of Power Systems with High Proportion Renewable Energy Based on Typical Operation Scenarios,” Electronics (Switzerland), vol. 9, no. 4, 2020. | spa |
dc.relation.references | M. A. Bucher, S. Chatzivasileiadis, and G. Andersson, “Managing Flexibility in Multi- Area Power Systems,” IEEE Transactions on Power Systems, vol. 31, pp. 1218–1226, mar 2016. | spa |
dc.relation.references | E. Lannoye, D. Flynn, and M. O’Malley, Assessment of power system flexibility: A high-level approach. IEEE, 2012. | spa |
dc.relation.references | H. Chandler, A Guide to the Balancing Challenge. International Energy Agency, 2011. | spa |
dc.relation.references | F. Bouffard and M. Ortega-Vazquez, “The value of operational flexibility in power systems with significant wind power generation,” IEEE Power and Energy Society General Meeting, pp. 1–5, 2011. | spa |
dc.relation.references | B. Breitschopf and A. Baumann, “Do variable renewable energies endanger the power system ? - An approach to measure flexibility,” in International Conference on the European Energy Market, EEM, vol. 2018-June, IEEE Computer Society, sep 2018. | spa |
dc.relation.references | J. Cochran, M. Miller, O. Zinaman, M. Milligan, D. Arent, B. Palmintier, M. O. Malley, S. Mueller, E. Lannoye, A. T. Epri, B. Kujala, N. Power, M. Sommer, H. Holttinen, J. Kiviluoma, and S. Soonee, “Flexibility in 21st Century Power Systems,” tech. rep., 2014. | spa |
dc.relation.references | W. Deason, “Comparison of 100on flexibility and cost,” feb 2018. | spa |
dc.relation.references | G. Singh, “The Power of Transformation,” IEEE computer graphics and applications, vol. 40, no. 3, pp. 5–8, 2020. | spa |
dc.relation.references | XM, “Planeacion de Operaci´on: Metodolog´ıa de Flexibilidad,” pp. 1–23, XM SA ESP, Comit´e de operaci´on CNO, 2020. | spa |
dc.relation.references | E. Lannoye, D. Flynn, and M. O’Malley, “Transmission, variable generation, and power system flexibility,” IEEE Transactions on Power Systems, vol. 30, pp. 57–66, jan 2015. | spa |
dc.relation.references | G. Papaefthymiou, E. Haesen, and T. Sach, “Power System Flexibility Tracker: Indicators to track flexibility progress towards high-RES systems,” Renewable Energy, vol. 127, pp. 1026–1035, nov 2018. | spa |
dc.relation.references | J. Zhao, T. Zheng, and E. Litvinov, “A unified framework for defining and measuring flexibility in power system,” IEEE Transactions on Power Systems, vol. 31, pp. 339–347, jan 2016. | spa |
dc.relation.references | T. Heggarty, J. Y. Bourmaud, R. Girard, and G. Kariniotakis, “Multi-temporal assessment of power system flexibility requirement,” Applied Energy, vol. 238, pp. 1327–1336, mar 2019. | spa |
dc.relation.references | IRENA, “Colombia power system flexibility assessment: IRENA Flextool case study,” Tech. Rep. October, 2018. | spa |
dc.relation.references | IRENA, Power system flexibility for the energy transition. No. December, 2018. | spa |
dc.relation.references | P. Denholm, E. Ela, B. Kirby, and M. Milligan, “The role of energy storage with renewable electricity generation,” Energy Storage: Issues and Applications, no. January, pp. 1–58, 2011. | spa |
dc.relation.references | Real Academia Espa˜nola, “Diccionario de la lengua espa˜nola, 23.ª ed., [versi´on 23.5 en l´ınea].” | spa |
dc.relation.references | S. JA Weiner, ESC, Oxford English Dictionary. (ed.) ed., 1989. | spa |
dc.relation.references | M. Z. Degefa, I. B. Sperstad, and H. Sæle, “Comprehensive classifications and characterizations of power system flexibility resources,” Electric Power Systems Research, vol. 194, no. December 2020, p. 107022, 2021. [ | spa |
dc.relation.references | W. CIGRE, “Methods for planning under uncertainty: toward flexibility in power system development,” Electra, no. 161, pp. 143–163, 1995. | spa |
dc.relation.references | H. Holttinen, A. Tuohy, M. Milligan, E. Lannoye, V. Silva, S. M¨uller, and L. S¨oder, “The flexibility workout: Managing variable resources and assessing the need for power system modification,” IEEE Power and Energy Magazine, vol. 11, no. 6, pp. 53–62, 2013. | spa |
dc.relation.references | International Energy Agency, “Status of Power System Transformation 2019: Power system flexibility,” OECD Publishing, pp. 1–26, 2019. | spa |
dc.relation.references | Y. K. Wu, Y. H. Li, and Y. Z. Wu, Overview of power system flexibility in a high penetration of renewable energy system. 2018. | spa |
dc.relation.references | A. Ulbig, M. A. Bucher, and G. Andersson, “Operational Flexibility of Power Systems,” Renewable Energy Integration: Practical Management of Variability, Uncertainty, and Flexibility in Power Grids: Second Edition, pp. 201–216, 2017. | spa |
dc.relation.references | E. Martinot, “Grid Integration of Renewable Energy: Flexibility, Innovation, and Experience,” 2016. | spa |
dc.relation.references | California ISO, “Energy and environmental goals drive change,” Technical Report, p. 4, 2016. | spa |
dc.relation.references | A. Jakhar, “A comprehensive review of power system flexibility,” IEEE International Conference on Power, Control, Signals and Instrumentation Engineering, ICPCSI 2017, pp. 1747–1752, 2018. | spa |
dc.relation.references | NERC, “Fast Frequency Response Concepts and Bulk Power System Reliability Needs,” NERC Inverter-Based Resource Performance task Force (IRPTF), no. March, pp. 1–23, 2020. | spa |
dc.relation.references | M. I. Alizadeh, M. Parsa Moghaddam, N. Amjady, P. Siano, and M. K. Sheikh-El- Eslami, “Flexibility in future power systems with high renewable penetration: A review,” Renewable and Sustainable Energy Reviews, vol. 57, pp. 1186–1193, 2016. | spa |
dc.relation.references | European Union’s Horizon 2020 research and innovation programme, “InterFLEX. Flexibility in interaction,” 2018. | spa |
dc.relation.references | XM SA ESP, “An´alisis de flexibilidad. Escenarios 2022-23 y 2024-25,” tech. rep., 2022. | spa |
dc.relation.references | J. Feng, J. Yang, H. Wang, H. Ji, M. O. Okoye, J. Cui, W. Ge, B. Hu, and G. Wang, “Optimal dispatch of high-penetration renewable energy integrated power system based on flexible resources,” Energies, vol. 13, no. 13, 2020. | spa |
dc.relation.references | A. A. Thatte, X. A. Sun, and L. Xie, “Robust optimization based economic dispatch for managing system ramp requirement,” Proceedings of the Annual Hawaii International Conference on System Sciences, pp. 2344–2352, 2014. | spa |
dc.relation.references | A. A. THATTE, Risk Aware Robust Decision Making in Power Systems With. PhD thesis, Texas AM University, 2014. | spa |
dc.relation.references | XM SA ESP, “Parámetros Técnicos del SIN,” 2022. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería | spa |
dc.subject.ddc | 330 - Economía::333 - Economía de la tierra y de la energía | spa |
dc.subject.lemb | Recursos energéticos renovables | spa |
dc.subject.lemb | Renewable energy sources | eng |
dc.subject.proposal | Flexibilidad | spa |
dc.subject.proposal | Sistema eléctrico de potencia | spa |
dc.subject.proposal | Cálculo en línea | spa |
dc.subject.proposal | Carga neta | spa |
dc.subject.proposal | Indicador | spa |
dc.subject.proposal | Fuentes de Energía Renovables No Convencionales | spa |
dc.subject.proposal | FERNC | spa |
dc.subject.proposal | Generación variable | spa |
dc.subject.proposal | Flexibility | eng |
dc.subject.proposal | Power system | eng |
dc.subject.proposal | Online assessment | eng |
dc.subject.proposal | Net load | eng |
dc.subject.proposal | Indicator | eng |
dc.subject.proposal | Non- Conventional Renewable Energy Sources | eng |
dc.subject.proposal | Renewable Energy | eng |
dc.subject.proposal | Variable Renewable Energy | eng |
dc.subject.proposal | VRE | eng |
dc.subject.proposal | Digsilent | spa |
dc.subject.proposal | Powerfactory | eng |
dc.subject.proposal | Python | eng |
dc.title | Cálculo en línea de flexibilidad de un sistema eléctrico de potencia | spa |
dc.title.translated | Online flexibility assessment of an electric power system | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1019075481.2022.pdf
- Tamaño:
- 9.42 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Ingeniería Eléctrica
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: