Cálculo en línea de flexibilidad de un sistema eléctrico de potencia

dc.contributor.advisorPérez González, Ernesto
dc.contributor.authorPérez Romero, Brian Camilo
dc.contributor.cvlacPérez Romero, Brian Camilo [0001716060]spa
dc.contributor.googlescholarPérez Romero, Brian Camilo [Y8Hf_AoAAAAJ]spa
dc.contributor.orcidPérez Romero, Brian Camilo [0000-0002-3145-3673]spa
dc.contributor.researchgatePérez Romero, Brian Camilo [Brian-Perez-Romero]spa
dc.contributor.researchgroupPrograma de Investigacion sobre Adquisicion y Analisis de Señales Paas-Unspa
dc.contributor.scopusPérez Romero, Brian Camilo [57221982027]spa
dc.date.accessioned2023-01-27T15:19:39Z
dc.date.available2023-01-27T15:19:39Z
dc.date.issued2022
dc.descriptionilustraciones, diagramasspa
dc.description.abstractLa incertidumbre inherente a la generación de las Fuentes de Energía Renovable No Convencional (FERNC) supone retos adicionales en la planeación, programación y operación de los sistemas eléctricos de potencia. Con el fin de garantizar su operación segura y confiable, un sistema eléctrico debe contar con la capacidad de responder ante diferentes condiciones de cambio en el balance generación-demanda en todas las escalas y horizontes de tiempo; esta capacidad ha sido definida como la Flexibilidad del sistema de potencia. En esta tesis se caracterizan y evalúan cuatro indicadores propuestos en la literatura para cuantificar en línea la flexibilidad de una versión modificada del sistema IEEE de 39 barras, con un horizonte de muy corto plazo, ante distintos escenarios de operación. Posteriormente se proponen cambios a la formulación matemática de los indicadores analizados con la finalidad de que consideren variables adicionales a las planteadas inicialmente y, por ende, mejorar la confiabilidad de la información proporcionada a los operadores del sistema. La formulación propuesta en la tesis para los indicadores de flexibilidad es evaluada en la misma versión modificada del sistema IEEE de 39 barras y sus resultados fueron comparados con los resultados obtenidos de la formulación original. Por último, se utilizó el modelo eléctrico del Sistema Interconectado Nacional (SIN) de Colombia para calcular en línea su flexibilidad considerando las FERNC con capacidad superior a 1 MW que a la fecha están declaradas en operación. La implementación se hizo mediante simulaciones en DigSILENT Power Factory, utilizando el lenguaje de programación Python y una librería desarrollada que permite automatizar los comandos de DigSILENT para simular la operación en tiempo real de los sistemas de potencia. (Texto tomadfo de la fuente)spa
dc.description.abstractThe inherent uncertainty in the generation of the Variable Renewable Energy (VRE) sources poses additional challenges in the planning, programming and operation of power systems. In order to guarantee its safe and reliable operation, a power system requieres the capability to respond to different changes in the generation-demand balance at all scales and time horizons; this capability has been defined as the Flexibility of the power system. In this thesis, four indicator proposed in the literature have been characterized and evaluated to make an online assessment of the flexibility of a modified version of the IEEE 39-bus system, with a very short-term horizon, in different operating scenarios. Subsequently, modifications to the mathematical formulation of the analyzed indicators have been proposed in order to cosider additional variables to those initially proposed and, therefore, improve the reliability of the information provided to the system operators. The formulation proposed in the thesis for the flexibility indicators is evaluated in the same modified version of the IEEE 39-bus system and its results were compared to the results obtained from the original formulation. Finally, the electrical model of the Colombian power system was used to online assess its flexibility, considering the VRE with capacity greater than 1 MW declared in operation to date. The implementation was done through simulations in DigSILENT Power Factory, using the Python programming language and a developed library which allows to automate DigSILENT commands in order to simulate the real-time operation of power systems.eng
dc.description.curricularareaÁrea Curricular de Ingeniería Eléctrica e Ingeniería de Controlspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería Eléctricaspa
dc.description.researchareaSistemas eléctricos de potenciaspa
dc.format.extentxv, 109 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83166
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Ingeniería Eléctricaspa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesA. A. Thatte and L. Xie, “A metric and market construct of inter-temporal flexibility in time-coupled economic dispatch,” IEEE Transactions on Power Systems, vol. 31, pp. 3437–3446, sep 2016.spa
dc.relation.referencesJ. Li, F. Liu, Z. Li, C. Shao, and X. Liu, “Grid-side flexibility of power systems in integrating large-scale renewable generations: A critical review on concepts, formulations and solution approaches,” Renewable and Sustainable Energy Reviews, vol. 93, pp. 272– 284, 2018.spa
dc.relation.referencesQ.Wang and B. M. Hodge, “Enhancing power system operational flexibility with flexible ramping products: A review,” IEEE Transactions on Industrial Informatics, vol. 13, no. 4, pp. 1652–1664, 2017.spa
dc.relation.referencesJ. Ma, V. Silva, R. Belhomme, D. S. Kirschen, and L. F. Ochoa, “Evaluating and planning flexibility in sustainable power systems,” IEEE Transactions on Sustainable Energy, vol. 4, no. 1, pp. 200–209, 2013.spa
dc.relation.referencesA. Cruickshank and Y. Phulpin, Electricity Markets and Regulation. No. July, CIGRE. WG C5.27, 2020.spa
dc.relation.referencesE. Lannoye, D. Flynn, and M. O’Malley, “Evaluation of power system flexibility,” IEEE Transactions on Power Systems, vol. 27, pp. 922–931, may 2012.spa
dc.relation.referencesH. Nosair and F. Bouffard, “Flexibility Envelopes for Power System Operational Planning,” IEEE Transactions on Sustainable Energy, vol. 6, no. 3, pp. 800–809, 2015.spa
dc.relation.referencesI. F. Abdin and E. Zio, “An integrated framework for operational flexibility assessment in multi-period power system planning with renewable energy production,” Applied Energy, vol. 222, pp. 898–914, jul 2018.spa
dc.relation.referencesA. Nikoobakht, J. Aghaei, M. Shafie-Khah, and J. P. Catal˜ao, “Assessing Increased Flexibility of Energy Storage and Demand Response to Accommodate a High Penetration of Renewable Energy Sources,” IEEE Transactions on Sustainable Energy, vol. 10, no. 2, pp. 659–669, 2019.spa
dc.relation.referencesIRENA, Power system flexibility for the energy transition. No. December, 2018.spa
dc.relation.referencesIEA, “Status of Power System Transformation 2018 Advanced Power Plant Flexibility- Technical Annexes Annex A. Technical options to enhance flexibility in thermal power plants,” tech. rep., International Energy Agency, 2018.spa
dc.relation.referencesNERC, “Flexibility Requirements and Metrics for Variable Generation: Implications for System Planning Studies,” Evaluation, no. August, 2010.spa
dc.relation.referencesEPRI, “Electric Power System Flexibility: Challenges and Opportunities,” Electric Power Research Institute, pp. 1–43, 2016.spa
dc.relation.referencesX. Tang, Y. Hu, Z. Chen, and G. You, “Flexibility Evaluation Method of Power Systems with High Proportion Renewable Energy Based on Typical Operation Scenarios,” Electronics (Switzerland), vol. 9, no. 4, 2020.spa
dc.relation.referencesM. A. Bucher, S. Chatzivasileiadis, and G. Andersson, “Managing Flexibility in Multi- Area Power Systems,” IEEE Transactions on Power Systems, vol. 31, pp. 1218–1226, mar 2016.spa
dc.relation.referencesE. Lannoye, D. Flynn, and M. O’Malley, Assessment of power system flexibility: A high-level approach. IEEE, 2012.spa
dc.relation.referencesH. Chandler, A Guide to the Balancing Challenge. International Energy Agency, 2011.spa
dc.relation.referencesF. Bouffard and M. Ortega-Vazquez, “The value of operational flexibility in power systems with significant wind power generation,” IEEE Power and Energy Society General Meeting, pp. 1–5, 2011.spa
dc.relation.referencesB. Breitschopf and A. Baumann, “Do variable renewable energies endanger the power system ? - An approach to measure flexibility,” in International Conference on the European Energy Market, EEM, vol. 2018-June, IEEE Computer Society, sep 2018.spa
dc.relation.referencesJ. Cochran, M. Miller, O. Zinaman, M. Milligan, D. Arent, B. Palmintier, M. O. Malley, S. Mueller, E. Lannoye, A. T. Epri, B. Kujala, N. Power, M. Sommer, H. Holttinen, J. Kiviluoma, and S. Soonee, “Flexibility in 21st Century Power Systems,” tech. rep., 2014.spa
dc.relation.referencesW. Deason, “Comparison of 100on flexibility and cost,” feb 2018.spa
dc.relation.referencesG. Singh, “The Power of Transformation,” IEEE computer graphics and applications, vol. 40, no. 3, pp. 5–8, 2020.spa
dc.relation.referencesXM, “Planeacion de Operaci´on: Metodolog´ıa de Flexibilidad,” pp. 1–23, XM SA ESP, Comit´e de operaci´on CNO, 2020.spa
dc.relation.referencesE. Lannoye, D. Flynn, and M. O’Malley, “Transmission, variable generation, and power system flexibility,” IEEE Transactions on Power Systems, vol. 30, pp. 57–66, jan 2015.spa
dc.relation.referencesG. Papaefthymiou, E. Haesen, and T. Sach, “Power System Flexibility Tracker: Indicators to track flexibility progress towards high-RES systems,” Renewable Energy, vol. 127, pp. 1026–1035, nov 2018.spa
dc.relation.referencesJ. Zhao, T. Zheng, and E. Litvinov, “A unified framework for defining and measuring flexibility in power system,” IEEE Transactions on Power Systems, vol. 31, pp. 339–347, jan 2016.spa
dc.relation.referencesT. Heggarty, J. Y. Bourmaud, R. Girard, and G. Kariniotakis, “Multi-temporal assessment of power system flexibility requirement,” Applied Energy, vol. 238, pp. 1327–1336, mar 2019.spa
dc.relation.referencesIRENA, “Colombia power system flexibility assessment: IRENA Flextool case study,” Tech. Rep. October, 2018.spa
dc.relation.referencesIRENA, Power system flexibility for the energy transition. No. December, 2018.spa
dc.relation.referencesP. Denholm, E. Ela, B. Kirby, and M. Milligan, “The role of energy storage with renewable electricity generation,” Energy Storage: Issues and Applications, no. January, pp. 1–58, 2011.spa
dc.relation.referencesReal Academia Espa˜nola, “Diccionario de la lengua espa˜nola, 23.ª ed., [versi´on 23.5 en l´ınea].”spa
dc.relation.referencesS. JA Weiner, ESC, Oxford English Dictionary. (ed.) ed., 1989.spa
dc.relation.referencesM. Z. Degefa, I. B. Sperstad, and H. Sæle, “Comprehensive classifications and characterizations of power system flexibility resources,” Electric Power Systems Research, vol. 194, no. December 2020, p. 107022, 2021. [spa
dc.relation.referencesW. CIGRE, “Methods for planning under uncertainty: toward flexibility in power system development,” Electra, no. 161, pp. 143–163, 1995.spa
dc.relation.referencesH. Holttinen, A. Tuohy, M. Milligan, E. Lannoye, V. Silva, S. M¨uller, and L. S¨oder, “The flexibility workout: Managing variable resources and assessing the need for power system modification,” IEEE Power and Energy Magazine, vol. 11, no. 6, pp. 53–62, 2013.spa
dc.relation.referencesInternational Energy Agency, “Status of Power System Transformation 2019: Power system flexibility,” OECD Publishing, pp. 1–26, 2019.spa
dc.relation.referencesY. K. Wu, Y. H. Li, and Y. Z. Wu, Overview of power system flexibility in a high penetration of renewable energy system. 2018.spa
dc.relation.referencesA. Ulbig, M. A. Bucher, and G. Andersson, “Operational Flexibility of Power Systems,” Renewable Energy Integration: Practical Management of Variability, Uncertainty, and Flexibility in Power Grids: Second Edition, pp. 201–216, 2017.spa
dc.relation.referencesE. Martinot, “Grid Integration of Renewable Energy: Flexibility, Innovation, and Experience,” 2016.spa
dc.relation.referencesCalifornia ISO, “Energy and environmental goals drive change,” Technical Report, p. 4, 2016.spa
dc.relation.referencesA. Jakhar, “A comprehensive review of power system flexibility,” IEEE International Conference on Power, Control, Signals and Instrumentation Engineering, ICPCSI 2017, pp. 1747–1752, 2018.spa
dc.relation.referencesNERC, “Fast Frequency Response Concepts and Bulk Power System Reliability Needs,” NERC Inverter-Based Resource Performance task Force (IRPTF), no. March, pp. 1–23, 2020.spa
dc.relation.referencesM. I. Alizadeh, M. Parsa Moghaddam, N. Amjady, P. Siano, and M. K. Sheikh-El- Eslami, “Flexibility in future power systems with high renewable penetration: A review,” Renewable and Sustainable Energy Reviews, vol. 57, pp. 1186–1193, 2016.spa
dc.relation.referencesEuropean Union’s Horizon 2020 research and innovation programme, “InterFLEX. Flexibility in interaction,” 2018.spa
dc.relation.referencesXM SA ESP, “An´alisis de flexibilidad. Escenarios 2022-23 y 2024-25,” tech. rep., 2022.spa
dc.relation.referencesJ. Feng, J. Yang, H. Wang, H. Ji, M. O. Okoye, J. Cui, W. Ge, B. Hu, and G. Wang, “Optimal dispatch of high-penetration renewable energy integrated power system based on flexible resources,” Energies, vol. 13, no. 13, 2020.spa
dc.relation.referencesA. A. Thatte, X. A. Sun, and L. Xie, “Robust optimization based economic dispatch for managing system ramp requirement,” Proceedings of the Annual Hawaii International Conference on System Sciences, pp. 2344–2352, 2014.spa
dc.relation.referencesA. A. THATTE, Risk Aware Robust Decision Making in Power Systems With. PhD thesis, Texas AM University, 2014.spa
dc.relation.referencesXM SA ESP, “Parámetros Técnicos del SIN,” 2022.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.ddc330 - Economía::333 - Economía de la tierra y de la energíaspa
dc.subject.lembRecursos energéticos renovablesspa
dc.subject.lembRenewable energy sourceseng
dc.subject.proposalFlexibilidadspa
dc.subject.proposalSistema eléctrico de potenciaspa
dc.subject.proposalCálculo en líneaspa
dc.subject.proposalCarga netaspa
dc.subject.proposalIndicadorspa
dc.subject.proposalFuentes de Energía Renovables No Convencionalesspa
dc.subject.proposalFERNCspa
dc.subject.proposalGeneración variablespa
dc.subject.proposalFlexibilityeng
dc.subject.proposalPower systemeng
dc.subject.proposalOnline assessmenteng
dc.subject.proposalNet loadeng
dc.subject.proposalIndicatoreng
dc.subject.proposalNon- Conventional Renewable Energy Sourceseng
dc.subject.proposalRenewable Energyeng
dc.subject.proposalVariable Renewable Energyeng
dc.subject.proposalVREeng
dc.subject.proposalDigsilentspa
dc.subject.proposalPowerfactoryeng
dc.subject.proposalPythoneng
dc.titleCálculo en línea de flexibilidad de un sistema eléctrico de potenciaspa
dc.title.translatedOnline flexibility assessment of an electric power systemeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1019075481.2022.pdf
Tamaño:
9.42 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería Eléctrica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: