Desarrollo de un prototipo de microscopio holográfico digital sin lentes certificable open-source

dc.contributor.advisorGarcía Sucerquia, Jorge Iván
dc.contributor.authorTobon-Maya, Heberley
dc.contributor.googlescholarhttps://scholar.google.com/citations?user=_JdH3vMAAAAJ&hl=esspa
dc.contributor.orcidTobón-Maya, Heberley [:0000-0002-3258-1861]spa
dc.contributor.researchgatehttps://www.researchgate.net/profile/Heberley-Tobon-Mayaspa
dc.contributor.researchgroupOptica y Procesamiento Opto-Digitalspa
dc.date.accessioned2024-05-02T14:35:19Z
dc.date.available2024-05-02T14:35:19Z
dc.date.issued2023
dc.description.abstractLa microscopia holográfica digital sin lentes (DLHM) es tal vez la tecnología más simple en términos de hardware para la observación de muestras sin tinción; una fuente de iluminación coherente de ondas esféricas, un sistema digital de registro y un cuerpo mecánico para integrarlos, constituyen el hardware necesario para su implementación, lo cual perfila a DLHM como una tecnología con un alto potencial de ser desarrollada de forma abierta, portable y accesible a un bajo costo. A pesar de este potencial las soluciones comerciales de DLHM se encuentran lejos de ser una tecnología accesible a diversos sectores de la educación, investigación y producción debido alto costo y baja portabilidad. En esta tesis de maestría en Ingeniería Física se condensan, refinan y articulan los diseños de DLHM producidos por el grupo de Óptica y Procesamiento Opto-Digital (GODP) relativos a los elementos constituyentes de la tecnología, para desarrollar un prototipo de microscopio DLHM certificable como hardware open-source. Para lograrlo se realizó un levantamiento del estado del arte de las características necesarias para que un prototipo de DLHM sea considerado como hardware open-source, se estudiaron los diferentes desarrollos del GDOP respecto a la fuente de iluminación y sistemas de registros en DLHM y finalmente se desarrolló un prototipo con base en los elementos constituyentes de mejor desempeño y las características necesarias su certificación. Los resultados de esta tesis se encuentran condensados en 2 artículos publicados en revistas indexadas, en la participación en 4 congresos de carácter internacional (LAOP 2022, RIAO 2023, ENO 2021, ETOP 2023) con 7 contribuciones en forma de presentación y un workshop de holografía digital dictado en el marco del 10th International Symposium "Optics & its applications” patrocinado por el ICTP. 8Texto tomado de la fuente)spa
dc.description.abstractDigital Lensless Holographic Microscopy (DLHM) is perhaps the simplest technology in terms of hardware for label-free sample observation. A coherent spherical wave illumination source, a digital recording system, and a mechanical body for integration, are the necessary hardware components for its implementation. This simplicity of hardaware sets DLHM as a technology with high potential for open, portable, and cost-effective development. Despite this potential, commercial DLHM solutions are far from being accessible to many sectors in education, research, and production, mainly due to its high costs and low portability. In this Master's thesis in Engineering in Physics, the designs of DLHM developed by the Optics and Opto-Digital Processing group (GODP) concerning the constituent elements of the technology are condensed, refined, and articulated in the development of a certifiable open-source hardware prototype of a DLHM microscope. To achieve this, a survey of the state-of-the-art characteristics necessary for a DLHM prototype to be considered as opensource hardware was conducted. The different developments of GOPD regarding the illumination source and recording systems in DLHM were studied, and finally, a prototype was developed based on the best-performing constituent elements and the necessary certification characteristics. The results of this thesis are condensed in two articles published in indexed journals and the participation in four international congresses (LAOP 2022, RIAO 2023, ENO 2021, ETOP 2023) with seven contributions in the form of presentations, and a workshop on digital holography delivered within the framework of the 10th International Symposium "Optics & its applications," sponsored by the ICTPeng
dc.description.curricularareaÁrea Curricular en Físicaspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMaestría en Ciencias - Físicaspa
dc.description.researchareaÓptica Aplicadaspa
dc.format.extent1 recurso en línea (91 páginas)spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86006
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.programMedellín - Ciencias - Maestría en Ingeniería Físicaspa
dc.relation.referencesH. Tobon-Maya, S. Zapata-Valencia, E. Zora-Guzmán, C. Buitrago-Duque, and J. Garcia-Sucerquia, "Open-source, cost-effective, portable, 3D-printed digital lensless holographic microscope," Appl. Opt. 60, A205 (2021).spa
dc.relation.referencesH. Tobon, C. Trujillo, and J. Garcia-Sucerquia, "Preprocessing in digital lensless holographic microscopy for intensity reconstructions with enhanced contrast," Appl. Opt. 60, A215 (2021).spa
dc.relation.referencesH. Tobón-Maya, A. Gómez-Ramírez, C. Buitrago-Duque, and J. Garcia-Sucerquia, "Adapting a Blu-ray optical pickup unit as a point source for digital lensless holographic microscopy," Appl. Opt. 62, D39 (2023).spa
dc.relation.referencesS. I. Zapata-Valencia, H. Tobon-Maya, and J. Garcia-Sucerquia, "Image enhancement and field of view enlargement in digital lensless holographic microscopy by multi-shot imaging," J. Opt. Soc. Am. A 40, C150 (2023).spa
dc.relation.referencesH. Tobón-Maya, A. Gómez-Ramírez, and J. Garcia-Sucerquia, "Digital Lensless holographic microscopy based on an optical pick-up unit," in Latin America Optics and Photonics (LAOP) Conference 2022 (Optica Publishing Group, 2022), p. W1D.3.spa
dc.relation.referencesS. I. Zapata-Valencia, H. Tobon-Maya, and J. García-Sucerquia, "Automatic method to measure the numerical aperture of a propagating Gaussian light beam," Opt. Pura y Apl. 55, 1–8 (2022).spa
dc.relation.referencesC. A. Buitrago-Duque, S. I. Zapata-Valencia, H. Tobon-Maya, A. Gomez-Ramirez, and J. Garcia-Sucerquia, "Introduction to holography at undergraduate level using research-grade open-source software," in Seventeenth Conference on Education and Training in Optics and Photonics: ETOP 2023, M. McKee and D. J. Hagan, eds. (SPIE, 2023), Vol. 12723, p. 127231V. 122. S. I. Zapata-Valencia, A. Gómez-Ramírez, H.spa
dc.relation.referencesS. I. Zapata-Valencia, A. Gómez-Ramírez, H. Tobon-Maya, C. A. Buitrago-Duque, and J. Garcia-Sucerquia, "Beyond maxima and minima: a hands-on approach for undergraduate teaching of diffraction," in Seventeenth Conference on Education and Training in Optics and Photonics: ETOP 2023, M. McKee and D. J. Hagan, eds. (SPIE, 2023), Vol. 12723, p. 1272302.spa
dc.relation.referencesS. Amann, M. von Witzleben, Breuer, and Stefan, "3D-printable portable opensource platform for low-cost lens-less holographic cellular imaging," arXiv Prepr. arXiv1904.04497 (2019)spa
dc.relation.referencesB. Patiño-Jurado, J. F. Botero-Cadavid, and J. Garcia-Sucerquia, "Step-Index Optical Fibers With 0.88 Numerical Aperture," J. Light. Technol. 37, 3734–3739 (2019).spa
dc.relation.referencesB. Patiño-Jurado, J. F. Botero-Cadavid, and J. Garcia-Sucerquia, "Digital Lensless Holographic Microscopy with Engineered Optical Fiber Point Source," in Digital Holography and Three-Dimensional Imaging 2019 (OSA, 2019), p. Th3A.5.spa
dc.relation.referencesP. Piedrahita-Quintero, C. Trujillo, and J. Garcia-Sucerquia, "JDiffraction: A GPGPU-accelerated JAVA library for numerical propagation of scalar wave fields," Comput. Phys. Commun. 214, 128–139 (2017).spa
dc.relation.referencesR. Antoniou, J. Bonvoisin, P.-Y. Hsing, E. Dekoninck, and D. Defazio, "Defining success in open source hardware development projects: a survey of practitioners," Des. Sci. 8, e8 (2022).spa
dc.relation.referencesA. Powell, "Democratizing production through open source knowledge: from open software to open hardware," Media, Cult. Soc. 34, 691–708 (2012).spa
dc.relation.referencesN. Chakravorty, C. S. Sharma, K. A. Molla, and J. K. Pattanaik, "Open Science: Challenges, Possible Solutions and the Way Forward," Proc. Indian Natl. Sci. Acad. 88, 456–471 (2022).spa
dc.relation.referencesM. P. da COSTA and F. C. L. LEITE, "Open access in the world and Latin America: A review since the Budapest Open Access Initiative," Transinformação 28, 33–46 (2016).spa
dc.relation.referencesE. Commission, D.-G. for Research, Innovation, C. Cabello Valdes, B. Rentier, E. Kaunismaa, J. Metcalfe, F. Esposito, D. McAllister, K. Maas, K. Vandevelde, and C. O’Carroll, Evaluation of Research Careers Fully Acknowledging Open Science Practices : Rewards, Incentives and/or Recognition for Researchers Practicing Open Science (Publications Office, 2017).spa
dc.relation.referencesJ. M. Pearce, "Economic savings for scientific free and open source technology: A review," HardwareX 8, e00139 (2020)spa
dc.relation.referencesG. Niezen, P. Eslambolchilar, and H. Thimbleby, "Open-source hardware for medical devices," BMJ Innov. 2, 78–83 (2016).spa
dc.relation.referencesM. Vázquez, L. Anfossi, H. Ben-Yoav, L. Diéguez, T. Karopka, B. Della Ventura, S. Abalde-Cela, A. Minopoli, F. Di Nardo, V. K. Shukla, A. Teixeira, A. Tvarijonaviciute, and L. Franco-Martínez, "Use of some cost-effective technologies for a routine clinical pathology laboratory," Lab Chip 21, 4330–4351 (2021)spa
dc.relation.referencesJ. T. Collins, J. Knapper, J. Stirling, J. Mduda, C. Mkindi, V. Mayagaya, G. A. Mwakajinga, P. T. Nyakyi, V. L. Sanga, D. Carbery, L. White, S. Dale, Z. Jieh Lim, J. J. Baumberg, P. Cicuta, S. McDermott, B. Vodenicharski, and R. Bowman, "Robotic microscopy for everyone: the OpenFlexure microscope," Biomed. Opt. Express 11, 2447 (2020)spa
dc.relation.referencesG. Popescu, Quantitative Phase Imaging of Cells and Tissues (McGraw Hill Professional, 2011).spa
dc.relation.referencesA. Saetchnikov, V. Saetchnikov, E. Tcherniavskaia, and A. Ostendorf, "Effect of a thin reflective film between substrate and photoresin on two-photon polymerization," Addit. Manuf. 24, 658–666 (2018).spa
dc.relation.referencesL. Xu, X. Peng, J. Miao, and A. K. Asundi, "Studies of digital microscopic holography with applications to microstructure testing," Appl. Opt. 40, 5046 (2001).spa
dc.relation.referencesJ. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, "Digital in-line holographic microscopy," Appl. Opt. 45, 836 (2006).spa
dc.relation.referencesJ. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts & Company Publishers, 2005).spa
dc.relation.referencesJ. Garcia-Sucerquia, W. Xu, S. K. K. Jericho, M. H. H. Jericho, P. Klages, and H. J. J. Kreuzer, "Resolution power in digital in-line holography," in Proceedings of SPIE - The International Society for Optical Engineering (2006), Vol. 6027 I.spa
dc.relation.referencesE. J. Davis, M. Jones, D. A. Thiel, and S. Pauls, "Using Open-Source, 3D Printable Optical Hardware To Enhance Student Learning in the Instrumental Analysis Laboratory," J. Chem. Educ. 95, 672–677 (2018)spa
dc.relation.referencesM. Sanz, J. Á. Picazo-Bueno, L. Granero, J. García, and V. Micó, "Multi-illumination single-holographic-exposure lensless Fresnel (MISHELF) microscopy using 4 channels," in Imaging and Applied Optics 2019 (COSI, IS, MATH, PcAOP), OSA Technical Digest (Optical Society of America, 2019), p. JW2A.1spa
dc.relation.referencesHamilton Company, "Needle Gauge Chart," https://www.hamiltoncompany.com/laboratory-products/needles-knowledge/needlegauge-chartspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.subject.ddc530 - Físicaspa
dc.subject.lembProcesamiento óptico de daos
dc.subject.proposalMicroscopia holográfica digitalspa
dc.subject.proposalOpen-source Hardwareeng
dc.subject.proposalOpen-Scienceeng
dc.subject.proposalDigital holographic microscopyeng
dc.subject.wikidataCiencia abierta
dc.subject.wikidataMicroscopía holográfica digital
dc.subject.wikidataMicroscopia óptica
dc.titleDesarrollo de un prototipo de microscopio holográfico digital sin lentes certificable open-sourcespa
dc.title.translatedDevelopment of digital lensless holographic microscope prototype certifiable as open-sourceeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1037652000.2023.pdf
Tamaño:
2.52 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería Física

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: