Caracterización del compuesto CsPbBr3:Ce sintetizado mediante el método de reacción de estado sólido

dc.contributor.advisorRoa Rojas, Jairospa
dc.contributor.authorDíaz Vásquez, Ingrid Dayanaspa
dc.contributor.researchgroupGrupo de Física de Nuevos Materialesspa
dc.date.accessioned2024-06-19T01:55:26Z
dc.date.available2024-06-19T01:55:26Z
dc.date.issued2024
dc.descriptionilustraciones, diagramas, fotografíasspa
dc.description.abstractLos compuestos de tipo perovskita constituyen una de las familias de materiales más apasionantes estudiadas durante las últimas décadas, debido a la diversidad de propiedades físicas sintonizables mediante variaciones composicionales. Sus características han dado lugar a una amplia gama de aplicaciones tecnológicas en elementos anódicos para pilas de combustible de óxido sólido, catalizadores altamente activos en reacciones de conversión de energía electroquímica, sustratos para celdas solares de alta eficiencia, sensores piezoeléctricos o dieléctricos, catalizadores en sistemas reactivos a altas temperaturas, dispositivos magnetoeléctricos y magnetorresistivos, semiconductores magnéticos y espintrónicos con utilidad en memorias dinámicas de acceso aleatorio o memorias de acceso aleatorio ferroeléctricas y no ferroeléctricas, cabezas de lectura-escritura de discos duros para el almacenamiento de alta capacidad de información en soportes magnéticos y dispositivos para la polarización de la corriente de electrones, sensores magnéticos, entre otros. Aunque el potencial de aplicabilidad de las perovskitas alcanza áreas como la física médica, esta perspectiva no ha sido suficientemente explorada. En este trabajo se considera la síntesis y estudio del compuesto CsPbBr3:Ce, a partir de precursores en polvo de Bromuro de Cesio, Bromuro de Cerio y Bromuro de Plomo, realizando una variación con el Bromuro de Cerio en sus concentraciones (Ce3+ del 1%,3%,5% y 10%.). Además de la contribución al desarrollo de la síntesis del compuesto CsPbBr3:Ce, a través del método de reacción de estado sólido, se efectúan aportes importantes relacionados con la optimización de sus propiedades ópticas, morfológicas y estructurales, para lo cual se realiza un estudio del efecto de condiciones de síntesis sobre sus propiedades mediante caracterización de las muestras a través de las técnicas de difracción de rayos x, microscopía electrónica de barrido y espectroscopía de reflectancia difusa. (Texto tomado de la fuente).spa
dc.description.abstractPerovskite-type composites constitute one of the most exciting families of materials studied during the last decades due to the diversity of physical properties tunable by compositional variations. Their characteristics have led to a wide range of technological applications in anode elements for solid oxide fuel cells, highly active catalysts in electrochemical energy conversion reactions, substrates for high efficiency solar cells, piezoelectric or dielectric sensors, catalysts in reactive systems at high temperatures, magnetoelectric and magnetoresistive devices, magnetic and spintronic semiconductors with utility in dynamic random access memories or ferroelectric and non-ferroelectric random access memories, hard disk read-write heads for high capacity storage of information on magnetic media and devices for electron current polarization, magnetic sensors, among others. Although the potential applicability of perovskites reaches areas such as medical physics, this perspective has not been sufficiently explored. In this work we consider the synthesis and study of the compound CsPbBr3:Ce, from powder precursors of Cesium Bromide, Cerium Bromide and Lead Bromide, performing a variation with Cerium Bromide in its concentrations (Ce3+ of 1%,3%,5% and 10%.). In addition, to the contribution to the development of the synthesis of the compound CsPbBr3:Ce through the solid state reaction method, important contributions related to the optimization of its optical, morphological and structural properties are made, for which a study of the effect of synthesis conditions on its physical properties by characterization of the samples through the techniques of x-ray diffraction, scanning electron microscopy and diffuse reflectance spectroscopy is carried out.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Físicaspa
dc.description.researchareaMateriales y dosimetría clínicaspa
dc.format.extent63 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86268
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Físicaspa
dc.relation.referencesM. S. Islam and V. J. Logeeswaran, “Nanoscale materials and devices for future communication networks,” IEEE Commun. Mag., vol. 48, no. 6, pp. 112–120, 2010, doi: 10.1109/MCOM.2010.5473872.spa
dc.relation.referencesI. F. Akyildiz, F. Brunetti, and C. Blázquez, “Nanonetworks: A new communication paradigm,” Comput. Networks, vol. 52, no. 12, pp. 2260–2279, 2008, doi: 10.1016/j.comnet.2008.04.001.spa
dc.relation.referencesT. Peyronel, K. J. Quirk, S. C. Wang, and T. G. Tiecke, “Luminescent detector for free-space optical communication,” Optica, vol. 3, no. 7, p. 787, 2016, doi: 10.1364/optica.3.000787.spa
dc.relation.referencesO. Wada, “Femtosecond all-optical devices for ultrafast communication and signal processing,” New J. Phys., vol. 6, pp. 1–35, 2004, doi: 10.1088/1367-2630/6/1/183.spa
dc.relation.referencesQ. Wu, “The Application of New Material and New Technology in Car Design,” Adv. Eng. Forum, vol. 14, pp. 29–35, 2015, doi: 10.4028/www.scientific.net/aef.14.29.spa
dc.relation.referencesG. Chan and D. J. Mooney, “New materials for tissue engineering: towards greater control over the biological response,” Trends Biotechnol., vol. 26, no. 7, pp. 382–392, 2008, doi: 10.1016/j.tibtech.2008.03.011.spa
dc.relation.referencesF. Augusto, L. W. Hantao, N. G. S. Mogollón, and S. C. G. N. Braga, “New materials and trends in sorbents for solid-phase extraction,” TrAC - Trends Anal. Chem., vol. 43, no. x, pp. 14–23, 2013, doi: 10.1016/j.trac.2012.08.012.spa
dc.relation.referencesKenneth J. Anusavice, “Ciencia de los materiales,” Anusavice Elsevier, no. 11, p. 34, 2004.spa
dc.relation.referencesK. Nakata, T. Ochiai, T. Murakami, and A. Fujishima, “Photoenergy conversion with TiO 2 photocatalysis: New materials and recent applications,” Electrochim. Acta, vol. 84, pp. 103–111, 2012, doi: 10.1016/j.electacta.2012.03.035.spa
dc.relation.referencesA. Fakharuddin et al., “Inorganic and Layered Perovskites for Optoelectronic Devices,” Adv. Mater., vol. 31, no. 47, pp. 1–39, 2019, doi: 10.1002/adma.201807095.spa
dc.relation.referencesJ. Wang et al., “Spin-optoelectronic devices based on hybrid organic-inorganic trihalide perovskites,” Nat. Commun., vol. 10, no. 1, pp. 1–6, 2019, doi: 10.1038/s41467-018-07952-x.spa
dc.relation.referencesY. Zhang, Q. Zheng, X. Zhu, Z. Yuan, and K. Xia, “Spintronic devices for neuromorphic computing,” Sci. China Physics, Mech. Astron., vol. 63, no. 7, pp. 2018–2021, 2020, doi: 10.1007/s11433-019-1499-3.spa
dc.relation.referencesY. Dong et al., “Recent advances toward practical use of halide perovskite nanocrystals,” J. Mater. Chem. A, vol. 6, no. 44, pp. 21729–21746, 2018, doi: 10.1039/C8TA06376A.spa
dc.relation.referencesG. E. Eperon, D. S. Ginger, N. Energy, and A. Weber-bargioni, “Different facets of performance PEROVSKITE SOLAR CELLS,” no. July, 2016, doi: 10.1038/NENERGY.2016.109.spa
dc.relation.referencesJ. Liang, J. Liu, and Z. Jin, “All-Inorganic Halide Perovskites for Optoelectronics: Progress and Prospects,” Sol. RRL, vol. 1, no. 10, pp. 1–24, 2017, doi: 10.1002/solr.201700086spa
dc.relation.referencesM. B. Structures, “LOS NUEVOS MATERIALES Y LAS NUEVAS TECNOLOGÍAS,” pp. 40–87.spa
dc.relation.referencesD. Pavuna and M. Cryot, “Introdution to Superconductivity and High Tc Materials,” World Sci. Univ. J Fourier CNRS, Grenoble, Ec. Polytchniche, 1992.spa
dc.relation.referencesY. Nishihata, J. Mizuki, H. Tanaka, M. Uenishi, and M. Kimura, “Self-regeneration of palladium-perovskite catalysts in modern automobiles,” J. Phys. Chem. Solids, vol. 66, no. 2–4, pp. 274–282, 2005, doi: 10.1016/j.jpcs.2004.06.090.spa
dc.relation.referencesD. Wang, K. Bin Tang, Z. H. Liang, and Y. X. Nie, “Synthesis and properties of Pr1-xRbxMnO 3(0.05≤x≤0.08) with perovskite-type structure,” Chinese J. Chem. Phys., vol. 23, no. 6, pp. 726–730, 2010, doi: 10.1088/1674-0068/23/06/726-730.spa
dc.relation.referencesD. Sun, D. Li, Z. Zhu, J. Xiao, Z. Tao, and W. Liu, “Photoluminescence properties of europium and titanium co-doped BaZrO 3 phosphors powders synthesized by the solid-state reaction method,” Opt. Mater. (Amst)., vol. 34, no. 11, pp. 1890–1896, 2012, doi: 10.1016/j.optmat.2012.05.024.spa
dc.relation.referencesC. C. Stoumpos et al., “Crystal Growth of the Perovskite Semiconductor CsPbBr 3 : A New Material for High-Energy Radiation Detection,” 2013.spa
dc.relation.referencesY. D. and Q. T. Qingwei Zhou, Jialong Duan, Xiya Yang, “Chemie,” Interfacial Strain Release from WS2/CsPbBr3 van der Waals Heterostruct. 1.7 V-Voltage All-Inorganic Perovskite Sol. Cells.spa
dc.relation.referencesM. Kulbak, D. Cahen, and G. Hodes, “How Important Is the Organic Part of Lead Halide Perovskite Photovoltaic Cells? Efficient CsPbBr3 Cells,” J. Phys. Chem. Lett., vol. 6, no. 13, pp. 2452–2456, 2015, doi: 10.1021/acs.jpclett.5b00968.spa
dc.relation.referencesH. Watson et al., “Author ’ s Accepted Manuscript Author ’ s Accepted Manuscript,” Prostaglandins, Leukot. Essent. Fat. Acids, vol. 115, pp. 60–66, 2016, [Online]. Available: http://dx.doi.org/10.1016/j.dineu.2015.08.001.spa
dc.relation.referencesI. Tanaka, Nanoinformatics. .spa
dc.relation.referencesY. Zhang et al., “Thermoelectric phase diagram of the SrTiO3-SrNbO3 solid solution system,” J. Appl. Phys., vol. 121, no. 18, pp. 3–10, 2017, doi: 10.1063/1.4983359.spa
dc.relation.referencesC. Xin et al., “Single crystal growth of BaZrO 3 from the melt at 2700 °c using optical floating zone technique and growth prospects from BaB 2 O 4 flux at 1350 °c,” CrystEngComm, vol. 21, no. 3, pp. 502–512, 2019, doi: 10.1039/c8ce01665h.spa
dc.relation.referencesE. Sandor and W. A. Wooster, “November 22, 1958,” vol. 1, no. 1955, p. 1958, 1958.spa
dc.relation.referencesL. Protesescu et al., “Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut,” Nano Lett., vol. 15, no. 6, pp. 3692–3696, 2015, doi: 10.1021/nl5048779.spa
dc.relation.referencesS. Yakunin et al., “Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites,” Nat. Commun., vol. 6, 2015, doi: 10.1038/ncomms9056.spa
dc.relation.referencesH. Sun, B. Zhao, D. Yang, P. Wangyang, X. Gao, and X. Zhu, “Flexible X-ray detector based on sliced lead iodide crystal,” Phys. Status Solidi - Rapid Res. Lett., vol. 11, no. 2, pp. 1–5, 2017, doi: 10.1002/pssr.201600397.spa
dc.relation.referencesM. V. Kovalenko, L. Protesescu, and M. I. Bodnarchuk, “Properties and potential optoelectronic applications of lead halide perovskite nanocrystals,” Science (80-. )., vol. 358, no. 6364, pp. 745–750, 2017, doi: 10.1126/science.aam7093.spa
dc.relation.referencesH. Y. Park, J. H. Park, P. Kim, and S. J. Yoo, “Hollow PdCu2@Pt core@shell nanoparticles with ordered intermetallic cores as efficient and durable oxygen reduction reaction electrocatalysts,” Appl. Catal. B Environ., vol. 225, no. November 2017, pp. 84–90, 2018, doi: 10.1016/j.apcatb.2017.11.052.spa
dc.relation.referencesM. Jiang, Y. Wu, Y. Zhou, and Z. Wang, “Observation of lower defect density brought by excess PbI2 in CH3NH3PbI3 solar cells,” AIP Adv., vol. 9, no. 8, 2019, doi: 10.1063/1.5099280.spa
dc.relation.referencesJ. Yu et al., “Perovskite CsPbBr3 crystals: Growth and applications,” J. Mater. Chem. C, vol. 8, no. 19, pp. 6326–6341, 2020, doi: 10.1039/d0tc00922a.spa
dc.relation.referencesJ. Song, J. Li, X. Li, L. Xu, Y. Dong, and H. Zeng, “Quantum Dot Light-Emitting Diodes Based on Inorganic Perovskite Cesium Lead Halides (CsPbX3),” Adv. Mater., vol. 27, no. 44, pp. 7162–7167, 2015, doi: 10.1002/adma.201502567.spa
dc.relation.referencesM. Kulbak et al., “Cesium Enhances Long-Term Stability of Lead Bromide Perovskite-Based Solar Cells,” J. Phys. Chem. Lett., vol. 7, no. 1, pp. 167–172, 2016, doi: 10.1021/acs.jpclett.5b02597spa
dc.relation.referencesJ. Zhang, G. Hodes, Z. Jin, and S. (Frank) Liu, “ Anorganische CsPbX 3 ‐Perowskit‐Solarzellen: Fortschritte und Perspektiven ,” Angew. Chemie, vol. 131, no. 44, pp. 15742–15765, 2019, doi: 10.1002/ange.201901081.spa
dc.relation.referencesB. Parida, S. Yoon, S. M. Jeong, J. S. Cho, J. K. Kim, and D. W. Kang, “Recent progress on cesium lead/tin halide-based inorganic perovskites for stable and efficient solar cells: A review,” Sol. Energy Mater. Sol. Cells, vol. 204, no. June 2019, 2020, doi: 10.1016/j.solmat.2019.110212spa
dc.relation.referencesM. Kim et al., “Methylammonium Chloride Induces Intermediate Phase Stabilization for Efficient Perovskite Solar Cells,” Joule, vol. 3, no. 9, pp. 2179–2192, 2019, doi: 10.1016/j.joule.2019.06.014.spa
dc.relation.referencesM. Patricia and R. Sarmiento, “Del Compuesto Superconductor,” no. 1, pp. 126–147, 2014.spa
dc.relation.referencesA. Boudali, M. D. Khodja, B. Amrani, D. Bourbie, K. Amara, and A. Abada, “First-principles study of structural, elastic, electronic, and thermal properties of SrTiO3 perovskite cubic,” Phys. Lett. Sect. A Gen. At. Solid State Phys., vol. 373, no. 8–9, pp. 879–884, 2009, doi: 10.1016/j.physleta.2008.12.017.spa
dc.relation.referencesG. Olson, “Designing a New MaterialWorld,” vol. 288, no. May, 2000.spa
dc.relation.referencesG. M. Wilson et al., “The 2020 photovoltaic technologies roadmap,” J. Phys. D. Appl. Phys., vol. 53, no. 49, 2020, doi: 10.1088/1361-6463/ab9c6a.spa
dc.relation.referencesA. Mirzaei, J. S. Huh, S. S. Kim, and H. W. Kim, “Room Temperature Hard Radiation Detectors Based on Solid State Compound Semiconductors: An Overview,” Electron. Mater. Lett., vol. 14, no. 3, pp. 261–287, 2018, doi: 10.1007/s13391-018-0033-2.spa
dc.relation.referencesH. Zhang et al., “High-sensitivity X-ray detectors based on solution-grown caesium lead bromide single crystals,” J. Mater. Chem. C, vol. 8, no. 4, pp. 1248–1256, 2020, doi: 10.1039/c9tc05490a.spa
dc.relation.referencesA. M. Glazer, “The classification of tilted octahedral perovskites,” Acta Crystallogr., pp. 28: 3384-3392, 1972.spa
dc.relation.referencesP. C. Blanco and V. Fuertes, “Hablemos de Perovskitas,” vol. 1, no. 1, pp. 1–8, 2015.spa
dc.relation.referencesJ. A. Aramburu, M. T. Barriuso, and M. Moreno, “Key Role of Covalent Bonding in Octahedral Tilting in Perovskites,” pp. 647–651, 2010, doi: 10.1021/jz900399m.spa
dc.relation.referencesA. Pérez París, “BRIEF PRESENTATION OF THE SEMICONDUCTORS,” Vivat Acad., vol. 0, no. 38, p. 1, 2002, doi: 10.15178/va.2002.38.1-42.spa
dc.relation.referencesG. Tarrach, “Los Semiconductores y sus Aplicaciones,” 2001.spa
dc.relation.referencesM. Garcia Cuesta, “Determinación estructural mediante difractometría de raos x de polvos de compuestos de interés farmacológico, usando técnicas de espacio directo,” 2014.spa
dc.relation.referencesX. Arroyo Rey and I. Gomez Pinilla, “Difracción de Rayos X (DRX).” .spa
dc.relation.references“Microscopio electrónico de barrido.” https://www.metalinspec.com.mx/equipos/jsm-it500hrspa
dc.relation.referencesP. Carlosena, “Sintesis y caracterización de materiales fotovoltaicos para paneles solares de bajo coste y alta eficiencia,” 2015.spa
dc.relation.referencesD. Sanjulian Alonso, “Estudio de nanopartículas de perovskita CsPbX3 como nuevo material fotocatalizador,” Univ. Barcelona, pp. 1–29, 2015.spa
dc.relation.referencesD. D. E. Fenol and C. O. N. F. Solar, “Synthesis and characterization of oxide: MgAl, MgFe,FeAl and MgFeAl foe the phenol degradation with photofenton solar.,” Rev. Lat. Met. Mat. 2, vol. 35, no. 2, pp. 315–325, 2015.spa
dc.relation.referencesK. Yanilud and B. Garnica, “Análisis Estructural y Electrónico del Sistema de Doble Perovskita Ferroica,” 2016spa
dc.relation.referencesM. Ipohorski and P. B. Bozzano, “Microscopía electrónica de barrido en la caracterización de materiales,” Cienc. Invest., vol. 63, pp. 44–53, 2013.spa
dc.relation.referencescientífico de Thermo Fisher, “científico de Thermo Fisher.” https://www.thermofisher.com/order/catalog/product/4500TLDDS3#/4500TLDDS3.spa
dc.relation.referencesH. M. Palma Palma, “Análisis de las propiedades termoluniscentes de sistema ZrO2,” 2012.spa
dc.relation.referencesN. Shirakawa and S. I. Ikeda, “The synthesis and basic physical properties of a layered molybdenum perovskite Sr 2 MoO 4,” vol. 365, pp. 309–312, 2001.spa
dc.relation.referencesJ. C. Correa Zapata and C. D. Aguirre Hernández, “Obtención, Caracterización y actividad fotocatalítica del óxido de titanio dopado con nitrógeno a partir de úrea nitrato de amonio para su utilización en la región del visible del espectro electromagnético,” 2014.spa
dc.relation.referencesJ. M. Albella, “La microscopía para el estudio de materiales y láminas delgadas,” in Láminas delgadas y recubrimientos. preparación, propiedades y aplicaciones, Madrid: Consejo Superior de Investigaciones Científicas, 2003, pp. 519–540.spa
dc.relation.referencesW. Wondratschek, International Tables for Crystallography (2006), Vol. A, Chapter 8.3, pp. 732-740spa
dc.relation.referencesE. Parthé, L. Gelato, B. Chabot, M. Penzo, K. Cenzual, R. Gladyshevskii, TYPIX Standardized and crystal chemical characterization of inorganic structure types. In: Gmelein Handbook of Inorganic and Organometallic Chemistry, 8th ed. (Springer, Berlin, 1993spa
dc.relation.referencesA. (Zafra García, (2016).)M. Glazer, Acta Cryst. (1975). A31, 756.spa
dc.relation.referencesHimabindu Bantikatla, Latha Devi N.S.M.P., Rajini Kanth Bhogoju, Materials Today: Proceedings 47 (2021) 4891–4896.spa
dc.relation.referencesV.D. Mote, Y Purushotham, B.N. Dole, Journal of Theoretical and Applied Physics 2012, 6:6spa
dc.relation.referencesC. A. Schneider, W. S. Rasband and K. W. Eliceiri, Nat. Methods, 2012, 9, 671spa
dc.relation.referencesPoirier, D.R., Geiger, G.H. (2016). Fick’s Law and Diffusivity of Materials, In: Transport Phenomena in Materials Processing pp 419–461, Springer, Cham.spa
dc.relation.referencesYougui Liao (2006). Practical Electron Microscopy and Database, Northwestern University, 2nd Edspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc530 - Física::537 - Electricidad y electrónicaspa
dc.subject.ddc530 - Física::539 - Física modernaspa
dc.subject.proposalPerovskitaspa
dc.subject.proposalHalurospa
dc.subject.proposalSemiconductorspa
dc.subject.proposalReacción de estado sólidospa
dc.subject.proposalPerovskiteeng
dc.subject.proposalHalideeng
dc.subject.proposalSemiconductoreng
dc.subject.proposalSolid-state reactioneng
dc.subject.unescoSemiconductorspa
dc.subject.unescoSemiconductorseng
dc.subject.unescoPropiedad físicaspa
dc.subject.unescoPhysical propertieseng
dc.subject.wikidataestructura de perovskitaspa
dc.subject.wikidataperovskite structureeng
dc.titleCaracterización del compuesto CsPbBr3:Ce sintetizado mediante el método de reacción de estado sólidospa
dc.title.translatedCharacterization of the CsPbBr3:Ce compound synthesized by the solid state reaction methodeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1069724665.2024.pdf
Tamaño:
3.06 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Física

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: