Planning and management strategies of direct current microgrids for cost optimization and improvement of operating conditions

dc.contributor.advisorRamos Paja, Carlos Andrésspa
dc.contributor.advisorGonzález Montoya, Danielspa
dc.contributor.authorGrisales-Noreña, Luis Fernandospa
dc.contributor.researchgroupGrupo de Automática de la Universidad Nacional (GAUNAL)spa
dc.date.accessioned2020-08-24T23:13:10Zspa
dc.date.available2020-08-24T23:13:10Zspa
dc.date.issued2020spa
dc.description.abstractEsta tesis desarrolla estrategias de planeación y gestión para microrredes de corriente continua con el objetivo de mejorar las condiciones y costos operativos. La primera parte de esta tesis aborda el problema de flujo de potencia en redes de corriente continua, donde cinco soluciones son propuestas. En el caso particular de las redes de topología radial, son propuestos tres métodos basados en la formulación triangular, teoría de grafos y métodos de barrido. Adicionalmente, dos enfoques iterativos son propuestos para resolver el problema de flujo de potencia en redes de corriente continua con topología radial o enmallada, los cuales son basados en expansiones de series de Taylor y aproximaciones sucesivas. La segunda parte de esta tesis propone tres metodologías maestro–esclavo para dimensionar generadores distribuidos en redes de corriente continua. La etapa maestra es encargada de dimensionar los generadores empleando tres métodos continuos: Una versión continua del algoritmo genético, el algoritmo de optimización basado en agujeros negros y el algoritmo de optimización por cúmulo de partículas. La etapa esclava utiliza el método de flujo de potencia basado en aproximaciones sucesivas adoptando como función objetivo la reducción de las pérdidas de potencia. El objetivo principal de esta parte de la tesis es encontrar la metodología que proporciona el mejor balance entre calidad de la solución y tiempos de procesamiento. La tercera parte de la tesis se enfoca en el impacto técnico de la integración óptima de recursos energéticos distribuidos en microrredes de corriente continua. Lo cual se aborda al proponer una metodología híbrida para la ubicación y dimensionamiento óptimo de generadores distribuidos en microrredes de corriente continua, la cual emplea una versión paralela del algoritmo basado en aprendizaje incremental y el algoritmo de optimización por cúmulo de partículas; implementando como función objetivo la reducción de las pérdidas de potencia. Finalmente, esta tesis propone dos estrategias de gestión de la energía para redes de corriente continuas aisladas y conectadas a la red, las cuales consideran como objetivos principales la mejora de aspectos técnicos de la red (límites de corriente y tensión, estado de carga de las baterías, límites de potencia y energía, entre otros) y la reducción de costos operacionales. La primera estrategia de gestión de energía se propone para una red aislada de corriente continua, la cual considera el control de la generación fotovoltaica y los sistemas de almacenamiento de energía. Dicha estrategia de gestión permite a los sistemas de generación fotovoltaica controlar la generación de potencia y asegurar que los elementos almacenadores no excedan los límites de estado de carga. La segunda estrategia de gestión de la energía busca reducir los costos de compra de energía a el operador de red para una microrred formada por generadores distribuidos, almacenadores de energía y cargas eléctricas. Esta solución considera el estado de carga de los sistemas de baterías y la producción de energía variable de los generadores a base de energías renovables, en particular de las tecnologías eólicas y fotovoltaicas, como también, la variación del consumo de potencia y costos de la energía. Todas las metodologías y estrategias propuestas en esta tesis son basadas en programación secuencial para evitar el uso de software con requerimientos indeseados, como altos costos(software comerciales), o la necesidad de pre-procesar los datos de entrada y/o salida. Adicionalmente, estas soluciones fueron validadas a través de diferentes simulaciones, donde otros métodos propuestos en la literatura fueron usados como referencias de comparación. Todas las simulaciones fueron llevadas a cabo en el software Matlab y el simulador de electrónicos de potencia PSIM.spa
dc.description.abstractThis thesis develops planning and management strategies of direct current microgrids for improving the operating conditions and optimization cost. The first part of this work addresses the power flow problem in direct current grids, where five different solutions are proposed. In the particular case of the radial topology, three methods are proposed based on the triangular matrix formulation, graph theory and sweep methods. In addition, two iterative approaches are proposed for solving the power flow problem in direct current grids with mesh or radial grids, those based on Taylor series expansion and successive approximations, respectively. The second part of this thesis proposes three master--slave methodologies for sizing distributed generators in direct current microgrids. The master stage is in charge to size the generators by using three continuous methods: a continuous version of the genetic algorithm, the black hole optimization method and the particle swarm optimization algorithm. The slave stage use the successive approximation power flow method by adopting as objective function the minimization of the power loss. The main objective of this part of the thesis is to find the methodology that provides the best balance between solution quality and processing time. The third part of the thesis focuses on the technical impact of the optimal integration of distributed energy resources on direct current microgrids. This is addressed by proposing a hybrid methodology for optimal location and sizing of distributed generators in direct current networks, which consists on a hybrid methodology between the parallel population-based incremental learning and the particle swarm optimization method, where the objective function is the reduction of the power losses. Finally, this thesis proposes two energy management systems for standalone and grid--connected direct current microgrids which considers, as main objective, the improvement of the technical aspects (voltage and currents bounds, state of charge of the batteries, power and energy capabilities, among other) and the reduction of the operational costs. The first energy management system is propose for a standalone direct current microgrid by considering the control of the photovoltaic generation and battery storage system. Such an energy management system enables the photovoltaic system to control the power generation and ensures that the power storage element does not exceed the technical limits of the state of charge. The second energy management system is aimed at reducing the energy cost purchased to the utility grid by a direct current microgrid formed by distributed generators, battery storage systems and electrical loads. This solution takes into account the state-of-charge of the battery storage systems and the variable production of the renewable generators, in particular of wind and photovoltaic technologies, and the variations in the power consumption and energy costs. All the methods, methodologies and strategies in this thesis are based on sequential programming to avoid the use of software with undesired requirements, such as high cost (commercial software), or the requirement of prepossessing of the input and/or output data. In addition, those solutions are validated through different simulations, where other methods proposed in literature are used as comparison references. All simulations are carried out in the software Matlab and in the Power Electronics Simulator PSIM.eng
dc.description.additionalTesis Doctorado en Ingeniería - Ingeniería Automática.spa
dc.description.degreelevelDoctoradospa
dc.description.projectEstrategia de transformación del sector energético Colombiano en el horizonte de 2030 - Energética 2030 - ”Generación distribuida de energía eléctrica en Colombia a partir de energía solar y eólica”(Code: 58838, Hermes: 38945).spa
dc.description.sponsorshipMincienciasspa
dc.format.extent176spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationGrisales Noreña, L. F. (2020). Planning and management strategies of direct current microgrids for cost optimization and improvement of operating conditions Planning and management strategies of direct current microgrids for cost optimization and improvement of operating conditions. Manzizales: Universidad Nacional de Colombia.spa
dc.identifier.citationL. F. Grisales Noreña, Planning and management strategies of direct current microgrids for cost optimization and improvement of operating conditions Planning and management strategies of direct current microgrids for cost optimization and improvement of operating conditions, Manzizales: Universidad Nacional de Colombia, 2020.spa
dc.identifier.citation@phdthesis{GrisalesNorena2020, author = {{Grisales Nore{\~{n}}a}, Luis Fernando}, pages = {176}, school = {Universidad Nacional de Colombia}, title = {{Planning and management strategies of direct current microgrids for cost optimization and improvement of operating conditions Planning and management strategies of direct current microgrids for cost optimization and improvement of operating conditions}}, type = {Investigaci{\'{o}}n}, year = {2020} }spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78204
dc.language.isoengspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizalesspa
dc.publisher.departmentDepartamento de Ingeniería Eléctrica y Electrónicaspa
dc.publisher.programManizales - Ingeniería y Arquitectura - Doctorado en Ingeniería - Automáticaspa
dc.relation.references“Light for all? evaluating brazil’s rural electrification progress, 2000–2010,”Energy Policy, vol. 86, pp. 315 – 327, 2015.spa
dc.relation.references“Early electrification and the quality of service: Evidence from rural india,”Energy for Sustainable Development, vol. 44, pp. 11 – 20, 2018.spa
dc.relation.referencesO. D. Montoya, A. Grajales, A. Garces, and C. A. Castro, “Distribution systems operation considering energy storage devices and distributed generation,” IEEE Latin America Transactions, vol. 15, pp. 890–900, May 2017.spa
dc.relation.referencesS. Parhizi, H. Lotfi, A. Khodaei, and S. Bahramirad, “State of the Art in Research on micro grids: A Review,” IEEE Access, vol. 3, pp. 890–925, feb 2015.spa
dc.relation.referencesO. D. Montoya, A. Garc ́es, and G. Espinosa-P ́erez, “A generalized passivity-based control approach for power compensation in distribution systems using electrical energy storage systems,” Journal of Energy Storage, vol. 16, pp. 259 – 268, 2018.spa
dc.relation.referencesK. Rahbar, C. C. Chai, and R. Zhang, “Energy cooperation optimization in micro-grids with renewable energy integration,” IEEE Transactions on Smart Grid, vol. 9, pp. 1482–1493, March 2018.spa
dc.relation.referencesJ. J. Justo, F. Mwasilu, J. Lee, and J.-W. Jung, “AC-microgrids versus DC-microgrids with distributed energy resources: A review,” Renewable and Sustainable Energy Reviews, vol. 24, pp. 387–405, Aug 2013.spa
dc.relation.referencesH. Lotfi and A. Khodaei, “Ac versus dc microgrid planning,” IEEE Transactions on smart Grid, vol. 8, pp. 296–304, Jan 2017.spa
dc.relation.referencesA. Mohammed, S. S. Refaat, S. Bayhan, and H. Abu-Rub, “Ac microgrid control and management strategies: Evaluation and review,” IEEE Power Electronics Magazine,vol. 6, pp. 18–31, June 2019.spa
dc.relation.referencesD. Emad, M. A. El-Hameed, M. T. Yousef, and A. A. El-Fergany, “Computational methods for optimal planning of hybrid renewable microgrids: A comprehensive review and challenges,” Archives of Computational Methods in Engineering, Jul 2019.spa
dc.relation.referencesC. Camacho-Gómez, S. Jiménez-Fernández, R. Mallol-Poyato, J. Del Ser, and S. Salcedo-Sanz, “Optimal design of microgrid’s network topology and location of the distributed renewable energy resources using the harmony search algorithm,” Soft Computing, vol. 23, pp. 6495–6510, Aug 2019.spa
dc.relation.referencesP. Rinaldi, E. Dari, M. Vénere, and A. Clausse, “A lattice-Boltzmann solver for 3dfluid simulation on gpu,” Simulation Modelling Practice and Theory, vol. 25, pp. 163– 171, 2012.spa
dc.relation.referencesL. F. Grisales-Noreña, D. Gonzalez Montoya, and C. A. Ramos-Paja, “Optimal sizing and location of distributed generators based on pbil and pso techniques,” Energies,vol. 11, no. 4, 2018.spa
dc.relation.referencesM. A. Dávila-Guzmán, W. Alfonso-Morales, and E. F. Caicedo-Bravo, “Arquitectura heterogénea para el procesamiento de los algoritmos de enjambres,” TecnoLógicas,vol. 17, pp. 11 – 20, 01 2014.spa
dc.relation.referencesR. Zamora and A. K. Srivastava, “Controls for microgrids with storage: Review, challenges, and research needs,” Renewable and Sustainable Energy Reviews, vol. 14, no. 7,pp. 2009 – 2018, 2010.spa
dc.relation.referencesP. Wang, W. Wang, and D. Xu, “Optimal sizing of distributed generations in dc microgrids with comprehensive consideration of system operation modes and operation targets,” IEEE Access, vol. 6, pp. 31129–31140, 2018.spa
dc.relation.referencesA. Garces, “On the convergence of newton’s method in power flow studies for dc microgrids,” IEEE Transactions on Power Systems, vol. 33, pp. 5770–5777, Sep. 2018.spa
dc.relation.referencesP. Chiradeja and R. Ramakumar, “An Approach to Quantify the Technical Benefits of distributed Generation,” IEEE Transactions on Energy Conversion, vol. 19, pp. 764–773, Dec 2004.spa
dc.relation.referencesP. Prakash and D. K. Khatod, “Optimal sizing and siting techniques for distributed generation in distribution systems: A review,” Renewable and Sustainable EnergyReviews, vol. 57, pp. 111–130, may 2016.spa
dc.relation.referencesK. Balamurugan, D. Srinivasan, and T. Reindl, “Impact of Distributed Generation on power Distribution Systems,” Energy Procedia, vol. 25, pp. 93–100, 2012.spa
dc.relation.referencesA. Rezaee Jordehi, “Allocation of distributed generation units in electric power systems: A review,” Renewable and Sustainable Energy Reviews, vol. 56, pp. 893–905, apr2016.spa
dc.relation.referencesR. H. Inman, H. T. Pedro, and C. F. Coimbra, “Solar forecasting methods for renewable energy integration,” Progress in Energy and Combustion Science, vol. 39, no. 6, pp. 535– 576, 2013.spa
dc.relation.referencesC. Monteiro, R. Bessa, V. Miranda, A. Botterud, J. Wang, G. Conzelmann, and INESCPorto, “Wind power forecasting: state-of-the-art 2009.,” tech. rep., Argonne NationalLaboratory (ANL), Argonne, IL (United States), Nov 2009.spa
dc.relation.referencesR. A. Hincapíe, “Planeamiento de subestaciones y alimentadores en sistemas de distribución usando programación entera,”Scientia Et Technica, no. January, pp. 1 – 6,2005.spa
dc.relation.referencesM. Belkhayat, R. Cooley, and E. H. Abed, “Stability and dynamics of power systems with regulated converters,” in Circuits and Systems, 1995. ISCAS ’95., 1995 IEEEInternational Symposium on, vol. 1, pp. 143–145 vol.1, Apr 1995.spa
dc.relation.referencesJ. E. Machado, R. G. no, N. Barabanov, R. Ortega, and B. Polyak, “On the existence of equilibria of multi-port linear ac networks with constant-power loads,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 64, pp. 2772–2782, Oct 2017.spa
dc.relation.referencesA. Garces, D. Montoya, and R. Torres, “Optimal power flow in multiterminal HVDC systems considering dc/dc converters,” in2016 IEEE 25th International Symposium on Industrial Electronics (ISIE), pp. 1212–1217, June 2016.spa
dc.relation.referencesJ. Li, F. Liu, Z. Wang, S. H. Low, and S. Mei, “Optimal power flow in stand-alone dc microgrids,” IEEE Transactions on Power Systems, vol. 33, pp. 5496–5506, Sep. 2018.spa
dc.relation.referencesE. Aprilia, K. Meng, M. Al Hosani, H. H. Zeineldin, and Z. Y. Dong, “Unified power flow algorithm for standalone ac/dc hybrid microgrids,” IEEE Transactions on SmartGrid, vol. 10, pp. 639–649, Jan 2019.spa
dc.relation.referencesO. D. Montoya, “Numerical approximation of the maximum power consumption indc-mgs with cpls via an sdp model,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 66, pp. 642–646, April 2019.spa
dc.relation.referencesA. Garces, “Uniqueness of the power flow solutions in low voltage direct current grids,” Electric Power Systems Research, vol. 151, pp. 149 – 153, 2017.spa
dc.relation.referencesO. Ellabban, H. Abu-Rub, and F. Blaabjerg, “Renewable energy resources: Current status, future prospects and their enabling technology,” Renewable and sustainable energy Reviews, vol. 39, pp. 748 – 764, 2014.spa
dc.relation.referencesY. Nesterov, Lectures on Convex Optimization, vol. 137 of Springer Optimization and its Applications. Cham: Springer International Publishing, springer o ed., 2018.spa
dc.relation.referencesZ. Shuai, J. Fang, F. Ning, and Z. J. Shen, “Hierarchical structure and bus voltage control of dc microgrid,” Renewable and Sustainable Energy Reviews, vol. 82, pp. 3670– 3682, 2018.spa
dc.relation.referencesC. D. Persis, E. R. Weitenberg, and F. D ̈orfler, “A power consensus algorithm for dc microgrids,” Automatica, vol. 89, pp. 364 – 375, 2018.spa
dc.relation.referencesZ. Liu, M. Su, Y. Sun, H. Han, X. Hou, and J. M. Guerrero, “Stability analysis of dc microgrids with constant power load under distributed control methods,” Automatica,vol. 90, pp. 62 – 72, 2018.spa
dc.relation.referencesShivam and R. Dahiya, “Stability analysis of islanded dc microgrid for the proposed distributed control strategy with constant power loads,” Computers Electrical Engineering, vol. 70, pp. 151 – 162, 2018.spa
dc.relation.referencesP. G. Khorasani, M. Joorabian, and S. G. Seifossadat, “Smart grid realization with introducing unified power quality conditioner integrated with dc microgrid,” Electric Power Systems Research, vol. 151, pp. 68 – 85, 2017.spa
dc.relation.referencesH. Wu, X. Liu, and M. Ding, “Dynamic economic dispatch of a microgrid: Mathematical models and solution algorithm,” International Journal of Electrical Power EnergySystems, vol. 63, pp. 336 – 346, 2014.spa
dc.relation.referencesC. Phurailatpam, B. S. Rajpurohit, and L. Wang, “Planning and optimization of autonomous dc microgrids for rural and urban applications in india,” Renewable and Sustainable Energy Reviews, vol. 82, pp. 194 – 204, 2018.spa
dc.relation.referencesA. A. Hamad and E. F. El-Saadany, “Multi-agent supervisory control for optimal economic dispatch in dc microgrids,” Sustainable Cities and Society, vol. 27, pp. 129– 136, 2016.spa
dc.relation.referencesJ. Yue, Z. Hu, C. Li, J. C. Vasquez, and J. M. Guerrero, “Economic power schedule and transactive energy through an intelligent centralized energy management system for a dc residential distribution system,” Energies, vol. 10, p. 916, Jul 2017.spa
dc.relation.referencesG. Lee, B. Ko, J. Cho, and R. Kim, “A distributed control method based on a voltage sensitivity matrix in dc microgrids with low-speed communication,” IEEE Transactions on Smart Grid, vol. 10, pp. 3809–3817, July 2019.spa
dc.relation.references[44] M. Nasir, S. Iqbal, and H. A. Khan, “Optimal planning and design of low-voltage low-power solar dc microgrids,” IEEE Transactions on Power Systems, vol. 33, pp. 2919–2928, May 2018.spa
dc.relation.referencesW. Gil-González, O. D. Montoya, E. Holgu ́ın, A. Garces, and L. F. Grisales-Noreña, “Economic dispatch of energy storage systems in dc microgrids employing a semidefinite programming model,” Journal of Energy Storage, vol. 21, pp. 1 – 8, 2019.spa
dc.relation.referencesC. Papadimitriou, E. Zountouridou, and N. Hatziargyriou, “Review of hierarchical control in dc microgrids,” Electric Power Systems Research, vol. 122, pp. 159 – 167,2015.spa
dc.relation.referencesBaochao Wang, M. Sechilariu, and F. Locment, “Intelligent DC microgrid with smartgrid communications: Control strategy consideration and design,” in2013 IEEE Power& Energy Society General Meeting, vol. 3, pp. 1–1, IEEE, 2013.spa
dc.relation.referencesF. Locment and M. Sechilariu, “Modeling and Simulation of DC Microgrids for ElectricVehicle Charging Stations,” Energies, vol. 8, pp. 4335–4356, may 2015.spa
dc.relation.references“Assesment of needs and research roadmaps for rechargeable energy storage system” Tech. Rep. December 2010, U.S Department of Transportation, Washington, DC, 2011.spa
dc.relation.referencesA. M. Gee, F. V. P. Robinson, and R. W. Dunn, “Analysis of Battery Lifetime Extension in a Small-Scale Wind-Energy System Using Supercapacitors,” IEEE Transactions on Energy Conversion, vol. 28, pp. 24–33, Mar 2013.spa
dc.relation.referencesM. Ismail, M. Moghavvemi, and T. Mahlia, “Design of an optimized photovoltaic and microturbine hybrid power system for a remote small community: Case study of Palestine,” Energy Conversion and Management, vol. 75, pp. 271–281, Nov 2013.spa
dc.relation.referencesJ. López, S. Seleme, P. Donoso, L. Morais, P. Cortizo, and M. Severo, “Digital control strategy for a buck converter operating as a battery charger for stand-alone photovoltaic systems,” Solar Energy, vol. 140, pp. 171–187, Dec 2016.spa
dc.relation.referencesY. E. Abu Eldahab, N. H. Saad, and A. Zekry, “Enhancing the design of battery charging controllers for photovoltaic systems,” Renewable and Sustainable Energy Reviews, vol. 58, pp. 646–655, May 2016.spa
dc.relation.referencesJoon-Young Jeon, Jong-Soo Kim, Gyu-Yeong Choe, Byoung-Kuk Lee, Jin Hur, and Hyun-Cheol Jin, “Design guideline of DC distribution systems for home appliances: Is-sues and solution,” in2011 IEEE International Electric Machines & Drives Conference(IEMDC), pp. 657–662, IEEE, May 2011.spa
dc.relation.referencesWeixing Li, Xiaoming Mou, Yuebin Zhou, and C. Marnay, “On voltage standards for DC home microgrids energized by distributed sources,” in proceedings of The 7thInternational Power Electronics and Motion Control Conference, vol. 3, pp. 2282–2286, IEEE, Jun 2012.spa
dc.relation.referencesK. Shimomachi, R. Hara, and H. Kita, “Comparison between DC and AC microgrid systems considering ratio of DC load,” in2015 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), vol. 2016-Janua, pp. 1–4, IEEE, Nov 2015.spa
dc.relation.referencesMa Lei, Sun Yaojie, Lin Yandan, Bai Zhifeng, Tong Liqin, and Song Jieqiong, “A high-performance MPPT control method,” in 2011 International Conference on Materials for Renewable Energy & Environment, vol. 1, pp. 195–199, IEEE, May 2011.spa
dc.relation.referencesT. Dragicevic, J. M. Guerrero, J. C. Vasquez, and D. Skrlec, “Supervisory Control of an Adaptive-Droop Regulated DC Microgrid With Battery Management Capability,” IEEE Transactions on Power Electronics, vol. 29, pp. 695–706, Feb 2014.spa
dc.relation.referencesC. A. Ramos-Paja, J. D. Bastidas-Rodríguez, D. González, S. Acevedo, and J. Peláez-Restrepo, “Design and control of a buck-boost charger-discharger for DC bus regulation in microgrids,” Energies, vol. 10, no. 11, 2017.spa
dc.relation.referencesX. Lu and J. Wan, “Modeling and Control of the Distributed Power Converters in a standalone DC Microgrid,” Energies, vol. 9, p. 217, Mar 2016.spa
dc.relation.referencesM. Kumar, S. C. Srivastava, and S. N. Singh, “Control Strategies of a DC Microgrid for grid Connected and Islanded Operations,” IEEE Transactions on Smart Grid, vol. 6, no. 4, pp. 1588–1601, 2015.spa
dc.relation.referencesM. Sechilariu, B. C. Wang, F. Locment, and A. Jouglet, “DC microgrid power flow optimization by multi-layer supervision control. Design and experimental validation,” Energy Conversion and Management, vol. 82, pp. 1–10, Jun 2014.spa
dc.relation.referencesA. Kwasinski and C. N. Onwuchekwa, “Dynamic Behavior and Stabilization of DC Microgrids With Instantaneous Constant-Power Loads,” IEEE Transactions on PowerElectronics, vol. 26, pp. 822–834, Mar 2011.spa
dc.relation.referencesD. Linden, “Handbook of batteries,” Fuel and Energy Abstracts, vol. 36, no. 4, p. 265,1995.spa
dc.relation.referencesB. Belvedere, M. Bianchi, A. Borghetti, C. a. Nucci, M. Paolone, and A. Peretto, “A Microcontroller-Based Power Management System for Standalone Microgrids WithHybrid Power Supply,” IEEE Transactions on Sustainable Energy, vol. 3, pp. 422–431, Jul 2012.spa
dc.relation.referencesC. Chen, S. Duan, T. Cai, B. Liu, and G. Hu, “Optimal allocation and economic analysis of energy storage system in microgrids,” IEEE Transactions on Power Electronics,vol. 26, no. 10, pp. 2762–2773, 2011.spa
dc.relation.referencesO. D. Montoya, L. F. Grisales-Noreña, D. González-Montoya, C. Ramos-Paja, and A. Garces, “Linear power flow formulation for low-voltage dc power grids,” Electric Power Systems Research, vol. 163, pp. 375 – 381, 2018.spa
dc.relation.referencesO. D. Montoya, V. M. Garrido, W. Gil-Gonzalez, and L. F. Grisales-Noreña, “Power flow analysis in dc grids: Two alternative numerical methods,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 66, pp. 1865–1869, Nov 2019.spa
dc.relation.referencesO. D. Montoya, L. F. Grisales-Noreña, and W. Gil-Gonzalez, “Triangular matrix formulation for power flow analysis in radial dc resistive grids with cpls,” IEEE Transactions on Circuits and Systems II: Express Briefs, pp. 1–1, 2019.[70]spa
dc.relation.referencesL. F. Grisales-Noreña, O. D. Garzon-Rivera, C. A. Ramírez-Vanegas, O. D. Monto-ya, and C. A. Ramos-Paja, “Application of the backward/forward sweep method for solving the power flow problem in DC networks with radial structure,” Journal of physics: Conference Series, vol. 1448, p. 012012, Jan 2020.spa
dc.relation.referencesO. D. Montoya, “On linear analysis of the power flow equations for dc and ac grids with cpls,” IEEE Transactions on Circuits and Systems II: Express Briefs, pp. 1–1,2019.spa
dc.relation.referencesJ. W. Simpson-Porco, F. ̈orfler, and F. Bullo, “On resistive networks of constant-power devices,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 62, pp. 811–815, Aug 2015.spa
dc.relation.referencesD. K. Molzahn, “Identifying and characterizing non-convexities in feasible spaces of optimal power flow problems,” IEEE Transactions on Circuits and Systems II: express briefs, vol. 65, pp. 672–676, May 2018.spa
dc.relation.referencesJ. Grainger and W. Stevenson, Power system analysis. New York: McGraw-Hill, McGraw-hill series in electrical and computer engineering: power and energy ed., 1994.spa
dc.relation.referencesF. Capitanescu, “Critical review of recent advances and further developments needed in ac optimal power flow,” Electric Power Systems Research, vol. 136, pp. 57 – 68, 2016.spa
dc.relation.referencesA. Marini, S. Mortazavi, L. Piegari, and M.-S. Ghazizadeh, “An efficient graph-based power flow algorithm for electrical distribution systems with comprehensive modeling of distributed generations,” Electric Power Systems Research, vol. 170, pp. 229 – 243,2019.spa
dc.relation.referencesP. Aravindhababu, S. Ganapathy, and K. Nayar, “A novel technique for the analysis of radial distribution systems,” Int. J. Electr. Power Energy Syst., vol. 23, no. 3, pp. 167– 171, 2001.spa
dc.relation.referencesU. Eminoglu and M. H. Hocaoglu, “Distribution systems forward/backward sweep-based power flow algorithms: A review and comparison study,” Electric Power Components and Systems, vol. 37, no. 1, pp. 91–110, 2008.spa
dc.relation.referencesS. Sanchez, R. Ortega, R. Griño, G. Bergna, and M. Molinas, “Conditions for existence of equilibria of systems with constant power loads,” IEEE Trans. Circuits Syst. I Regul. Pap., vol. 61, pp. 2204–2211, July 2014.spa
dc.relation.referencesO. D. Montoya, W. Gil-González, and A. Garces, “Optimal Power Flow on DC Microgrids: A Quadratic Convex Approximation,” IEEE Trans. Circuits Syst. II ExpressBriefs, pp. 1–1, 2018.spa
dc.relation.referencesA. Garces, “A linear three-phase load flow for power distribution systems,” IEEE transactions on Power Systems, vol. 31, pp. 827–828, Jan 2016.spa
dc.relation.referencesH. Zhang, V. Vittal, G. T. Heydt, and J. Quintero, “A relaxed ac optimal power flow model based on a Taylor series,” in 2013 IEEE Innovative Smart Grid Technologies-Asia (ISGT Asia), pp. 1–5, Nov 2013.spa
dc.relation.referencesP. D. O.-D. Jesus, M. Alvarez, and J. Yusta, “Distribution power flow method based on a real quasi-symmetric matrix,” Electric Power Systems Research, vol. 95, pp. 148– 159, 2013.spa
dc.relation.referencesG. Díaz, J. Gómez-Aleixandre, and J. Coto, “Direct Backward/Forward Sweep Algorithm for Solving Load Power Flows in AC Droop-Regulated Microgrids,” IEEE Trans.Smart Grid, vol. 7, pp. 2208–2217, Sep. 2016.spa
dc.relation.referencesT. Shen, Y. Li, and J. Xiang, “A Graph-Based Power Flow Method for Balanced Distribution Systems,” Energies, vol. 11, pp. 1–11, Feb. 2018.spa
dc.relation.referencesA. Garcés, J. Herrera, W. Gil-González, and O. Montoya, “Small-signal stability in low-voltage dc-grids,” in 2018 IEEE ANDESCON, pp. 1–5, Aug 2018.spa
dc.relation.referencesM. Moradi and M. Abedini, “A combination of genetic algorithm and particle swarm optimization for optimal dg location and sizing in distribution systems,” InternationalJournal of Electrical Power & Energy Systems, vol. 34, no. 1, pp. 66 – 74, 2012.spa
dc.relation.referencesL. F. Grisales, O. D. Montoya, A. Grajales, R. A. Hincapie, and M. Granada, “OptimalPlanning and Operation of Distribution Systems Considering Distributed Energy Resources and Automatic Reclosers,” IEEE Latin America Transactions, vol. 16, pp. 126–134, Jan 2018.spa
dc.relation.referencesM. E. Baran and F. F. Wu, “Network reconfiguration in distribution systems for loss reduction and load balancing,” IEEE Transactions on Power Delivery, vol. 4, pp. 1401–1407, April 1989.spa
dc.relation.referencesM. E. Baran and F. F. Wu, “Optimal capacitor placement on radial distribution systems,” IEEE Transactions on Power Delivery, vol. 4, pp. 725–734, Jan 1989.spa
dc.relation.referencesO. D. Montoya, “On the existence of the power flow solution in dc grids with cpls through a graph-based method,” IEEE Transactions on Circuits and Systems II: ExpressBriefs, pp. 1–1, 2019.spa
dc.relation.referencesW. Wang and M. Barnes, “Power flow algorithms for multi-terminal vsc-hvdc with droop control,” IEEE Transactions on Power Systems, vol. 29, pp. 1721–1730, July 2014.spa
dc.relation.referencesG. Huang and W. Ongsakul, “Managing the bottlenecks in parallel gauss-seidel type algorithms for power flow analysis,” IEEE Transactions on Power Systems, vol. 9, pp. 677–684, May 1994.spa
dc.relation.referencesZ. Hasan and M. E. El-Hawary, “Optimal Power Flow by Black Hole OptimizationAlgorithm,” in2014 IEEE Electrical Power and Energy Conference, pp. 134–141, Nov 2014.spa
dc.relation.referencesP. Wang, L. Zhang, and D. Xu, “Optimal Sizing of Distributed Generations in DC Microgrids with Lifespan Estimated Model of Batteries,” in 2018 21st InternationalConference on Electrical Machines and Systems (ICEMS), pp. 2045–2049, Oct 2018.spa
dc.relation.referencesO. Velasquez, O. M. Giraldo, V. G. Arevalo, and L. F. Grisales-Nore ̃na, “Optimal power flow in direct-current power grids via black hole optimization,” Advances in Electrical and Electronic Engineering, vol. 17, no. 1, 2019.spa
dc.relation.referencesO. D. Montoya and L. F. Grisales-Noreña, “Optimal power dispatch of DGs in DC power grids: a hybrid Gauss-Seidel-Genetic-Algorithm methodology for solving the OPF problem,” WSEAS TRANSACTIONS on POWER SYSTEMS, vol. 13, pp. 335–346, 2018.spa
dc.relation.referencesO. D. Montoya, W. Gil-González, and A. Garces, “Sequential quadratic programmingmodels for solving the OPF problem in DC grids,”Electr. Power Syst. Res., vol. 169,pp. 18 – 23, 2019.spa
dc.relation.referencesL. F. Grisales Noreña, B. J. Restrepo Cuestas, and F. E. Jaramillo Ramirez, “Ubicación y dimensionamiento de generación distribuida: Una revisión,”Ciencia e Ingeniería Neogranadina, vol. 27, pp. 157–176, Ago. 2017.spa
dc.relation.referencesH. Bouchekara, “Optimal power flow using black-hole-based optimization approach,” Applied Soft Computing, vol. 24, pp. 879– 888, 2014.spa
dc.relation.referencesA. P. Piotrowski, J. J. Napiorkowski, and P. M. Rowinski, “How novel is the novel black hole optimization approach?,” Information Sciences, vol. 267, pp. 191 – 200, 2014.spa
dc.relation.referencesH. R. E. H. Bouchekara, “Optimal design of electromagnetic devices using a black-hole-based optimization technique,” IEEE Trans. Magn., vol. 49, pp. 5709–5714, Dec2013.spa
dc.relation.referencesP. Chu and J. Beasley, “A genetic algorithm for the generalised assignment problem,” Computers & Operations Research, vol. 24, no. 1, pp. 17 – 23, 1997.spa
dc.relation.referencesJ. Kennedy and R. Eberhart, “Particle swarm optimization,” in proceedings ofICNN’95 - International Conference on Neural Networks, vol. 4, pp. 1942–1948 vol.4,Nov 1995.spa
dc.relation.referencesB. Dogan and T. Olmez, “Vortex search algorithm for the analog active filter component selection problem,” AEU - International Journal of Electronics and Communications, vol. 69, no. 9, pp. 1243 – 1253, 2015.spa
dc.relation.referencesZ. Li, Y. Cao, L. V. Dai, X. Yang, and T. T. Nguyen, “Optimal Power Flow for Trans-mission Power Networks Using a Novel Metaheuristic Algorithm,” Energies, vol. 12,p. 4310, nov 2019.spa
dc.relation.referencesS. Mirjalili, “The ant lion optimizer,” Advances in Engineering Software, vol. 83, pp. 80– 98, 2015.spa
dc.relation.referencesL. F. Grisales-Noreña, O. D. Garzon-Rivera, O. Danilo Montoya, and C. A. Ramos-Paja, “Hybrid metaheuristic optimization methods for optimal location and sizing dgs in dc networks,” inApplied Computer Sciences in Engineering, (Cham), pp. 214–225,Springer International Publishing, 2019.spa
dc.relation.referencesN. D. Nordin and H. A. Rahman, “Comparison of optimum design, sizing, and econo-mic analysis of standalone photovoltaic/battery without and with hydrogen productionsystems,”Renewable Energy, vol. 141, pp. 107 – 123, 2019.spa
dc.relation.referencesH. Matayoshi, M. Kinjo, S. S. Rangarajan, G. G. Ramanathan, A. M. Hemeida, and T. Senjyu, “Islanding operation scheme for dc microgrid utilizing pseudo droop control of photovoltaic system,” Energy for Sustainable Development, vol. 55, pp. 95 – 104,2020.spa
dc.relation.referencesY. Wu, Y. Huangfu, R. Ma, A. Ravey, and D. Chrenko, “A strong robust dc-dc converter of all-digital high-order sliding mode control for fuel cell power applications,” Journal of Power Sources, vol. 413, pp. 222 – 232, 2019.spa
dc.relation.referencesA. Haseltalab, M. A. Botto, and R. R. Negenborn, “Model predictive dc voltage control for all electric ships,” Control Engineering Practice, vol. 90, pp. 133 – 147, 2019.spa
dc.relation.referencesM. Nasir, S. Iqbal, and H. A. Khan, “Optimal Planning and Design of Low-VoltageLow-Power Solar DC Microgrids,” IEEE Trans. Power Syst., vol. 33, pp. 2919–2928, May 2018.spa
dc.relation.referencesP. Kirkegaard and P. Grohnheit, LINPROG - A Linear Programming Solver. Mathematical description and model applications. 1995.spa
dc.relation.referencesO. D. Montoya, W. Gil-Gonz ́alez, and L. F. Grisales-Noreña, “Relaxed convex model for optimal location and sizing of dgs in dc grids using sequential quadratic programming and random hyperplane approaches,” International Journal of Electrical Power& Energy Systems, vol. 115, p. 105442, 2020.spa
dc.relation.referencesS. Sultana and P. K. Roy, “Krill herd algorithm for optimal location of distributed generators in the radial distribution system,” Applied Soft Computing, vol. 40, pp. 391 –404, 2016.spa
dc.relation.referencesB. V. Kumar and N. Srikanth, “A hybrid approach for optimal location and capacity of up fc to improve the dynamic stability of the power system,” Applied Soft Computing, vol. 52, pp. 974 – 986, 2017.spa
dc.relation.referencesH. Teimourzadeh and B. Mohammadi-Ivatloo, “A three-dimensional group search optimization approach for simultaneous planning of distributed generation units and distribution network reconfiguration,” Applied Soft Computing, vol. 88, p. 106012, 2020.spa
dc.relation.referencesR. M. Noor H. Awad, Mostafa Z. Ali and P. N. Suganthan, “An efficient differential evolution algorithm for stochastic opf based active–reactive power dispatch problem considering renewable generators,” Applied Soft Computing, vol. 76, pp. 445 – 458,2019.spa
dc.relation.referencesA. Selim, S. Kamel, and F. Jurado, “Efficient optimization technique for multiple dg allocation in distribution networks,” Applied Soft Computing, vol. 86, p. 105938, 2020.spa
dc.relation.referencesN. Jain, S. Singh, and S. Srivastava, “PSO based placement of multiple wind DGsand capacitors utilizing probabilistic load flow model,”Swarm Evol. Comput., vol. 19,pp. 15 – 24, 2014.spa
dc.relation.referencesS. Leonori, M. Paschero, F. M. F. Mascioli, and A. Rizzi, “Optimization strategies for microgrid energy management systems by genetic algorithms,” Applied Soft Computing, vol. 86, p. 105903, 2020.spa
dc.relation.referencesR. Rastegar, “On the optimal convergence probability of univariate estimation of distribution algorithms,” Evolutionary Computation, vol. 19, no. 2, pp. 225–248, 2011.spa
dc.relation.referencesA. O. Rousis, I. Konstantelos, and G. Strbac, “A planning model for a hybrid ac–dc microgrid using a novel ga/ac opf algorithm,” IEEE Transactions on Power Systems,vol. 35, pp. 227–237, Jan 2020.spa
dc.relation.referencesS. Ganguly and D. Samajpati, “Distributed generation allocation on radial distribution networks under uncertainties of load and generation using genetic algorithm,” IEEE transactions on Sustainable Energy, vol. 6, pp. 688–697, July 2015.spa
dc.relation.referencesM. Abdelaziz and M. Moradzadeh, “Monte-carlo simulation based multi-objective optimum allocation of renewable distributed generation using opencl,” Electric PowerSystems Research, vol. 170, pp. 81 – 91, 2019.spa
dc.relation.referencesH. Zaroni, L. B. Maciel, D. B. Carvalho, and E. de O. Pamplona, “Monte carlo simulation approach for economic risk analysis of an emergency energy generation system,” Energy, vol. 172, pp. 498 – 508, 2019.spa
dc.relation.referencesM. I. A and K. M, “Optimal size and siting of multiple distributed generators in distribution system using bacterial foraging optimization,”Swarm and evolutionary computation, vol. 15, pp. 58 – 65, 2014.spa
dc.relation.referencesM. P. H.A, P. D. Huy, and V. K. Ramachandaramurthy, “A review of the optimal allocation of distributed generation: Objectives, constraints, methods, and algorithms,” Renewable and Sustainable Energy Reviews, vol. 75, pp. 293 – 312, 2017.spa
dc.relation.referencesBaluja and Shumeet, “Population-Based Incremental Learning: A Method for Integrating Genetic Search Based Function Optimization and Competitive Learning,” School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213,pp. 1–41, 1994.spa
dc.relation.referencesZ. Xu, Y. Wang, S. Li, Y. Liu, Y. Todo, and S. Gao, “Immune algorithm combined with estimation of distribution for traveling salesman problem,” IEEJ Transactions on Electrical and Electronic Engineering, vol. 11, pp. S142–S154, Jun 2016.spa
dc.relation.referencesJ. Ceberio, E. Irurozki, A. Mendiburu, and J. A. Lozano, “A review on estimation of distribution algorithms in permutation-based combinatorial optimization problems,” Progress in Artificial Intelligence, vol. 1, pp. 103–117, Apr 2012.spa
dc.relation.referencesP. Larra ̃naga, H. Karshenas, C. Bielza, and R. Santana, “A review on probabilistic graphical models in evolutionary computation,” Journal of Heuristics, vol. 18, pp. 795–819, Oct 2012.spa
dc.relation.referencesF. Bolaños, J. E. Aedo, and F. Rivera, “Comparison of Learning Rules for AdaptivePopulation-Based Incremental Learning Algorithms,” Proceedings on the InternationalConference on Artificial Intelligence (ICAI), p. 1, 2012.spa
dc.relation.referencesP. Rinaldi, E. Dari, M. Vénere, and A. Clausse, “A Lattice-Boltzmann solver for 3Dfluid simulation on GPU,” Simulation Modelling Practice and Theory, vol. 25, pp. 163–171, Jun 2012.spa
dc.relation.referencesN. Lukaˇc and B.ˇZalik, “GPU-based roofs’ solar potential estimation using LiDARdata,” Computers & Geosciences, vol. 52, pp. 34–41, Mar 2013.spa
dc.relation.referencesE. Ali, S. A. Elazim, and A. Abdelaziz, “Ant lion optimization algorithm for optimal location and sizing of renewable distributed generations,” Renewable Energy, vol. 101,pp. 1311 – 1324, 2017.spa
dc.relation.referencesK. Dogan ̧sahin, B. Kekezoglu, R. Yumurtacı, O. Erdin ̧c, and J. a. P. S. Catalao, “Maximum permissible integration capacity of renewable dg units based on system loads,” Energies, vol. 11, no. 1, 2018.spa
dc.relation.referencesP. S. Georgilakis and N. D. Hatziargyriou, “Optimal distributed generation placement in power distribution networks: Models, methods, and future research,” IEEE Transactions on Power Systems, vol. 28, pp. 3420–3428, Aug 2013.spa
dc.relation.referencesL. F. Grisales, A. Grajales, O. D. Montoya, R. A. Hincapíe, and M. Granada, “Optimal location and sizing of distributed generators using a hybrid methodology andconsidering different technologies,” in2015 IEEE 6th Latin American Symposium on Circuits Systems (LASCAS), pp. 1–4, Feb 2015.spa
dc.relation.referencesB. Nordman and K. Christensen, “Dc local power distribution: Technology, deployment, and pathways to success,” IEEE Electrification Magazine, vol. 4, pp. 29–36, June 2016.spa
dc.relation.referencesS. G. Naik, D. Khatod, and M. Sharma, “Optimal allocation of combined dg and capacitor for real power loss minimization in distribution networks,” International Journal of Electrical Power & Energy Systems, vol. 53, pp. 967 – 973, 2013.spa
dc.relation.referencesO. D. Montoya, “On Linear Analysis of the Power Flow Equations for DC and ACGrids with CPLs,” IEEE Trans. Circuits Syst. II, pp. 1–1, 2019.spa
dc.relation.referencesD. G. Montoya, C. A. Ramos-Paja, and R. Giral, “Improved Design of Sliding-ModeControllers Based on the Requirements of MPPT Techniques,” IEEE Transactions on Power Electronics, vol. 31, pp. 235–247, Jan 2016.spa
dc.relation.referencesS. I. Serna-Garcés, D. G. Montoya, and C. A. Ramos-Paja, “Sliding-mode control of a charger/discharger DC/DC converter for DC-bus regulation in renewable power systems,” Energies, vol. 9, no. 4, 2016.spa
dc.relation.referencesS. Tan, Y. M. Lai, and C. K. Tse, “General design issues of sliding-mode controllers in dc–dc converters,” IEEE Transactions on Industrial Electronics, vol. 55, pp. 1160–1174, March 2008.spa
dc.relation.referencesA. E. Aroudi, B. A. Martinez-Tribi ̃no, J. Calvente, A. Cid-Pastor, and L. Mart ́ınez-Salamero, “Sliding-mode control of a boost converter feeding a buck converter ope-rating as a constant power load,” in2017 International Conference on Green Energy Conversion Systems (GECS), pp. 1–7, March 2017.spa
dc.relation.referencesS. I. Serna-Garc ́es, D. Gonzalez Montoya, and C. A. Ramos-Paja, “Control of a charger/discharger dc/dc converter with improved disturbance rejection for bus regulation,” Energies, vol. 11, no. 3, 2018.spa
dc.relation.referencesY. Levron and D. Shmilovitz, “Maximum power point tracking employing sliding mode control,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 60, pp. 724–732, March 2013.spa
dc.relation.referencesL. F. Grisales-Noreña, O. D. Montoya, and W. Gil-Gonz ́alez, “Integration of energy storage systems in ac distribution networks: Optimal location, selecting, and operation approach based on genetic algorithms,” Journal of Energy Storage, vol. 25, p. 100891,2019.spa
dc.relation.referencesL. F. Grisales-Noreña, C. A. Ramos-Paja, D. Gonzalez-Montoya, G. Alcala, and Q. Hernandez-Escobedo, “Energy management in pv based microgrids designed for the universidad nacional de Colombia,” Sustainability, vol. 12, no. 3, 2020.spa
dc.relation.referencesL. F. Grisales-Noreña, O. D. Montoya, and C. A. Ramos-Paja, “An energy management system for optimal operation of bss in dc distributed generation environments based on a parallel pso algorithm,” Journal of Energy Storage, vol. 29, p. 101488, 2020.spa
dc.relation.referencesW. Jing, “Battery-supercapacitor hybrid energy storage system in standalone dc microgrids: a review,” IET Renewable Power Generation, vol. 11, pp. 461–469(8), Mar 2017.spa
dc.relation.referencesM. F. Zia, E. Elbouchikhi, and M. Benbouzid, “Microgrids energy management systems: A critical review on methods, solutions, and prospects,” Applied Energy, vol. 222,pp. 1033 – 1055, 2018.spa
dc.relation.referencesS. Augustine, M. K. Mishra, and N. Lakshminarasamma, “Adaptive Droop ControlStrategy for Load Sharing and Circulating Current Minimization in Low-Voltage Stan-dalone DC Microgrid,” IEEE Transactions on Sustainable Energy, vol. 6, pp. 132–141, Jan 2015.spa
dc.relation.referencesA. M. Dizqah, A. Maheri, K. Busawon, and A. Kamjoo, “A Multivariable OptimalEnergy Management Strategy for Standalone DC Microgrids,” IEEE Transactions on Power Systems, vol. 30, pp. 2278–2287, Sep 2015.spa
dc.relation.referencesS. Whaite, B. Grainger, and A. Kwasinski, “Power Quality in DC Power DistributionSystems and Microgrids,” Energies, vol. 8, pp. 4378–4399, May 2015.spa
dc.relation.referencesJ. A. Diaz-Acevedo, L. F. Grisales-Noreña, and A. Escobar, “A method for estimating electricity consumption patterns of buildings to implement energy management systems,” Journal of Building Engineering, vol. 25, p. 100774, 2019.spa
dc.relation.referencesG. Anastasi, F. Corucci, and F. Marcelloni, “An intelligent system for electrical energy management in buildings,” in2011 11th International Conference on Intelligent Systems Design and Applications, pp. 702–707, Nov 2011.spa
dc.relation.referencesC. Yin, H. Wu, M. Sechilariu, and F. Locment, “Power management strategy for an autonomous dc microgrid,” Applied Sciences, vol. 8, p. 2202, Nov 2018.spa
dc.relation.referencesR. K. Sharma and S. Mishra, “Dynamic power management and control of a pvpem fuel-cell-based standalone ac/dc microgrid using hybrid energy storage,”IEEE transactions on Industry Applications, vol. 54, pp. 526–538, Jan 2018.spa
dc.relation.referencesM. Ayad, M. Becherif, and A. Henni, “Vehicle hybridization with fuel cell, supercapacitors and batteries by sliding mode control,” Renewable Energy, vol. 36, pp. 2627–2634, Oct 2011.spa
dc.relation.referencesS. Anand, B. G. Fernandes, and J. Guerrero, “Distributed Control to Ensure Proportional Load Sharing and Improve Voltage Regulation in Low-Voltage DC Microgrids,” IEEE Transactions on Power Electronics, vol. 28, pp. 1900–1913, Apr 2013.spa
dc.relation.referencesK. Matrawy, A.-F. Mahrous, and M. Youssef, “Energy management and parametric optimization of an integrated PV solar house,” Energy Conversion and Management, vol. 96, pp. 377–383, May 2015.spa
dc.relation.referencesL. Olatomiwa, S. Mekhilef, M. Ismail, and M. Moghavvemi, “Energy management strategies in hybrid renewable energy systems: A review,” Renewable and sustainable energy Reviews, vol. 62, pp. 821–835, Sep 2016.spa
dc.relation.referencesJ. Li, A. M. Gee, M. Zhang, and W. Yuan, “Analysis of battery lifetime extension ina smes-battery hybrid energy storage system using a novel battery lifetime model,” Energy, vol. 86, pp. 175 – 185, 2015.spa
dc.relation.referencesM. R. Mojallizadeh and M. A. Badamchizadeh, “Adaptive Passivity-Based Control of a photovoltaic / Battery Hybrid Power Source via Algebraic Parameter Identification,” pp. 1–8, 2016.spa
dc.relation.referencesM. Adly and K. Strunz, “Irradiance-adaptive PV Module Integrated Converter for High Efficiency and Power Quality in Standalone and DC Microgrid Applications,” Transactions on Industrial Electronics IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, vol. 65, no. 1, pp. 436–446, 2017.spa
dc.relation.referencesA. K. Mbodji, M. L. Ndiaye, M. Ndiaye, and P. A. Ndiaye, “Operation optimal dynamics of a hybrid electrical system: Multi-agent approach,” Procedia Computer Science, vol. 36, no. C, pp. 454–461, 2014.spa
dc.relation.referencesH. Mahmood, D. Michaelson, and Jin Jiang, “A Power Management Strategy for PV/-Battery Hybrid Systems in Islanded Microgrids,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 2, pp. 870–882, Dec 2014.spa
dc.relation.referencesS. Gaurav, C. Birla, A. Lamba, S. Umashankar, and S. Ganesan, “Energy Management of PV – Battery Based Microgrid System,” Procedia Technology, vol. 21, pp. 103–111,2015.spa
dc.relation.referencesD. Jenkins, J. Fletcher, and D. Kane, “Lifetime prediction and sizing of lead–acid batteries for microgeneration storage applications,” IET Renewable Power Generation, vol. 2, pp. 191–200, Sep 2008.spa
dc.relation.referencesB. Zhao, X. Zhang, J. Chen, C. Wang, and L. Guo, “Operation optimization of standalone microgrids considering lifetime characteristics of battery energy storage system,” IEEE Transactions on Sustainable Energy, vol. 4, no. 4, pp. 934–943, 2013.spa
dc.relation.referencesT. R. Oliveira, W. Wodson, A. Gon ̧calves, and P. F. Donoso-Garcia, “Distributed Secondary Level Control for Energy Storage Management in DC Microgrids,” vol. 8, no. 6, pp. 1–11, 2016.spa
dc.relation.referencesY. Han, W. Chen, and Q. Li, “Energy Management Strategy Based on Multiple Ope-rating States for a Photovoltaic/Fuel Cell/Energy Storage DC Microgrid,” Energies, vol. 10, no. 1, p. 136, 2017.spa
dc.relation.referencesA. Emadi, A. Khaligh, C. H. Rivetta, and G. A. Williamson, “Constant power loads and negative impedance instability in automotive systems: Definition, modeling, stability, and control of power electronic converters and motor drives,” IEEE Transactions on Vehicular Technology, vol. 55, no. 4, pp. 1112–1125, 2006spa
dc.relation.referencesS. R. Huddy and J. D. Skufca, “Amplitude Death Solutions for Stabilization of DCMicrogrids With Instantaneous Constant-Power Loads,” IEEE Transactions on PowerElectronics, vol. 28, pp. 247–253, Jan 2013.spa
dc.relation.referencesL. Herrera, W. Zhang, and J. Wang, “Stability Analysis and Controller Design of DCMicrogrids With Constant Power Loads,” IEEE Transactions on Smart Grid, vol. 8, no. 2, pp. 1–1, 2015.spa
dc.relation.referencesL. Guo, S. Zhang, X. Li, Y. W. Li, C. Wang, and Y. Feng, “Stability Analysis and damping Enhancement Based on Frequency-Dependent Virtual Impedance for DC Microgrids,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 5, pp. 338–350, Mar 2017.spa
dc.relation.referencesV.-s.-c.-b. D. C. Microgrids, F. Gao, S. Bozhko, A. Costabeber, C. Patel, P. Wheeler, S. Member, C. I. Hill, and G. Asher, “Comparative Stability Analysis of Droop ControlApproaches in,” vol. 32, no. 3, pp. 2395–2415, 2017.spa
dc.relation.referencesM. K. Zadeh, R. Gavagsaz-Ghoachani, J.-P. Martin, S. Pierfederici, B. Nahid-Mobarakeh, and M. Molinas, “Discrete-Time Tool for Stability Analysis of DC Power Electronics-Based Cascaded Systems,” IEEE Transactions on Power Electronics, vol. 32, pp. 652–667, Jan 2017.spa
dc.relation.referencesJ. Bastidas-Rodriguez, G. Petrone, C. Ramos-Paja, and G. Spagnuolo, “A genetic algorithm for identifying the single diode model parameters of a photovoltaic panel,” Mathematics and Computers in Simulation, vol. 131, pp. 38 – 54, 2017. 11th International Conference on Modeling and Simulation of Electric Machines, Converters, and systems.spa
dc.relation.referencesJ. Li and M. A. Danzer, “Optimal charge control strategies for stationary photovoltaic battery systems,” Journal of Power Sources, vol. 258, pp. 365 – 373, 2014.spa
dc.relation.referencesNASA, “NASA Surface meteorology and Solar Energy: HOMER Data,” 2018.spa
dc.relation.referencesCREG: Comisión de Regulación de Energía y Gas, “Propuesta para remunerar la generación, distribución y comercialización de Energía Eléctrica en las ZNI,” tech.rep., Bogota, 2014.spa
dc.relation.referencesF. Gao, S. Bozhko, A. Costabeber, C. Patel, P. Wheeler, C. I. Hill, and G. Asher, “Comparative stability analysis of droop control approaches in voltage-source-converter-based dc microgrids,” IEEE Transactions on Power Electronics, vol. 32, pp. 2395–2415, Mar 2017.spa
dc.relation.referencesN. Femia, G. Petrone, G. Spagnuolo, and M. Vitelli, “Optimization of Perturb and Observe Maximum Power Point Tracking Method,” IEEE Transactions on Power Electronics, vol. 20, pp. 963–973, Jul 2005.spa
dc.relation.referencesO. D. Montoya, V. M. Garrido, L. F. Grisales-Noreña, W. Gil-Gonzalez, A. Garces, and C. A. Ramos-Paja, “Optimal location of dgs in dc power grids using a minlp model implemented in gams,” in2018 IEEE 9th Power, Instrumentation and Measurement Meeting (EPIM), pp. 1–5, Nov 2018.spa
dc.relation.referencesO. D. Montoya, W. Gil-Gonzalez, and L. F. Grisales-Noreña, “Vortex search algorithm for optimal power flow analysis in dc resistive networks with cpls,” IEEE Transactions on Circuits and Systems II: Express Briefs, pp. 1–1, 2019.spa
dc.relation.referencesO. D. Montoya, W. Gil-González, and L. F. Grisales-Noreña, “Optimal Power Dispatch of DGs in DC Power Grids: a Hybrid Gauss-Seidel Genetic-Algorithm Methodology for solving the OPF Problem.,” WSEAS Transactions on Power Systems, vol. 13, pp. 335– 346, 2018.spa
dc.relation.referencesM. J. Salehpour and S. M. Tafreshi, “Contract-based utilization of plug-in electric vehicle batteries for day-ahead optimal operation of a smart micro-grid,” Journal of Energy Storage, vol. 27, p. 101157, 2020.spa
dc.relation.referencesY. Luo, G. Feng, S. Wan, S. Zhang, V. Li, and W. Kong, “Charging scheduling strategy for different electric vehicles with optimization for convenience of drivers, performance of transport system and distribution network,” Energy, vol. 194, p. 116807, 2020.spa
dc.relation.referencesA. Iovine, S. B. Siad, G. Damm, E. De Santis, and M. D. Di Benedetto, “NonlinearControl of a DC MicroGrid for the Integration of Photovoltaic Panels,” IEEE Trans.Autom. Sci. Eng., vol. 14, pp. 524–535, April 2017.spa
dc.relation.referencesM. B. Camara, H. Gualous, F. Gustin, A. Berthon, and B. Dakyo, “DC/DC Converter Design for Supercapacitor and Battery Power Management in Hybrid Vehicle Applications-Polynomial Control Strategy,” IEEE Trans. Ind. Electron., vol. 57,pp. 587–597, Feb 2010.spa
dc.relation.referencesW. Gil-González, O. D. Montoya, and A. Garces, “Modeling and control of a small hydro-power plant for a DC microgrid,”Electr. Power Syst. Res., vol. 180, p. 106104,2020.spa
dc.relation.referencesF. Rodríguez, A. Fleetwood, A. Galarza, and L. Fontán, “Predicting solar energy generation through artificial neural networks using weather forecasts for microgrid control,” Renewable Energy, vol. 126, pp. 855 – 864, 2018.spa
dc.relation.referencesM. Rahmani-Andebili, “Stochastic, adaptive, and dynamic control of energy storage systems integrated with renewable energy sources for power loss minimization,” Renewable Energy, vol. 113, pp. 1462 – 1471, 2017.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-SinDerivadas 4.0 Internacionalspa
dc.rights.licenseAtribución-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/spa
dc.subject.ddc530 - Física::537 - Electricidad y electrónicaspa
dc.subject.proposalDirect current networkseng
dc.subject.proposalRedes de corriente continuaspa
dc.subject.proposalDistributed generationeng
dc.subject.proposalGeneración distribuidaspa
dc.subject.proposalSistemas de almacenamiento de energíaspa
dc.subject.proposalEnergy storage systemseng
dc.subject.proposalParallel processingeng
dc.subject.proposalProcesamiento paralelospa
dc.subject.proposalOptimal power floweng
dc.subject.proposalFlujo de potencia óptimospa
dc.subject.proposalOptimización de costosspa
dc.subject.proposalCost optimizationeng
dc.subject.proposalCombinatorial optimizationeng
dc.subject.proposalOptimización combinatorialspa
dc.titlePlanning and management strategies of direct current microgrids for cost optimization and improvement of operating conditionsspa
dc.title.alternativeEstrategias de planeamiento y gestión de microrredes de corriente continua para optimización de costos y mejora de las condiciones operativasspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1112769249.2020.pdf
Tamaño:
6.7 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería - Automática

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.8 KB
Formato:
Item-specific license agreed upon to submission
Descripción: