Arcillas pilarizadas con cobalto (Al-Co-PILC) como catalizadores para la degradación de colorantes empleando el sistema HCO3-/H2O2

dc.contributor.advisorSanabria González, Nancy Rocío
dc.contributor.authorMacías Quiroga, Iván Fernando
dc.contributor.researchgroupProcesos Químicos Cataliticos y Biotecnológicosspa
dc.date.accessioned2022-07-07T19:35:26Z
dc.date.available2022-07-07T19:35:26Z
dc.date.issued2021
dc.descriptionfotografías, gráficos, tablas,spa
dc.description.abstractEn la presente investigación se realizó la caracterización química, estructural y textural de una bentonita proveniente del norte del departamento de Tolima. El mineral arcilloso fue sometido a un proceso de pilarización con aluminio y posterior impregnación con cobalto y el material obtenido - Co(%)/Al-PILC - fue utilizado como catalizador en la activación del peróxido de hidrógeno con bicarbonato (sistema BAP, por sus siglas en inglés Bicarbonate-Activated Peroxide) para la oxidación de dos colorantes alimenticios. Los materiales Co(1.0, 3.0 y 6.0%)/Al-PILC mostraron una alta actividad para la decoloración del ponceau 4R (P4R) y amarillo sunset (AS) en solución acuosa, sin embargo, la arcilla impregnada con 1.0% de cobalto fue la que preservó en mayor proporción las propiedades texturales del soporte Al-PILC. Se utilizó la metodología de superficie de respuesta (MSR) basada en un diseño central compuesto (DCC) para analizar el efecto de las variables H2O2, NaHCO3 y Co(1.0%)/Al-PILC sobre la oxidación de los colorantes P4R y AS, considerando como variables de respuesta la decoloración y la remoción de carbono total (CT). Los diseños experimentales mostraron que las concentraciones de peróxido de hidrógeno y bicarbonato son las variables que más influyen en la decoloración y mineralización de los dos colorantes alimenticios estudiados. Se obtuvieron dos modelos cinéticos empíricos de segundo orden para cada colorante, uno para la decoloración y otro para la remoción de carbono total. También se determinaron las condiciones óptimas de las variables de respuesta para el P4R y AS, y bajo estas condiciones se evaluó la estabilidad del catalizador (ciclos de reuso) y el efecto de los “scavengers” de radicales. Bajo las condiciones de reacción, determinadas por la optimización multiobjetivo de los modelos, se realizaron las pruebas cinéticas de decoloración, mostrando que los datos experimentales de concentración normalizada para el P4R y AS se ajustaron a ecuaciones cinéticas de pseudo segundo y primer orden, respectivamente. También se estableció, a través de pruebas de toxicidad por digestión anaerobia, que los subproductos de la oxidación de los colorantes no son tóxicos. Finalmente, con los modelos empíricos y cinéticos de decoloración, se realizaron simulaciones para realizar la evaluación preliminar de costos de tratamiento, estudiando el efecto de la concentración y volumen de agua a tratar. (Texto tomado de la fuente)spa
dc.description.abstractIn the present investigation, the chemical, structural and textural characterization of a bentonite from the northern department of Tolima (Colombia) was carried out. The clay mineral was subjected to a process of pillarization with aluminum and subsequent impregnation with cobalt. The materials obtained - Co(%)/Al-PILCs - were used as a catalyst for the activation of hydrogen peroxide with bicarbonate (BAP system) in the oxidation of two food dyes. The Co(1.0, 3.0 and 6.0%)/Al-PILC materials showed high activity for the decolorization of ponceau 4R (P4R) and sunset yellow (AS) in aqueous solution. However, the clay impregnated with 1.0% cobalt preserved the textural properties of the Al-PILC support. Response surface methodology (RSM) based on a central composite design (CCD) was used to analyze the effect of H2O2, NaHCO3 and Co(1.0%)/Al-PILC as variables on the oxidation of P4R and AS dyes. Discoloration and total carbon (TC) removal were considered as response variables. The experimental designs showed that hydrogen peroxide and bicarbonate concentrations are the variables that influence most the decolorization and mineralization for both food dyes studied. Two second-order empirical models were obtained for each dye, one for decolorization and the other for total carbon removal. Optimal conditions were determined for response variables of P4R and AS. Therefore, under the mentioned conditions, the stability of the catalyst (reuse cycles) and the effect of free radical scavengers were evaluated. Under the reaction conditions determined by multi-objective optimization, decolorization kinetic tests were performed, showing that the experimental data of normalized concentration for P4R and AS fitted the pseudo second and first order kinetic models, respectively. It was also established through toxicity tests by anaerobic digestion that the by-products of dye oxidation are non-toxic. Finally, with the empirical and kinetic decolorization equations, modeling was carried out for the preliminary evaluation of treatment costs, studying the effect of the concentration and volume of water to be treated.eng
dc.description.curricularareaQuímica Y Procesosspa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingeniería – Ingeniería Químicaspa
dc.format.extentix, 206 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81694
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizalesspa
dc.publisher.facultyFacultad de Ingeniería y Arquitecturaspa
dc.publisher.placeManizales, Colombiaspa
dc.publisher.programManizales - Ingeniería y Arquitectura - Doctorado en Ingeniería - Ingeniería Químicaspa
dc.relation.referencesGürses, A., Açıkyıldız, M., Güneş, K., and Gürses, M.S. 2016. Chapter 2. Dyes and Pigments: Their Structure and Properties, in Dyes and Pigments. Sharma, S.K. (Ed). Springer Cham: Jaipur, India. p. 13-29.spa
dc.relation.referencesBarbusiński, K. and Majewski, J. 2003. Discoloration of azo dye acid red 18 by Fenton reagent in the presence of iron powder. Polish Journal of Environmental Studies, 12(2): p. 151-155.spa
dc.relation.referencesGürses, A., Açıkyıldız, M., Güneş, K., and Gürses, M.S. 2016. Chapter 5. Colorants in Health and Environmental Aspects, in Dyes and Pigments. Sharma, S.K. (Ed). Springer Cham: Jaipur, India. p. 69-83.spa
dc.relation.referencesVacchi, F.I., Albuquerque, A.F., Vendemiatti, J.A., Morales, D.A., Ormond, A.B., Freeman, H.S., Zocolo, G.J., Zanoni, M.V.B., and Umbuzeiro, G. 2013. Chlorine disinfection of dye wastewater: Implications for a commercial azo dye mixture. Science of the Total Environment, 442: p. 302-309.spa
dc.relation.referencesde Luna, L.A.V., da Silva, T.H.G., Nogueira, R.F.P., Kummrow, F., and Umbuzeiro, G.A. 2014. Aquatic toxicity of dyes before and after photo-Fenton treatment. Journal of Hazardous Materials, 276: p. 332-338.spa
dc.relation.referencesXu, X.-R., Li, H.-B., Wang, W.-H., and Gu, J.-D. 2004. Degradation of dyes in aqueous solutions by the Fenton process. Chemosphere, 57(7): p. 595-600.spa
dc.relation.referencesNidheesh, P.V., Gandhimathi, R., and Ramesh, S.T. 2013. Degradation of dyes from aqueous solution by Fenton processes: A review. Environmental Science and Pollution Research, 20(4): p. 2099-2132.spa
dc.relation.referencesRamírez, J.H., Maldonado-Hódar, F.J., Pérez-Cadenas, A.F., Moreno-Castilla, C., Costa, C.A., and Madeira, L.M. 2007. Azo-dye orange II degradation by heterogeneous Fenton-like reaction using carbon-Fe catalysts. Applied Catalysis B: Environmental, 75(3): p. 312-323.spa
dc.relation.referencesLucas, M.S. and Peres, J.A. 2006. Decolorization of the azo dye reactive black 5 by Fenton and photo-Fenton oxidation. Dyes and Pigments, 71(3): p. 236-244.spa
dc.relation.referencesArroyave Rojas, J.A., Garcés Giraldo, L.F., and Mejía Trujillo, J. 2009. Empleo del reactivo de Fenton para la degradación del colorante tartrazina. Revista Lasallista de Investigación, 6(1): p. 27-34.spa
dc.relation.referencesArroyave Rojas, J.A., Rodríguez Gaviria, E.M., Barón Aristizábal, C.A., and Moreno Salazar, C.C. 2012. Degradación y mineralización del colorante rojo punzó empleando el reactivo de Fenton. Producción + Limpia, 7: p. 48-58.spa
dc.relation.referencesJawad, A., Chen, Z., and Yin, G. 2016. Bicarbonate activation of hydrogen peroxide: A new emerging technology for wastewater treatment. Chinese Journal of Catalysis, 37(6): p. 810-825.spa
dc.relation.referencesXu, A., Li, X., Ye, S., Yin, G., and Zeng, Q. 2011. Catalyzed oxidative degradation of methylene blue by in situ generated cobalt (II)-bicarbonate complexes with hydrogen peroxide. Applied Catalysis B: Environmental, 102(1-2): p. 37-43.spa
dc.relation.referencesAtalay, S. and Ersöz, G. 2016. Novel Catalysts in Advanced Oxidation of Organic Pollutants. Sharma, S.K. (Ed). Springer International Publishing: Jaipur, India. p. 1-60.spa
dc.relation.referencesGoldstein, S., Meyerstein, D., and Czapski, G. 1993. The Fenton reagents. Free Radical Biology and Medicine, 15(4): p. 435-445.spa
dc.relation.referencesBokare, A.D. and Choi, W. 2014. Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes. Journal of Hazardous Materials, 275: p. 121-135.spa
dc.relation.referencesBauer, W., Berneth, H., Clausen, T., Engel, A., Filosa, M., and Gregory, P. 2002. Chapter 1. Dyes, General Survey, in Industrial Dyes: Chemistry, Properties, Applications. Hunger, K. (Ed). Wiley-VCH: Frankfurt, Germany. p. 1-12.spa
dc.relation.referencesSaratale, R.G., Saratale, G.D., Chang, J.S., and Govindwar, S.P. 2011. Bacterial decolorization and degradation of azo dyes: A review. Journal of the Taiwan Institute of Chemical Engineers, 42(1): p. 138-157.spa
dc.relation.referencesGürses, A., Açıkyıldız, M., Güneş, K., and Gürses, M.S. 2016. Chapter 1. Historical Development of Colorants, in Dyes and Pigments. Sharma, S.K. (Ed). Springer Cham: Jaipur, India. p. 1-12.spa
dc.relation.referencesSherwood, M., Baum, H., Bonner, J., Carlson, N., Coghlan, A., Davis, N., Denney, R., Katrizky, A., Praill, P., and Price, R. 1985. Chapter 3. Color and Organic Chemistry, in Life and Science. Chemistry Today. Martin, S. (Ed). Bertelsmann International GmbH: Gütersloh, Germany. p. 66-100.spa
dc.relation.referencesClarke, E.A. and Anliker, R. 1980. Chapter 7. Organic Dyes and Pigments, in Anthropogenic Compounds. Anliker, R. (Ed). Springer Berlin Heidelberg: Berlin, Germany. p. 181-215.spa
dc.relation.referencesYagub, M.T., Sen, T.K., Afroze, S., and Ang, H.M. 2014. Dye and its removal from aqueous solution by adsorption: A review. Advances in Colloid and Interface Science, 209: p. 172-184.spa
dc.relation.referencesGürses, A., Açıkyıldız, M., Güneş, K., and Gürses, M.S. 2016. Chapter 3. Classification of Dye and Pigments, in Dyes and Pigments. Sharma, S.K. (Ed). Springer International: Jaipur, India. p. 31-45.spa
dc.relation.referencesGupta, V.K. and Suhas. 2009. Application of low-cost adsorbents for dye removal - A review. Journal of Environmental Management, 90(8): p. 2313-2342.spa
dc.relation.referencesMishra, G. and Tripathy, M. 1993. A critical review of the treatments for decolourization of textile effluent. Colourage, 40(1): p. 35-38.spa
dc.relation.referencesPurkait, M.K., DasGupta, S., and De, S. 2005. Adsorption of eosin dye on activated carbon and its surfactant based desorption. Journal of Environmental Management, 76(2): p. 135-142.spa
dc.relation.referencesClark, M. 2011. Handbook of Textile and Industrial Dyeing: Principles, Processes and Types of Dyes. Clark, M. (Ed). Woodhead Publishing, Elsevier: Cambridge, UK. p. 1-680.spa
dc.relation.referencesGarcía R, A., Aubad L, A., and Zapata P, R. 1985. Capitulo 21. Pinturas y Colorantes, in Química Orgánica. Aubad L, A. (Ed). Temis S.A: Bogotá, Colombia.spa
dc.relation.referencesHunger, K., Gregory, P., Miederer, P., Berneth, H., Heid, C., and Mennicke, W. 2004. Chapter 2. Important Chemical Chromophores of Dye Classes, in Industrial Dyes: Chemistry, Properties, Applications. Hunger, K. (Ed). Wiley-VCH: Weinheim, Germany. p. 13-112.spa
dc.relation.referencesKhan, S. and Malik, A. 2014. Chapter 4. Environmental and Health Effects of Textile Industry Wastewater, in Environmental Deterioration and Human Health: Natural and Anthropogenic Determinants. Malik, A., Grohmann, E., and Akhtar, R. (Eds). Springer: Dordrecht, Netherlands. p. 55-71.spa
dc.relation.referencesRobinson, T., McMullan, G., Marchant, R., and Nigam, P. 2001. Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresource Technology, 77(3): p. 247-255.spa
dc.relation.referencesBanat, I.M., Nigam, P., Singh, D., and Marchant, R. 1996. Microbial decolorization of textile-dyecontaining effluents: A review. Bioresource Technology, 58(3): p. 217-227.spa
dc.relation.referencesFu, Y. and Viraraghavan, T. 2001. Fungal decolorization of dye wastewaters: A review. Bioresource Technology, 79(3): p. 251-262.spa
dc.relation.referencesFAO. 2016. Agriculture Organization of the United Nations-FAO, World Health Organization-WHO, Codex Alimentarius, Norma general del Codex para los aditivos alimentarios, Codex Stan 192-1995, Revisión 2016. p. 1-453spa
dc.relation.referencesRestrepo G, M. 2006. Producción más limpia en la industria alimentaria. Producción + Limpia, 1(1): p. 87-101.spa
dc.relation.referencesBello E, A., Vásquez M, M.E., Rincón D, D., and López E, Ó. 2005. VIII fase del programa de seguimiento y monitoreo de efluentes industriales y corrientes superficiales de Bogotá D. C., Secretaría Distrital de Ambiente, Bogotá, Colombia. p. 16-57spa
dc.relation.referencesAbdalla, K.Z. and Hammam, G. 2014. Correlation between biochemical oxygen demand and chemical oxygen demand for various wastewater treatment plants in Egypt to obtain the biodegradability indices. International Journal of Sciences: Basic and Applied Research, 13(1): p. 42-48.spa
dc.relation.referencesYang, Z., Wang, H., Chen, M., Luo, M., Xia, D., Xu, A., and Zeng, Q. 2012. Fast degradation and biodegradability improvement of reactive brilliant red X-3B by the cobalt(II)/bicarbonate/hydrogen peroxide system. Industrial & Engineering Chemistry Research, 51(34): p. 11104-11111spa
dc.relation.referencesBarrios-Ziolo, L.F., Gaviria-Restrepo, L.F., Agudelo, E.A., and Cardona-Gallo, S.A. 2016. Estudio de la toxicidad asociada al vertimiento de aguas residuales con presencia de colorantes y pigmentos en el Área Metropolitana del Valle de Aburrá. Revista EIA, 13(26): p. 61-74.spa
dc.relation.referencesBanković, P., Milutinović-Nikolić, A., Mojović, Z., Jović-Jovičić, N., Žunić, M., Dondur, V., and Jovanović, D. 2012. Al,Fe-pillared clays in catalytic decolorization of aqueous tartrazine solutions. Applied Clay Science, 58: p. 73-78.spa
dc.relation.referencesAbe, F.R., Soares, A.M.V.M., Oliveira, D.P.d., and Gravato, C. 2018. Toxicity of dyes to zebrafish at the biochemical level: Cellular energy allocation and neurotoxicity. Environmental Pollution, 235: p. 255-262.spa
dc.relation.referencesNovotný, Č., Dias, N., Kapanen, A., Malachová, K., Vándrovcová, M., Itävaara, M., and Lima, N. 2006. Comparative use of bacterial, algal and protozoan tests to study toxicity of azo- and anthraquinone dyes. Chemosphere, 63(9): p. 1436-1442.spa
dc.relation.referencesOller, I., Malato, S., and Sánchez-Pérez, J.A. 2011. Combination of advanced oxidation processes and biological treatments for wastewater decontamination - A review. Science of the Total Environment, 409(20): p. 4141-4166.spa
dc.relation.referencesZhang, X., Li, G., and Wang, Y. 2007. Microwave assisted photocatalytic degradation of high concentration azo dye Reactive Brilliant Red X-3B with microwave electrodeless lamp as light source. Dyes and Pigments, 74(3): p. 536-544.spa
dc.relation.referencesGomes, K., Oliveira, M., Carvalho, F., Carvalho Menezes Salierno, C., and Peron, A. 2013. Citotoxicity of food dyes sunset yellow (E-110), bordeaux red (E-123), and tatrazine yellow (E-102) on Allium cepa L. root meristematic cells. Food Science and Technology, 33(1): p. 218-223.spa
dc.relation.referencesCañizares, P., Martínez, F., Jiménez, C., Lobato, J., and Rodrigo, M.A. 2006. Coagulation and electrocoagulation of wastes polluted with dyes. Environmental Science & Technology, 40(20): p. 6418-6424.spa
dc.relation.referencesAtalay, S. and Ersöz, G. 2015. Chapter 3. Advanced Oxidation Processes for Removal of Dyes From Aqueous Media, in Green Chemistry for Dyes Removal from Wastewater: Research Trends and Applications. Wiley and and Scrivener Publishing: New Jersey, USA. p. 83-117.spa
dc.relation.referencesButhiyappan, A., Abdul Aziz, A.R., and Ashri Wan Daud, W.M. 2016. Recent advances and prospects of catalytic advanced oxidation process in treating textile effluents. Reviews in Chemical Engineering, 32(1): p. 1-47.spa
dc.relation.referencesNidheesh, P.V., Zhou, M., and Oturan, M.A. 2018. An overview on the removal of synthetic dyes from water by electrochemical advanced oxidation processes. Chemosphere, 197: p. 210-227.spa
dc.relation.referencesMacías-Quiroga, I.F., Henao-Aguirre, P.A., Marín-Flórez, A., Arredondo-López, S.M., and Sanabria-González, N.R. 2021. Bibliometric analysis of advanced oxidation processes (AOPs) in wastewater treatment: Global and Ibero-American research trends. Environmental Science and Pollution Research, 28(19): p. 23791-23811.spa
dc.relation.referencesRauf, M.A. and Ashraf, S.S. 2009. Chapter 9. Application of Advanced Oxidation Processes (AOP) to Dye Degradation -An Overview, in Dyes and Pigments: New Research. Lang, A.R. (Ed). Nova Science: New York, USA. p. 259-290.spa
dc.relation.referencesSamsami, S., Mohamadizaniani, M., Sarrafzadeh, M.-H., Rene, E.R., and Firoozbahr, M. 2020. Recent advances in the treatment of dye-containing wastewater from textile industries: Overview and perspectives. Process Safety and Environmental Protection, 143: p. 138-163.spa
dc.relation.referencesPavithra, K.G., P, S.K., V, J., and P, S.R. 2019. Removal of colorants from wastewater: A review on sources and treatment strategies. Journal of Industrial and Engineering Chemistry, 75: p. 1-19.spa
dc.relation.referencesKatheresan, V., Kansedo, J., and Lau, S.Y. 2018. Efficiency of various recent wastewater dye removal methods: A review. Journal of Environmental Chemical Engineering, 6(4): p. 4676-4697.spa
dc.relation.referencesSingh, K. and Arora, S. 2011. Removal of synthetic textile dyes from wastewaters: A critical review on present treatment technologies. Critical Reviews in Environmental Science and Technology, 41(9): p. 807-878.spa
dc.relation.referencesCrini, G. 2006. Non-conventional low-cost adsorbents for dye removal: A review. Bioresource Technology, 97(9): p. 1061-1085.spa
dc.relation.referencesOturan, M.A. and Aaron, J.J. 2014. Advanced oxidation processes in water/wastewater treatment: principles and applications. A Review. Critical Reviews in Environmental Science and Technology, 44(23): p. 2577-2641.spa
dc.relation.referencesCenti, G. and Perathoner, S. 2014. Chapter 10. Advanced Oxidation Processes in Water Treatment, in Handbook of Advanced Methods and Processes in Oxidation Catalysis. From Laboratory to Industry. Duprez, D. and Cavani, F. (Eds). Imperial College Press: London, UK. p. 251-290.spa
dc.relation.referencesLoures, C., Alcântara, M., Izario-Filho, H., Teixeira, A.C., Silva, F.T., Paiva, T., and Lamas-Samanamud, G. 2013. Advanced oxidative degradation processes: Fundamentals and applications. International Review of Chemical Engineering, 5(2): p. 102-120.spa
dc.relation.referencesSharma, S., Ruparelia, J., and Patel, M.L. 2011. A general review on advanced oxidation processes for waste water treatment. International Conference on Current Trends in Technology, "Nuicone – 2011”. Nirma University, Ahmedabad, Gujarat, India. p. 1-7spa
dc.relation.referencesMalakootian, M., Shahesmaeili, A., Faraji, M., Amiri, H., and Silva Martinez, S. 2020. Advanced oxidation processes for the removal of organophosphorus pesticides in aqueous matrices: A systematic review and meta-analysis. Process Safety and Environmental Protection, 134: p. 292-307.spa
dc.relation.referencesKanakaraju, D., Glass, B.D., and Oelgemöller, M. 2018. Advanced oxidation process-mediated removal of pharmaceuticals from water: A review. Journal of Environmental Management, 219: p. 189-207.spa
dc.relation.referencesKrishnan, R.Y., Manikandan, S., Subbaiya, R., Biruntha, M., Govarthanan, M., and Karmegam, N. 2021. Removal of emerging micropollutants originating from pharmaceuticals and personal care products (PPCPs) in water and wastewater by advanced oxidation processes: A review. Environmental Technology & Innovation, 23: p. Article ID 101757.spa
dc.relation.referencesSalimi, M., Esrafili, A., Gholami, M., Jonidi Jafari, A., Rezaei Kalantary, R., Farzadkia, M., Kermani, M., and Sobhi, H.R. 2017. Contaminants of emerging concern: a review of new approach in AOP technologies. Environmental Monitoring and Assessment, 189(8): p. 414.spa
dc.relation.referencesCamargo-Perea, A.L., Rubio-Clemente, A., and Peñuela, G.A. 2020. Use of ultrasound as an advanced oxidation process for the degradation of emerging pollutants in water. Water, 12(4): p. Article ID 1068.spa
dc.relation.referencesKowalska, K., Maniakova, G., Carotenuto, M., Sacco, O., Vaiano, V., Lofrano, G., and Rizzo, L. 2020. Removal of carbamazepine, diclofenac and trimethoprim by solar driven advanced oxidation processes in a compound triangular collector based reactor: A comparison between homogeneous and heterogeneous processes. Chemosphere, 238: p. Article ID 124665.spa
dc.relation.referencesManiakova, G., Kowalska, K., Murgolo, S., Mascolo, G., Libralato, G., Lofrano, G., Sacco, O., Guida, M., and Rizzo, L. 2020. Comparison between heterogeneous and homogeneous solar driven advanced oxidation processes for urban wastewater treatment: Pharmaceuticals removal and toxicity. Separation and Purification Technology, 236: p. Article ID 116249.spa
dc.relation.referencesPoza-Nogueiras, V., Rosales, E., Pazos, M., and Sanromán, M.Á. 2018. Current advances and trends in electro-Fenton process using heterogeneous catalysts - A review. Chemosphere, 201: p. 399-416.spa
dc.relation.referencesSreeja, P.H. and Sosamony, K.J. 2016. A comparative study of homogeneous and heterogeneous photo-Fenton process for textile wastewater treatment. Procedia Technology, 24: p. 217-223.spa
dc.relation.referencesNeyens, E. and Baeyens, J. 2003. A review of classic Fenton’s peroxidation as an advanced oxidation technique. Journal of Hazardous Materials, 98(1-3): p. 33-50.spa
dc.relation.referencesHaber, F. and Weiss, J. 1934. The catalytic decomposition of hydrogen peroxide by iron salts. Proceedings of the Royal Society of London. Series A - Mathematical and Physical Sciences, 147(861): p. 332-351.spa
dc.relation.referencesShen, Y., Zhang, Z., and Xiao, K. 2015. Evaluation of cobalt oxide, copper oxide and their solid solutions as heterogeneous catalysts for Fenton-degradation of dye pollutants. RSC Advances, 5(111): p. 91846-91854.spa
dc.relation.referencesRahim P., S., Abdul R., A.A., and Wan D., W.M.A. 2014. Review on the application of modified iron oxides as heterogeneous catalysts in Fenton reactions. Journal of Cleaner Production, 64: p. 24-35.spa
dc.relation.referencesRamírez, J.H., Vicente, M.A., and Madeira, L.M. 2010. Heterogeneous photo-Fenton oxidation with pillared clay-based catalysts for wastewater treatment: A review. Applied Catalysis B: Environmental, 98(1): p. 10-26.spa
dc.relation.referencesBabuponnusami, A. and Muthukumar, K. 2014. A review on Fenton and improvements to the Fenton process for wastewater treatment. Journal of Environmental Chemical Engineering, 2(1): p. 557-572.spa
dc.relation.referencesGarcía-Segura, S., Bellotindos, L.M., Huang, Y.-H., Brillas, E., and Lu, M.-C. 2016. Fluidized-bed Fenton process as alternative wastewater treatment technology - A review. Journal of the Taiwan Institute of Chemical Engineers, 67: p. 211-225.spa
dc.relation.referencesWang, N., Zheng, T., Zhang, G., and Wang, P. 2016. A review on Fenton-like processes for organic wastewater treatment. Journal of Environmental Chemical Engineering, 4(1): p. 762-787.spa
dc.relation.referencesCarriazo, J., Bossa-Benavides, L., and Castillo, E. 2012. Actividad catalítica de metales de transición en la descomposición de peróxido de hidrógeno. Química Nova, 35(6): p. 1101-1106.spa
dc.relation.referencesLuo, M., Lv, L., Deng, G., Yao, W., Ruan, Y., Li, X., and Xu, A. 2014. The mechanism of bound hydroxyl radical formation and degradation pathway of Acid Orange II in Fenton-like Co2+-HCO3− system. Applied Catalysis A: General, 469: p. 198-205.spa
dc.relation.referencesDuarte, F., Maldonado-Hódar, F.J., Pérez-Cadenas, A.F., and Madeira, L.M. 2009. Fenton-like degradation of azo-dye orange II catalyzed by transition metals on carbon aerogels. Applied Catalysis B: Environmental, 85(3): p. 139-147.spa
dc.relation.referencesNasiruddin Khan, M. and Bhutto, S. 2010. Kinetic study of the oxidatve decolorization of xylenol orange by hydrogen peroxide in micellar medium. Journal of the Chilean Chemical Society, 55(2): p. 170-175.spa
dc.relation.referencesStrlič, M., Kolar, J., Šelih, V., Kocar, D., and Pihlar, B. 2003. A comparative study of several transition metals in Fenton-like reaction systems at circum-neutral pH. Acta Chimica Slovenica, 50(4): p. 619-632.spa
dc.relation.referencesSawyer, C.N., McCarty, P., and Parkin, G.F. 2001. Química para Ingeniería Ambiental. Sawyer, C.N. (Ed). McGraw-Hill: Bogotá, Colombia. p. 1-680.spa
dc.relation.referencesRiley Tetzlaff, H. and Espenson, J.H. 1999. Kinetics and mechanism of the epoxidation of allylic alcohols by hydrogen peroxide with methyltrioxorhenium as catalyst. Inorganic Chemistry, 38(5): p. 881-885.spa
dc.relation.referencesde Vos, D.E., Sels, B.F., Reynaers, M., Subba Rao, Y.V., and Jacobs, P.A. 1998. Epoxidation of terminal or electron-deficient olefins with H2O2, catalysed by Mn-trimethyltriazacyclonane complexes in the presence of an oxalate buffer. Tetrahedron Letters, 39(20): p. 3221-3224.spa
dc.relation.referencesDrago, R., Frank, K., Yang, Y.C., and Wagner, G. 1998. Catalytic activation of hydrogen peroxide-A green oxidant system. Proceedings of the 1997 ERDEC Scientific Conference on Chemical and Biological Defense Research, US Army Edgewood Research, Development, and Engineering Center, Aberdeen Proving Ground, MD. Springfield, USA. p. 1-882spa
dc.relation.referencesYao, H. and Richardson, D.E. 2000. Epoxidation of alkenes with bicarbonate-activated hydrogen peroxide. Journal of the American Chemical Society, 122(13): p. 3220-3221.spa
dc.relation.referencesLi, X., Xiong, Z., Ruan, X., Xia, D., Zeng, Q., and Xu, A. 2012. Kinetics and mechanism of organic pollutants degradation with cobalt–bicarbonate–hydrogen peroxide system: Investigation of the role of substrates. Applied Catalysis A: General, 411-412: p. 24-30.spa
dc.relation.referencesBennett, D.A., Yao, H., and Richardson, D.E. 2001. Mechanism of sulfide oxidations by peroxymonocarbonate. Inorganic Chemistry, 40(13): p. 2996-3001.spa
dc.relation.referencesBalagam, B. and Richardson, D.E. 2008. The mechanism of carbon dioxide catalysis in the hydrogen peroxide N-Oxidation of amines. Inorganic Chemistry, 47(3): p. 1173-1178.spa
dc.relation.referencesPan, H., Gao, Y., Li, N., Zhou, Y., Lin, Q., and Jiang, J. 2021. Recent advances in bicarbonate-activated hydrogen peroxide system for water treatment. Chemical Engineering Journal, 408: p. Article ID 127332.spa
dc.relation.referencesZhao, S., Xi, H., Zuo, Y., Wang, Q., Wang, Z., and Yan, Z. 2018. Bicarbonate-activated hydrogen peroxide and efficient decontamination of toxic sulfur mustard and nerve gas simulants. Journal of Hazardous Materials, 344: p. 136-145.spa
dc.relation.referencesDuan, L., Chen, Y., Zhang, K., Luo, H., Huang, J., and Xu, A. 2015. Catalytic degradation of acid orange 7 with hydrogen peroxide using CoxOy-N/GAC catalysts in a bicarbonate aqueous solution. RSC Advances, 5(102): p. 84303-84310.spa
dc.relation.referencesXu, A., Li, X., Xiong, H., and Yin, G. 2011. Efficient degradation of organic pollutants in aqueous solution with bicarbonate-activated hydrogen peroxide. Chemosphere, 82(8): p. 1190-1195.spa
dc.relation.referencesEmber, E., Gazzaz, H.A., Rothbart, S., Puchta, R., and van Eldik, R. 2010. MnII - A fascinating oxidation catalyst: Mechanistic insight into the catalyzed oxidative degradation of organic dyes by H2O2. Applied Catalysis B: Environmental, 95(3): p. 179-191.spa
dc.relation.referencesCheng, L., Wei, M., Huang, L., Pan, F., Xia, D., Li, X., and Xu, A. 2014. Efficient H2O2 oxidation of organic dyes catalyzed by simple copper(II) ions in bicarbonate aqueous solution. Industrial & Engineering Chemistry Research, 53(9): p. 3478-3485.spa
dc.relation.referencesMacías-Quiroga, I.F., Rojas-Méndez, E.F., Giraldo-Gómez, G.I., and Sanabria-González, N.R. 2020. Experimental data of a catalytic decolorization of ponceau 4R dye using the cobalt (II)/NaHCO3/H2O2 system in aqueous solution. Data in Brief, 30: p. Article ID 105463.spa
dc.relation.referencesJawad, A., Li, Y., Lu, X., Chen, Z., Liu, W., and Yin, G. 2015. Controlled leaching with prolonged activity for Co–LDH supported catalyst during treatment of organic dyes using bicarbonate activation of hydrogen peroxide. Journal of Hazardous Materials, 289: p. 165-173.spa
dc.relation.referencesGeorge, S.M. 1995. Introduction: Heterogeneous catalysis. Chemical Reviews, 95(3): p. 475-476.spa
dc.relation.referencesZhou, L., Song, W., Chen, Z., and Yin, G. 2013. Degradation of organic pollutants in wastewater by bicarbonate-activated hydrogen peroxide with a supported cobalt catalyst. Environmental Science & Technology, 47(8): p. 3833-3839.spa
dc.relation.referencesZhang, L., Li, F., Evans, D.G., and Duan, X. 2004. Structure and surface characteristics of Cu-based composite metal oxides derived from layered double hydroxides. Materials Chemistry and Physics, 87(2-3): p. 402-410.spa
dc.relation.referencesLong, X., Yang, Z., Wang, H., Chen, M., Peng, K., Zeng, Q., and Xu, A. 2012. Selective degradation of orange II with the Cobalt(II)–Bicarbonate–Hydrogen peroxide system. Industrial & Engineering Chemistry Research, 51(37): p. 11998-12003.spa
dc.relation.referencesGuo, X., Li, H., and Zhao, S. 2015. Fast degradation of acid orange II by bicarbonate-activated hydrogen peroxide with a magnetic S-modified CoFe2O4 catalyst. Journal of the Taiwan Institute of Chemical Engineers, 55: p. 90-100.spa
dc.relation.referencesBaloyi, J., Ntho, T., and Moma, J. 2018. Synthesis and application of pillared clay heterogeneous catalysts for wastewater treatment: A review. RSC Advances, 8(10): p. 5197-5211.spa
dc.relation.referencesLiu, J. and Zhang, G. 2014. Recent advances in synthesis and applications of clay-based photocatalysts: a review. Physical Chemistry Chemical Physics, 16(18): p. 8178-8192.spa
dc.relation.referencesPandey, P. and Saini, V. 2018. Chapter 11. Pillared Interlayered Clays for Pollution Remediation: Innovative Materials, in Green Adsorbents for Pollutant Removal. Fundamentals and Desing. Crini, G. and Lichtfouse, E. (Eds). Springer: Cham, Switzerland. p. 353-376.spa
dc.relation.referencesKloprogge, J.T. 1998. Synthesis of Smectites and Porous Pillared Clay Catalysts: A Review. Journal of Porous Materials, 5(1): p. 5-41.spa
dc.relation.referencesDing, Z., Kloprogge, J.T., Frost, R.L., Lu, G.Q., and Zhu, H.Y. 2001. Porous clays and pillared clays-based catalysts. Part 2: A review of the catalytic and molecular sieve applications. Journal of Porous Materials, 8: p. 273-293.spa
dc.relation.referencesVicente, M.A., Gil, A., and Bergaya, F. 2013. Chapter 10.5. Pillared Clays and Clay Minerals, in Developments in Clay Science. Bergaya, F. and Lagaly, G. (Eds). Elsevier: Oxford, UK. p. 523-557.spa
dc.relation.referencesBertella, F. and Pergher, S.B.C. 2015. Pillaring of bentonite clay with Al and Co. Microporous and Mesoporous Materials, 201: p. 116-123.spa
dc.relation.referencesKunio, O., Johji, K., Mitsuru, S., Mikiya, O., and Minoru, T. 1987. Preparation and properties of cobalt(II) hydroxide–(sodium fluoride tetrasilicic mica) intercalation complexes and of highly dispersed cobalt on mica. Bulletin of the Chemical Society of Japan, 60(8): p. 2843-2847.spa
dc.relation.referencesFang, L., Wang, L., Zhou, T., Liu, L., Zhou, J., and Li, M. 2017. Preparation and characterization of Fe,Co,Si-pillared montmorillonites with aminosilanes as silicon pillars precursor. Applied Clay Science, 141: p. 88-94.spa
dc.relation.referencesSu, H., Zeng, S., Dong, H., Du, Y., Zhang, Y., and Hu, R. 2009. Pillared montmorillonite supported cobalt catalysts for the Fischer–Tropsch reaction. Applied Clay Science, 46(3): p. 325-329.spa
dc.relation.referencesMarković, M., Marinović, S., Mudrinić, T., Ajduković, M., Jović-Jovičić, N., Mojović, Z., Orlić, J., Milutinović-Nikolić, A., and Banković, P. 2019. Co(II) impregnated Al(III)-pillared montmorillonite–Synthesis, characterization and catalytic properties in Oxone® activation for dye degradation. Applied Clay Science, 182: p. Article ID 105276.spa
dc.relation.referencesKarthikeyan, S., Ezhil Priya, M., Boopathy, R., Velan, M., Mandal, A.B., and Sekaran, G. 2012. Heterocatalytic Fenton oxidation process for the treatment of tannery effluent: Kinetic and thermodynamic studies. Environmental Science and Pollution Research, 19(5): p. 1828-1840spa
dc.relation.referencesAbou-Gamra, Z.M. 2014. Kinetic and thermodynamic study for Fenton-like oxidation of amaranth red dye. Advances in Chemical Engineering and Science, 4(3): p. 285-291.spa
dc.relation.referencesHashemian, S. 2013. Fenton-Like oxidation of malachite green solutions: Kinetic and thermodynamic study. Journal of Chemistry, 2013: p. Article ID 809318.spa
dc.relation.referencesRamírez, J.H., Silva, A.M.T., Vicente, M.A., Costa, C.A., and Madeira, L.M. 2011. Degradation of acid orange 7 using a saponite-based catalyst in wet hydrogen peroxide oxidation: Kinetic study with the Fermi's equation. Applied Catalysis B: Environmental, 101(3): p. 197-205.spa
dc.relation.referencesSilva, A.M.T., Ramírez, J.H., Söylemez, U., and Madeira, L.M. 2012. A lumped kinetic model based on the Fermi's equation applied to the catalytic wet hydrogen peroxide oxidation of acid orange 7. Applied Catalysis B: Environmental, 121-122: p. 10-19.spa
dc.relation.referencesRache, M.L., García, A.R., Zea, H.R., Silva, A.M.T., Madeira, L.M., and Ramírez, J.H. 2014. Azo-dye orange II degradation by the heterogeneous Fenton-like process using a zeolite Y-Fe catalyst—Kinetics with a model based on the Fermi's equation. Applied Catalysis B: Environmental, 146: p. 192-200.spa
dc.relation.referencesMinz, S., Garg, S., and Gupta, R. 2018. Catalytic wet peroxide oxidation of 4-Nitrophenol over Al–Fe PILC: Kinetic study using Fermi’s equation and mechanistic pathways based on TOC reduction. Chemical Engineering Communications, 205(5): p. 667-679.spa
dc.relation.referencesArimi, M.M. 2017. Modified natural zeolite as heterogeneous Fenton catalyst in treatment of recalcitrants in industrial effluent. Progress in Natural Science: Materials International, 27(2): p. 275-282.spa
dc.relation.referencesCovinich, L., Felissia, F., Massa, P., Fenoglio, R., and Area, M.C. 2018. Kinetic modeling of a heterogeneous Fenton-type oxidative treatment of complex industrial effluent. International Journal of Industrial Chemistry, 9(3): p. 215-229.spa
dc.relation.referencesLázaro Martínez, J.M., Leal Denis, M.F., Piehl, L.L., de Celis, E.R., Buldain, G.Y., and Campo Dall’ Orto, V. 2008. Studies on the activation of hydrogen peroxide for color removal in the presence of a new Cu(II)-polyampholyte heterogeneous catalyst. Applied Catalysis B: Environmental, 82(3): p. 273-283.spa
dc.relation.referencesPanda, N., Sahoo, H., and Mohapatra, S. 2011. Decolourization of methyl orange using Fenton-like mesoporous Fe2O3–SiO2 composite. Journal of Hazardous Materials, 185(1): p. 359-365.spa
dc.relation.referencesRupa, A.V., Manikandan, D., Divakar, D., and Sivakumar, T. 2007. Effect of deposition of Ag on TiO2 nanoparticles on the photodegradation of reactive yellow-17. Journal of Hazardous Materials, 147(3): p. 906-913.spa
dc.relation.referencesBergamini, R.B.M., Azevedo, E.B., and Araújo, L.R.R.d. 2009. Heterogeneous photocatalytic degradation of reactive dyes in aqueous TiO2 suspensions: Decolorization kinetics. Chemical Engineering Journal, 149(1): p. 215-220.spa
dc.relation.referencesBehnajady, M.A., Modirshahla, N., and Ghanbary, F. 2007. A kinetic model for the decolorization of C.I. acid yellow 23 by Fenton process. Journal of Hazardous Materials, 148(1): p. 98-102.spa
dc.relation.referencesSantana, C.S., Nicodemos Ramos, M.D., Vieira Velloso, C.C., and Aguiar, A. 2019. Kinetic evaluation of dye decolorization by fenton processes in the presence of 3-hydroxyanthranilic acid. International Journal of Environmental Research and Public Health, 16(9): p. Article ID 31067822.spa
dc.relation.referencesLi, Y., Li, L., Chen, Z.-X., Zhang, J., Gong, L., Wang, Y.-X., Zhao, H.-Q., and Mu, Y. 2018. Carbonate-activated hydrogen peroxide oxidation process for azo dye decolorization: Process, kinetics, and mechanisms. Chemosphere, 192: p. 372-378.spa
dc.relation.referencesKrichevskaya, M., Klauson, D., Portjanskaja, E., and Preis, S. 2011. The cost evaluation of advanced oxidation processes in laboratory and pilot-scale experiments. The Journal of the International Ozone Association, 33(3): p. 211-223.spa
dc.relation.referencesAndreozzi, R., Caprio, V., Insola, A., and Marotta, R. 1999. Advanced oxidation processes (AOP) for water purification and recovery. Catalysis Today, 53(1): p. 51-59.spa
dc.relation.referencesMahamuni, N.N. and Adewuyi, Y.G. 2010. Advanced oxidation processes (AOPs) involving ultrasound for waste water treatment: A review with emphasis on cost estimation. Ultrasonics Sonochemistry, 17(6): p. 990-1003.spa
dc.relation.referencesSanz, J., Lombraña, J.I., and de Luis, A. 2013. Estado del arte en la oxidación avanzada a efluentes industriales: Nuevos desarrollos y futuras tendencias. Afinidad, 70(561): p. 25-33.spa
dc.relation.referencesCañizares, P., Paz, R., Sáez, C., and Rodrigo, M.A. 2009. Costs of the electrochemical oxidation of wastewaters: A comparison with ozonation and Fenton oxidation processes. Journal of Environmental Management, 90(1): p. 410-420.spa
dc.relation.referencesdos Santos Napoleão, D.A., Hizário Filho, H.J., Sakis Cezar, F., and Francisco Siqueira, A. 2017. Economic analysis of Fenton process in the slurry treatment. Journal of Environmental Science, Toxicology and Food Technology (IOSR-JESTFT) 11(8): p. 12-16.spa
dc.relation.referencesGil-Pavas, E., Medina, J., Dobrosz-Gómez, I., and Gómez, M.-Á. 2016. Optimización de los costos de operación del proceso de electro-oxidación para una planta de tratamiento de aguas mediante análisis estadístico de superficie de respuesta. Información Tecnológica, 27(4): p. 73-82.spa
dc.relation.referencesIbarra-Taquez, H.N., Dobrosz-Gómez, I., and Gómez, M.-Á. 2018. Optimización multiobjetivo del proceso Fenton en el tratamiento de aguas residuales provenientes de la producción de café soluble. Información Tecnológica, 29(5): p. 111-122.spa
dc.relation.referencesArias, M.E. and Brown, M.T. 2009. Feasibility of using constructed treatment wetlands for municipal wastewater treatment in the Bogotá Savannah, Colombia. Ecological Engineering, 35(7): p. 1070-1078.spa
dc.relation.referencesLyu, Y., Ye, H., Zhao, Z., Tian, J., and Chen, L. 2020. Exploring the cost of wastewater treatment in a chemical industrial park: Model development and application. Resources, Conservation and Recycling, 155: p. Article ID 104663.spa
dc.relation.referencesCamacho-Gómez, J.A. and Celada-Arango, C.M. 2004. Definición de zonas potenciales para esmectitas en los departamentos del Valle del Cauca, Tolima y Caldas. Ministerio de Minas y Energía, Instituto Colombiano de Geología y Minería (Ingeominas), Bogotá, Colombia. p. 1-241spa
dc.relation.referencesMacías-Quiroga, I.F., Giraldo-Gómez, G.I., and Sanabria-González, N.R. 2018. Characterization of Colombian clay and its potential use as adsorbent. The Scientific World Journal, 2018: p. Article ID 5969178spa
dc.relation.referencesHenao-Aguirre, P.A., Macías-Quiroga, I.F., Giraldo-Gómez, G.I., and Sanabria-González, N.R. 2021. Catalytic oxidation of ponceau 4R in aqueous solution using iron-impregnated Al-pillared bentonite: Optimization of the process. Bulletin of Chemical Reaction Engineering & Catalysis, 16(3): p. 15spa
dc.relation.referencesOtavo-Loaiza, R.A., Sanabria-González, N.R., and Giraldo-Gómez, G.I. 2019. Tartrazine removal from aqueous solution by HDTMA-Br-modified Colombian bentonite. The Scientific World Journal, 2019: p. Article ID 2042563.spa
dc.relation.referencesCastro-Castro, J.D., Macías-Quiroga, I.F., Giraldo-Gómez, G.I., and Sanabria-González, N.R. 2020. Adsorption of Cr(VI) in aqueous solution using a surfactant-modified bentonite. The Scientific World Journal, 2020: p. Article ID 3628163.spa
dc.relation.referencesMukherjee, S. 2013. Chapter 2. Classification and Composition of Clay Constituents, in The Science of Clays. Ghosh, B. (Ed). Springer: Dordrecht, Netherlands. p. 23-32.spa
dc.relation.referencesBarton, C.D. and Karathanasis, A.D. 2002. Chapter 45. Clay Minerals, in Encyclopedia of Soil Science. Lal, R. (Ed). CRC Press: New York, USA. p. 187-192.spa
dc.relation.referencesBergaya, F. and Lagaly, G. 2006. Chapter 1. General Introduction: Clays, Clay Minerals, and Clay Science, in Developments in Clay Science. Bergaya, F., Theng, B.K.G., and Lagaly, G. (Eds). Elsevier: Amsterdam, Netherlands. p. 1-18.spa
dc.relation.referencesSivrikaya, O., Uzal, B., and Ozturk, Y.E. 2017. Practical charts to identify the predominant clay mineral based on oxide composition of clayey soils. Applied Clay Science, 135: p. 532-537.spa
dc.relation.referencesBrigatti, M.F., Galán, E., and Theng, B.K.G. 2006. Chapter 2. Structure And Mineralogy of Clay Minerals, in Developments in Clay Science. Bergaya, F., Theng, B.K.G., and Lagaly, G. (Eds). Elsevier Science: Amsterdam, Netherlands. p. 21-81.spa
dc.relation.referencesMolina, C.B., Casas, J.A., Pizarro, A.H., and Rodríguez, J.J. 2011. Chapter 16. Pillared Clays as Green Chemistry Catalysts: Application to Wastewater Treatment, in Clay: Types, Properties and Uses. Humphrey, J.P. and Boyd, D.E. (Eds). Nova Science Publishers: New York, USA. p. 435-474.spa
dc.relation.referencesMackenzie, R.C. 1959. The classification and nomenclature of clay minerals. Clay Minerals Bulletin, 4(21): p. 52-66.spa
dc.relation.referencesRauf, M.A. 2009. Chapter 11. Removal of Dyes from Solution on Clay Surfaces - An overview, in Dyes and Pigments. New research Lang, A.R. (Ed). Nova Science: New York, USA. p. 314.spa
dc.relation.referencesKotal, M. and Bhowmick, A.K. 2015. Polymer nanocomposites from modified clays: Recent advances and challenges. Progress in Polymer Science, 51: p. 127-187.spa
dc.relation.referencesMatocha, C.J. 2006. Chapter 26. Clay: Charge Properties, in Encyclopedia of Soil Science. Lal, R. (Ed). CRC Press: Florida, USA. p. 287-290.spa
dc.relation.referencesBiscaye, P.E. 1965. Mineralogy and sedimentation of recent deep-sea clay in the Atlantic ocean and adjacent seas and oceans. Geological Society of America Bulletin 76(7): p. 803–832.spa
dc.relation.referencesThorez, J. 1976. Practical Identification of Clay Minerals: A Handbook for Teachers and Students in Clay Mineralogy. Imprimerie G. Lelotte: Liège, Belgium. p. 1-90.spa
dc.relation.referencesKleeberg, R., Monecke, T., and Hillier, S. 2008. Preferred orientation of mineral grains in sample mounts for quantitative XRD measurements: How random are powder samples? Clays and Clay Minerals, 56(4): p. 404-415.spa
dc.relation.referencesZhang, G., Germaine, J.T., Martin, R.T., and Whittle, A.J. 2003. A simple sample-mounting method for radndom powder X-ray diffraction. Clays and Clay Minerals, 51(2): p. 218-225.spa
dc.relation.referencesMoore, D.M. and Reynolds, R.C. 1997. Chapter 7. Identification of Clay Minerals and Associated Minerals, in X-Ray Diffraction and Analysis of Clay Minerals. Moore, D.M. (Ed). Oxford University Press: Oxford, UK. p. 227-260.spa
dc.relation.referencesZhou, X., Liu, D., Bu, H., Deng, L., Liu, H., Yuan, P., Du, P., and Song, H. 2018. XRD-based quantitative analysis of clay minerals using reference intensity ratios, mineral intensity factors, Rietveld, and full pattern summation methods: A critical review. Solid Earth Sciences, 3(1): p. 16-29.spa
dc.relation.referencesKahle, M., Kleber, M., and Jahn, R. 2002. Review of XRD-based quantitative analyses of clay minerals in soils: The suitability of mineral intensity factors. Geoderma, 109(3-4): p. 191-205.spa
dc.relation.referencesMoore, D.M. and Reynolds, R.C. 1997. Chapter 9. Quantitative Analysis, in X-ray Diffraction and the Identification and Analysis of Clay Minerals. Moore, D.M. (Ed). Oxford University Press: Oxford, UK. p. 327-360.spa
dc.relation.referencesStanković, N., Logar, M., Luković, J., Pantić, J., Miljević, M., Babić, B., and Radosavljević-Mihajlović, A. 2011. Characterization of bentonite clay from 'Greda' deposit. Processing and Application of Ceramics, 5(2): p. 97-101.spa
dc.relation.referencesde Oliveira, C., Rocha, M., da Silva, A., and Bertolino, L. 2016. Characterization of bentonite clays from Cubati, Paraíba (Northeast of Brazil). Cerâmica, 62(363): p. 272-277.spa
dc.relation.referencesDarton, N. 1906. Fish remains in Ordovician rocks in Bighorn mountains, Wyoming, with a résumé of Ordovician geology of the northwest. Bulletin of the Geological Society of America, 17(1): p. 541-566.spa
dc.relation.referencesJaeckels, N., Tenzer, S., Meier, M., Will, F., Dietrich, H., Decker, H., and Fronk, P. 2017. Influence of bentonite fining on protein composition in wine. LWT - Food Science and Technology, 75: p. 335-343.spa
dc.relation.referencesKoyuncu, H., Kul, A.R., Çalımlı, A., Yıldız, N., and Ceylan, H. 2007. Adsorption of dark compounds with bentonites in apple juice. LWT - Food Science and Technology, 40(3): p. 489-497.spa
dc.relation.referencesGranizo, N., Vega, J.M., de la Fuente, D., Simancas, J., and Morcillo, M. 2012. Ion-exchange pigments in primer paints for anticorrosive protection of steel in atmospheric service: Cation-exchange pigments. Progress in Organic Coatings, 75(3): p. 147-161.spa
dc.relation.referencesCervini-Silva, J., Nieto-Camacho, A., Kaufhold, S., Ufer, K., and Ronquillo de Jesús, E. 2015. The anti-inflammatory activity of bentonites. Applied Clay Science, 118: p. 56-60.spa
dc.relation.referencesNones, J., Gracher-Riella, H., Gonçalves-Trentin, A., and Nones, J. 2015. Effects of bentonite on different cell types: A brief review. Applied Clay Science, 105-106: p. 225-230.spa
dc.relation.referencesAl-Shahrani, S.S. 2014. Treatment of wastewater contaminated with cobalt using saudi activated bentonite. Alexandria Engineering Journal, 53(1): p. 205-211.spa
dc.relation.referencesCopetti, D., Finsterle, K., Marziali, L., Stefani, F., Tartari, G., Douglas, G., Reitzel, K., Spears, B.M., Winfield, I.J., Crosa, G., D'Haese, P., Yasseri, S., and Lürling, M. 2016. Eutrophication management in surface waters using lanthanum modified bentonite: A review. Water Research, 97: p. 162-174.spa
dc.relation.referencesSanabria, N.R., Centeno, M.A., Molina, R., and Moreno, S. 2009. Pillared clays with Al–Fe and Al–Ce–Fe in concentrated medium: Synthesis and catalytic activity. Applied Catalysis A: General, 356(2): p. 243-249.spa
dc.relation.referencesCarriazo, J., Guélou, E., Barrault, J., Tatibouët, J., and Moreno, S. 2003. Catalytic wet peroxide oxidation of phenol over Al–Cu or Al–Fe modified clays. Applied Clay Science, 22(6): p. 303-308.spa
dc.relation.referencesde Stefanis, A. and Tomlinson, A.A.G. 2006. Towards designing pillared clays for catalysis. Catalysis Today, 114(2–3): p. 126-141.spa
dc.relation.referencesLaguna E., O.H. 2007. Efecto del contenido esmectítico en procesos de pilarización de minerales arcillosos provenientes de la cordillera central de Colombia. Tesis de Maestría en Ciencias-Química. Departamento de Química-Facultad de Ciencias. Universidad Nacional de Colombia. Bogotá, Colombia. p. 1-152spa
dc.relation.referencesLaguna E., O.H., Molina G., C.M., Moreno, S., and Molina G., R. 2008. Naturaleza mineralógica de esmectitas provenientes de la formación Honda (noreste del Tolima - Colombia). Boletín de Ciencias de la Tierra, 23: p. 55-68.spa
dc.relation.referencesCarriazo, J., Centeno, M., Odriozola, J., Moreno, S., and Molina, R. 2007. Effect of Fe and Ce on Al-pillared bentonite and their performance in catalytic oxidation reactions. Applied Catalysis A: General, 317(1): p. 120-128.spa
dc.relation.referencesGaleano, L.A., Gil, A., and Vicente, M.A. 2010. Effect of the atomic active metal ratio in Al/Fe-, Al/Cu- and Al/(Fe–Cu)-intercalating solutions on the physicochemical properties and catalytic activity of pillared clays in the CWPO of methyl orange. Applied Catalysis B: Environmental, 100(1–2): p. 271-281.spa
dc.relation.referencesPérez, A., Centeno, M.A., Odriozola, J.A., Molina, R., and Moreno, S. 2008. The effect of ultrasound in the synthesis of clays used as catalysts in oxidation reactions. Catalysis Today, 133–135: p. 526-529.spa
dc.relation.referencesSanabria, N.R., Ávila, P., Yates, M., Rasmussen, S.B., Molina, R., and Moreno, S. 2010. Mechanical and textural properties of extruded materials manufactured with AlFe and AlCeFe pillared bentonites. Applied Clay Science, 47(3–4): p. 283-289.spa
dc.relation.referencesSanabria, N.R. 2009. Evaluación de los efectos fisicoquímicos y catalíticos en el proceso de síntesis de arcillas pilarizadas (PILC’s) en estado sólido y su viabilidad en la obtención de extrusados. Tesis de Doctorado en Ciencias Química. Departamento de química-Facultad de Ciencias. Universidad Nacional de Colombia, Bogotá, Colombia. p. 1-191spa
dc.relation.referencesAloui, L., Ayari, F., Ben Othman, A., and Trabelsi-Ayadi, M. 2015. Heavy metals removal from watercourses by low cost natural Tunisian material environmental protection. International Journal of Engineering and Applied Sciences, 2(7): p. 33-38.spa
dc.relation.referencesde Oliveira, T., Guégan, R., Thiebault, T., Milbeau, C.L., Muller, F., Teixeira, V., Giovanela, M., and Boussafir, M. 2017. Adsorption of diclofenac onto organoclays: Effects of surfactant and environmental (pH and temperature) conditions. Journal of Hazardous Materials, 323: p. 558-566.spa
dc.relation.referencesLee, Y.-C., Park, W.-K., and Yang, J.-W. 2011. Removal of anionic metals by amino-organoclay for water treatment. Journal of Hazardous Materials, 190(1): p. 652-658.spa
dc.relation.referencesCool, P. and Vansant, E.F. 1998. Chapter 9. Pillared Clays: Preparation, Characterization and Applications, in Synthesis. Karge, H.G. and Weitkamp, J. (Eds). Springer: Berlin, Germany. p. 265-288.spa
dc.relation.referencesBergaya, F., Aouad, A., and Mandalia, T. 2006. Chapter 7.5. Pillared Clays and Clay Minerals, in Developments in Clay Science. Bergaya, F., Theng, B.K.G., and Lagaly, G. (Eds). Elsevier: Amsterdam, Netherlands. p. 393-421.spa
dc.relation.referencesGil, A., Santamaría, L., Korili, S.A., Vicente, M.A., Barbosa, L.V., de Souza, S.D., Marçal, L., de Faria, E.H., and Ciuffi, K.J. 2021. A review of organic-inorganic hybrid clay based adsorbents for contaminants removal: Synthesis, perspectives and applications. Journal of Environmental Chemical Engineering, 9(5): p. Article ID 105808.spa
dc.relation.referencesFigueras, F. 1988. Pillared clays as catalysts. Catalysis Reviews, 30(3): p. 457-499.spa
dc.relation.referencesMesmer, R.E. and Baes, C.F. 1990. Review of hydrolysis behavior of ions in aqueous solutions. MRS Online Proceedings Library (OPL), 180: p. 85-96.spa
dc.relation.referencesZhu, J., Wen, K., Zhang, P., Wang, Y., Ma, L., Xi, Y., Zhu, R., Liu, H., and He, H. 2017. Keggin-Al30 pillared montmorillonite. Microporous and Mesoporous Materials, 242: p. 256-263.spa
dc.relation.referencesJohansson, G. 1960. On the crystal structures of some basic aluminum salts. Acta Chemica Scandinavica, 14(3): p. 771-773.spa
dc.relation.referencesJohansson, G. 1962. The crystal structures of [Al2(OH)2(H2O)8](SO4)2. 2H2O and [Al2(OH)2(H2O)8](SeO4)2. 2H2O. Acta Chemica Scandinavica, 16(2): p. 403-420.spa
dc.relation.referencesAouad, A., Pineau, A., Tchoubar, D., and Bergaya, F. 2006. Al-pillared montmorillonite obtained in concentrated media. Effect of the anions (nitrate, sulfate and chloride) associated with the Al species. Clays and Clay Minerals, 54(5): p. 626-637.spa
dc.relation.referencesKeggin, J.F. and Bragg, W.L. 1934. The structure and formula of 12-phosphotungstic acid. Royal Society Publishing A, 144(851): p. 75-100.spa
dc.relation.referencesLin, J.-L., Huang, C., Chin, C.-J.M., and Pan, J.R. 2009. The origin of Al(OH)3-rich and Al13-aggregate flocs composition in PAC1 coagulation. Water Research, 43(17): p. 4285-4295.spa
dc.relation.referencesRustad, J., Loring, J., and Casey, W. 2004. Oxygen-exchange pathways in aluminum polyoxocations. Geochimica et Cosmochimica Acta, 68(14): p. 3011-3017.spa
dc.relation.referencesBarrer, R.M. and MacLeod, D.M. 1955. Activation of montmorillonite by ion exchange and sorption complexes of tetra-alkyl ammonium montmorillonites. Transactions of the Faraday Society, 51: p. 1290-1300.spa
dc.relation.referencesOszkó, A., Kiss, J., and Kiricsi, I. 1999. XPS investigations on the feasibility of isomorphous substitution of octahedral Al3+ for Fe3+ in Keggin ion salts. Physical Chemistry Chemical Physics, 1(10): p. 2565-2568.spa
dc.relation.referencesThomas, S.M., Bertrand, J.A., Occelli, M.L., Stencel, J.M., and Gould, S.A.C. 1999. Synthesis and characterization of expanded smectites containing trinuclear Co complexes. Chemistry of Materials, 11(4): p. 1153-1164.spa
dc.relation.referencesUrruchurto, C.M., Carriazo, J.G., Osorio, C., Moreno, S., and Molina, R.A. 2013. Spray-drying for the preparation of Al–Co–Cu pillared clays: A comparison with the conventional hot-drying method. Powder Technology, 239: p. 451-457.spa
dc.relation.referencesBertella, F. and Pergher, S.B.C. 2015. Pillaring of bentonite clay with Al and Co. Microporous and Mesoporous Materials, 201: p. 116-123.spa
dc.relation.referencesBanković, P., Mojović, Z., Milutinović-Nikolić, A., Jović-Jovičić, N., Marinović, S., and Jovanović, D. 2010. Mixed pillared bentonite for electrooxidation of phenol. Applied Clay Science, 49(1-2): p. 84-89.spa
dc.relation.referencesKollár, M., De Stefanis, A., Solt, H.E., Mihályi, M.R., Valyon, J., and Tomlinson, A.A.G. 2010. The mechanism of the Fischer–Tropsch reaction over supported cobalt catalysts. Journal of Molecular Catalysis A: Chemical, 333(1): p. 37-45.spa
dc.relation.referencesSietsma, J.R.A., Jos van Dillen, A., de Jongh, P.E., and de Jong, K.P. 2006. Chapter 12. Application of Ordered Mesoporous Materials as Model Supports to Study Catalyst Preparation by Impregnation and Drying, in Studies in Surface Science and Catalysis. Gaigneaux, E.M., Devillers, M., De Vos, D.E., Hermans, S., Jacobs, P.A., Martens, J.A., and Ruiz, P. (Eds). Elsevier: Louvain, Belgium p. 95-102.spa
dc.relation.referencesHaukka, S., Lakomaa, E.L., and Suntola, T. 1999. Chapter 23. Adsorption Controlled Preparation of Heterogeneous Catalysts, in Studies in Surface Science and Catalysis. Dąbrowski, A. (Ed). Elsevier Science B.V.: Amsterdam, Netherlands. p. 715-750.spa
dc.relation.referencesRoyer, S., Leroux, C., Revel, R., Rouleau, L., and Morin, S. 2006. Synthesis and surface reactivity of nanocomposite support Al2O3/α-Al2O3. Studies in Surface Science and Catalysis, 162: p. 441-448.spa
dc.relation.referencesCardona, Y., Vicente, M.A., Korili, S., and Gil, A. 2020. Progress and perspectives for the use of pillared clays as adsorbents for organic compounds in aqueous solution. Reviews in Chemical Engineering, 1: p. 1-25.spa
dc.relation.referencesGil, A., Gandía, L.M., and Vicente, M.A. 2000. Recent Advances in the Synthesis and Catalytic Applications of Pillared Clays. Catalysis Reviews, 42(1-2): p. 145-212.spa
dc.relation.referencesBarama, S., Dupeyrat-Batiot, C., Capron, M., Bordes-Richard, E., and Bakhti-Mohammedi, O. 2009. Catalytic properties of Rh, Ni, Pd and Ce supported on Al-pillared montmorillonites in dry reforming of methane. Catalysis Today, 141(3): p. 385-392.spa
dc.relation.referencesMarcos, F.C.F., Assaf, J.M., and Assaf, E.M. 2018. CuFe and CuCo supported on pillared clay as catalysts for CO2 hydrogenation into value-added products in one-step. Molecular Catalysis, 458: p. 297-306.spa
dc.relation.referencesGonzález, E. and Moronta, A. 2004. The dehydrogenation of ethylbenzene to styrene catalyzed by a natural and an Al-pillared clays impregnated with cobalt compounds: A comparative study. Applied Catalysis A: General, 258(1): p. 99-105.spa
dc.relation.referencesSu, H., Zeng, S., Dong, H., Du, Y., Zhang, Y., and Hu, R. 2009. Pillared montmorillonite supported cobalt catalysts for the Fischer–Tropsch reaction. Applied Clay Science, 46(3): p. 325-329.spa
dc.relation.referencesHao, Q.-Q., Wang, G.-W., Liu, Z.-T., Lu, J., and Liu, Z.-W. 2010. Co/pillared clay bifunctional catalyst for controlling the product distribution of Fischer−Tropsch synthesis. Industrial & Engineering Chemistry Research, 49(19): p. 9004-9011.spa
dc.relation.referencesZhao, Y.-H., Song, Y.-H., Hao, Q.-Q., Wang, Y.-J., Wang, W., Liu, Z.-T., Zhang, D., Liu, Z.-W., Zhang, Q.-J., and Lu, J. 2015. Cobalt-supported carbon and alumina co-pillared montmorillonite for Fischer–Tropsch synthesis. Fuel Processing Technology, 138: p. 116-124.spa
dc.relation.referencesEl Gaidoumi, A., Loqman, A., Benadallah, A.C., El Bali, B., and Kherbeche, A. 2019. Co(II)-pyrophyllite as catalyst for phenol oxidative degradation: Optimization study using response surface methodology. Waste and Biomass Valorization, 10(4): p. 1043-1051.spa
dc.relation.referencesMarković, M., Marinović, S., Mudrinić, T., Ajduković, M., Jović-Jovičić, N., Mojović, Z., Orlić, J., Milutinović-Nikolić, A., and Banković, P. 2019. Co(II) impregnated Al(III)-pillared montmorillonite–Synthesis, characterization and catalytic properties in Oxone® activation for dye degradation. Applied Clay Science, 182: p. Article ID 105276.spa
dc.relation.referencesBaloyi, J., Ntho, T., and Moma, J. 2018. Synthesis and application of pillared clay heterogeneous catalysts for wastewater treatment: A review. RSC Advances, 8(10): p. 5197-5211.spa
dc.relation.referencesLee, J., von Gunten, U., and Kim, J.-H. 2020. Persulfate-Based Advanced Oxidation: Critical Assessment of Opportunities and Roadblocks. Environmental Science & Technology, 54(6): p. 3064-3081.spa
dc.relation.referencesCarriazo, J., Guélou, E., Barrault, J., Tatibouët, J.M., Molina, R., and Moreno, S. 2005. Catalytic wet peroxide oxidation of phenol by pillared clays containing Al–Ce–Fe. Water Research, 39(16): p. 3891-3899.spa
dc.relation.referencesGálvez-Serna, Á.D., Macías-Quiroga, I.F., Giraldo-Gómez, G.I., Dávila-Arias, M.T., and Sanabria-González, N.R. 2021. Catalytic oxidation of tartrazine in aqueous solution using a pillared clay with aluminum and iron. Bulletin of Chemical Reaction Engineering & Catalysis, 16(1): p. 76-87.spa
dc.relation.referencesSantos Silva, A., Seitovna Kalmakhanova, M., Kabykenovna Massalimova, B., G. Sgorlon, J., Jose Luis, D.d.T., and T. Gomes, H. 2019. Wet peroxide oxidation of paracetamol using acid activated and Fe/Co-pillared clay catalysts prepared from natural clays. Catalysts, 9(9): p. Aticle ID 705.spa
dc.relation.referencesKhankhasaeva, S.T. and Badmaeva, S.V. 2020. Removal of p-aminobenzenesulfanilamide from water solutions by catalytic photo-oxidation over Fe-pillared clay. Water Research, 185: p. Article ID 116212.spa
dc.relation.referencesAbdennouri, M., Baâlala, M., Galadi, A., El Makhfouk, M., Bensitel, M., Nohair, K., Sadiq, M., Boussaoud, A., and Barka, N. 2016. Photocatalytic degradation of pesticides by titanium dioxide and titanium pillared purified clays. Arabian Journal of Chemistry, 9: p. S313-S318.spa
dc.relation.referencesBobu, M., Yediler, A., Siminiceanu, I., and Schulte-Hostede, S. 2008. Degradation studies of ciprofloxacin on a pillared iron catalyst. Applied Catalysis B: Environmental, 83(1): p. 15-23.spa
dc.relation.referencesGong, Z., Liao, L., Lv, G., and Wang, X. 2016. A simple method for physical purification of bentonite. Applied Clay Science, 119: p. 294-300.spa
dc.relation.referencesSanabria, N., Molina, R., and Moreno, S. 2012. Development of pillared clays for wet hydrogen peroxide oxidation of phenol and its application in the post treatment of coffee wastewater. International Journal of Photoenergy, 2012: p. Article ID 864104.spa
dc.relation.referencesRamírez, J.H., Lampinen, M., Vicente, M.A., Costa, C.A., and Madeira, L.M. 2008. Experimental design to optimize the oxidation of orange II dye solution using a clay-based Fenton-like catalyst. Industrial & Engineering Chemistry Research, 47(2): p. 284-294.spa
dc.relation.referencesYilmaz, I. 2004. Relationships between liquid limit, cation exchange capacity, and swelling potentials of clayey soils. Eurasian Soil Science, 37(5): p. 506-512.spa
dc.relation.referencesGrim, R.E. 1968. Clay Mineralogy. Grim, R.E. (Ed). McGraw-Hill Book Company, Inc.: New York, USA. p. 1-596.spa
dc.relation.referencesCarlson, L. 2004. Bentonite mineralogy. Part 1: Methods of investigation—A literature review /Part 2: Mineralogical research of selected bentonites. Working Report 2002-02. Olkilouto, Finland. p. 1-108spa
dc.relation.referencesRussell, J.D. and Fraser, A.R. 1994. Chapter 2. Infrared Methods, in Clay Mineralogy: Spectroscopic and Chemical Determinative Methods. Wilson, M.J. (Ed). Springer: Dordrecht, Netherlands. p. 11-67.spa
dc.relation.referencesMadejova, J. and Komadel, P. 2001. Baseline studies of the clay minerals society source clays: Infrared methods. Clays and Clay Minerals, 49(5): p. 410-432.spa
dc.relation.referencesMadejová, J., Janek, M., Komadel, P., Herbert, H.J., and Moog, H.C. 2002. FTIR analyses of water in MX-80 bentonite compacted from high salinary salt solution systems. Applied Clay Science, 20(6): p. 255-271.spa
dc.relation.referencesCarriazo, J., Molina, R., and Moreno, S. 2007. Caracterización estructural y textural de una bentonita colombiana. Revista Colombiana de Química, 36(2): p. 213-225.spa
dc.relation.referencesMadejová, J. 2003. FTIR techniques in clay mineral studies. Vibrational Spectroscopy, 31(1): p. 1-10.spa
dc.relation.referencesSilva, L.S., Lima, L.C.B., Silva, F.C., Matos, J.M.E., Santos, M.R.M.C., Santos Júnior, L.S., Sousa, K.S., and da Silva Filho, E.C. 2013. Dye anionic sorption in aqueous solution onto a cellulose surface chemically modified with aminoethanethiol. Chemical Engineering Journal, 218: p. 89-98.spa
dc.relation.referencesNasiruddin Khan, M. and Sarwar, A. 2007. Determination of points of zero charge of natural and treated adsorbents. Surface Review and Letters, 14(3): p. 461-469.spa
dc.relation.referencesAmaringo Villa, F.A. and Anaguano, A.H. 2013. Determinación del punto de carga cero y punto isoeléctrico de dos residuos agrícolas y su aplicación en la remoción de colorantes. Revista de Investigación Agraria y Ambiental, 4(2): p. 27-36.spa
dc.relation.referencesPecini, E.M. and Avena, M.J. 2013. Measuring the Isoelectric Point of the Edges of Clay Mineral Particles: The Case of Montmorillonite. Langmuir, 29(48): p. 14926-14934.spa
dc.relation.referencesBohor, B.F. and Hughes, R.E. 1971. Scanning electron microscopy of clays and clay minerals. Clays and Clay Minerals, 19(1): p. 49-54.spa
dc.relation.referencesMcPhee, C., Reed, J., and Zubizarreta, I. 2015. Chapert 4. Core Sample Preparation, in Core Analysis. A Best Practice Guide. McPhee, C., Reed, J., and Zubizarreta, I. (Eds). Elsevier: Oxford, UK. p. 135-179.spa
dc.relation.referencesGarcés-Aguilar, W. and Garcés, R. 2017. Caracterización de las arcillas del norte del Cauca, Colombia enclave para la optimización del proceso productivo de la industria ladrillera. Journal de Ciencia e Ingenieria, 9(1): p. 34-41.spa
dc.relation.referencesASTM. 2010. D4318-05m, Standard test methods for liquid limit, plastic limit, and plasticity index of soils, D-18 on Soil Rock, West Conshohocken, USA. p. 1-16spa
dc.relation.referencesRao, S.M., Kachroo, T.A., Allam, M.M., Joshi, M., and Acharya, A. 2008. Geotechnical characterization of some Indian bentonites for their use as buffer material in geological repository. Proceedings of 12th International Conference of International Association for Computer Methods and Advances in Geomechanics (IACMAG). Citeseer. p. 1-6spa
dc.relation.referencesWhite, A.W. 1949. Atterberg plastic limits of clay minerals. American Mineralogist: Journal of Earth Planetary Materials, 34(7-8): p. 508-512.spa
dc.relation.referencesIsmaeel, S.H., Mabrouk, M.S., Ali, A.A.-A., and Abn Elwalead, K. 2017. Synthesis and characterization of bentonite nanocomposites from Egyptian bentonitic clay. International Journal of Nanotechnology and Allied Sciences, 1(1): p. 16-29.spa
dc.relation.referencesBleam, W.F. 2012. Chapter 3. Clay Mineralogy and Clay Chemistry, in Soil and Environmental Chemistry. Bleam, W.F. (Ed). Academic Press: Oxford, UK. p. 85-116.spa
dc.relation.referencesGil, A., Korili, S.A., Trujillano, R., and Vicente, M.A. 2011. A review on characterization of pillared clays by specific techniques. Applied Clay Science, 53(2): p. 97-105.spa
dc.relation.referencesWang, M. and Muhammed, M. 1999. Novel synthesis of Al13-cluster based alumina materials. Nanostructured Materials, 11(8): p. 1219-1229.spa
dc.relation.referencesFurrer, G., Ludwig, C., and Schindler, P.W. 1992. On the chemistry of the Keggin Al13 polymer: I. Acid-base properties. Journal of Colloid and Interface Science, 149(1): p. 56-67.spa
dc.relation.referencesDuong, L.V., Wood, B.J., and Kloprogge, J.T. 2005. XPS study of basic aluminum sulphate and basic aluminium nitrate. Materials Letters, 59(14): p. 1932-1936.spa
dc.relation.referencesCasey, W.H. 2006. Large Aqueous Aluminum Hydroxide Molecules. Chemical Reviews, 106(1): p. 1-16.spa
dc.relation.referencesArnoldy, P. and Moulijn, J.A. 1985. Temperature-programmed reduction of CoOAI2O3 catalysts. Journal of Catalysis, 93(1): p. 38-54.spa
dc.relation.referencesGayer, K.H. and Garrett, A.B. 1950. The solubility of cobalt hydroxide, Co(OH)2, in solutions of hydrochloric acid and sodium hydroxide at 25°. Journal of the American Chemical Society, 72(9): p. 3921-3923.spa
dc.relation.referencesOhtsuka, K., Koga, J., Suda, M., Ono, M., and Takahashi, M. 1987. Preparation and properties of cobalt(II) hydroxide–(sodium fluoride tetrasilicic mica) intercalation complexes and of highly dispersed cobalt on mica. Bulletin of the Chemical Society of Japan, 60(8): p. 2843-2847.spa
dc.relation.referencesKishi, Y., Shigemi, S., Doihara, S., Mostafa, M.G., and Wase, K. 1998. Study on the hydrolysis of cobalt ions in aqueous solution. Hydrometallurgy, 47(2): p. 325-338.spa
dc.relation.referencesFang, L., Wang, L., Zhou, T., Liu, L., Zhou, J., and Li, M. 2017. Preparation and characterization of Fe,Co,Si-pillared montmorillonites with aminosilanes as silicon pillars precursor. Applied Clay Science, 141: p. 88-94.spa
dc.relation.referencesTetsuka, H., Katayama, I., Sakuma, H., and Tamura, K. 2018. Effects of humidity and interlayer cations on the frictional strength of montmorillonite. Earth, Planets and Space, 70(1): p. 56.spa
dc.relation.referencesPálinkó, I., Lázár, K., and Kiricsi, I. 1997. Cationic mixed pillared layer clays: Infrared and Mössbauer characteristics of the pillaring agents and pillared structures in Fe,Al and Cr,Al pillared montmorillonites. Journal of Molecular Structure, 410-411(4): p. 547-550.spa
dc.relation.referencesBradley, S.M., Kydd, R.A., Yamdagni, R., and Fyfe, C.A. 1992. Chapter 2. Ga13, GaAl12, and Al13 Polyoxocations and Pillared Clays, in Expanded Clays and Other Microporous Solids. Occelli, M.L. and Robson, H.E. (Eds). Springer: Boston, USA. p. 13-31.spa
dc.relation.referencesDouglas, B.E., McDaniel, D.H., and Alexander, J.J. 1994. Concepts and Models of Inorganic Chemistry. Dean F, M. (Ed). Wiley New York, USA. p. 1-928.spa
dc.relation.referencesThommes, M., Kaneko, K., V. Neimark, A., Olivier, J., Rodríguez-Reinoso, F., Rouquerol, J., and Sing, K. 2015. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9-10): p. 1051–1069.spa
dc.relation.referencesLeofanti, G., Padovan, M., Tozzola, G., and Venturelli, B. 1998. Surface area and pore texture of catalysts. Catalysis Today, 41(1): p. 207-219.spa
dc.relation.referencesRamsey, M.H., Potts, P.J., Webb, P.C., Watkins, P., Watson, J.S., and Coles, B.J. 1995. An objective assessment of analytical method precision: Comparison of ICP-AES and XRF for the analysis of silicate rocks. Chemical Geology, 124(1): p. 1-19.spa
dc.relation.referencesMnasri Ghnimi, S. and Frini-Srasra, N. 2018. A comparison of single and mixed pillared clays for zinc and chromium cations removal. Applied Clay Science, 158: p. 150-157.spa
dc.relation.referencesSing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J., and Siemieniewska, T. 1985. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and Applied Chemistry, 57(4): p. 603-619.spa
dc.relation.referencesGil, A. and Montes, M. 1994. Analysis of the microporosity in pillared clays. Langmuir, 10(1): p. 291-297.spa
dc.relation.referencesVicente, M.A., Belver, C., Trujillano, R., Rives, V., Álvarez, A.C., Lambert, J.F., Korili, S.A., Gandı́a, L.M., and Gil, A. 2004. Preparation and characterisation of Mn- and Co-supported catalysts derived from Al-pillared clays and Mn- and Co-complexes. Applied Catalysis A: General, 267(1-2): p. 47-58.spa
dc.relation.referencesColín L, J.A., Reyes, J.A.d.l., Vázquez, A., and Montoya, A. 2005. Pillar effects in MoS2 catalysts supported on Al and Zr pillared clays in a hydrotreatment reaction: A preliminary study. Applied Surface Science, 240(1): p. 48-62.spa
dc.relation.referencesVicente, M.A. and Lambert, J.-F. 2001. Synthesis of Pt pillared clay nanocomposite catalysts from [PtII(NH3)4]Cl2 precursor. Physical Chemistry Chemical Physics, 3(21): p. 4843-4852.spa
dc.relation.referencesvan Wormer, K. and Besthorn, F.H. 2017. Chapter 7. Human Behavior and the Natural Environment: The Community of the Earth, in Human Behavior and the Social Environment, Macro Level: Groups, Communities, and Organizations. Van Wormer, K. and Besthorn, F.H. (Eds). Oxford University Press: Oxford, UK. p. 243-297.spa
dc.relation.referencesWWAP. 2019. United Nations World Water Assessment Programme. The United Nations world water development report 2019: leaving no one behind, Facts and Figures. UNESCO, Paris, France. p. 1-12spa
dc.relation.referencesCelis-Zapata, L.P. 2013. Análisis de la política pública de agua potable y saneamiento básico para el sector rural en Colombia-período de gobierno 2010-2014. Tesis de Maestría en Política Social. Pontificia Universidad Javeriana. Departamento de Ciencia Política - Facultad de Ciencias Políticas y Relaciones Internacionales. Bogotá, Colombia. p. 1-97spa
dc.relation.referencesWWAP. 2017. United Nations World Water Assessment Programme. The United Nations World Water Development Report 2017: Wastewater - Facts and Figure, The Untapped Resource. UNESCO, Paris, France. p. 1-12spa
dc.relation.referencesDotto, G.L., Esquerdo, V.M., Vieira, M.L.G., and Pinto, L.A.A. 2012. Optimization and kinetic analysis of food dyes biosorption by Spirulina platensis. Colloids and Surfaces B: Biointerfaces, 91: p. 234-241.spa
dc.relation.referencesBerradi, M., Hsissou, R., Khudhair, M., Assouag, M., Cherkaoui, O., El Bachiri, A., and El Harfi, A. 2019. Textile finishing dyes and their impact on aquatic environs. Heliyon, 5(11): p. Article ID e02711.spa
dc.relation.referencesLellis, B., Fávaro-Polonio, C.Z., Pamphile, J.A., and Polonio, J.C. 2019. Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnology Research and Innovation, 3(2): p. 275-290.spa
dc.relation.referencesPereira, L. and Alves, M. 2012. Chapter 4. Dyes - Environmental Impact and Remediation, in Environmental Protection Strategies for Sustainable Development. Malik, A. and Grohmann, E. (Eds). Springer: Dordrecht, Netherlands. p. 111-162.spa
dc.relation.referencesRawat, D., Mishra, V., and Sharma, R.S. 2016. Detoxification of azo dyes in the context of environmental processes. Chemosphere, 155: p. 591-605.spa
dc.relation.referencesBarrios-Ziolo, L.-F., Gaviria-Restrepo, L.-F., Agudelo, E.A., and Cardona-Gallo, S.A. 2017. Estudio de la toxicidad asociada al vertimiento de aguas residuales con presencia de colorantes y pigmentos en el area metropolitana del valle de aburra. Revista EIA, 13(26): p. 61-74.spa
dc.relation.referencesGutiérrez, D.L. 2020. El azul de la quebrada Manizales era tinta para dulces. La Patria. Manizales, Colombia. Recuperado el 2 de marzo del 2021 en https://www.lapatria.com/denuncie/el-azul-de-la-quebrada-manizales-era-tinta-para-dulces-452338spa
dc.relation.referencesGomes, K., Oliveira, M., Carvalho, F., Carvalho Menezes Salierno, C., and Peron, A. 2013. Citotoxicity of food dyes sunset yellow (E-110), bordeaux red (E-123), and tatrazine yellow (E-102) on Allium cepa L. root meristematic cells. Food Science and Technology, 33(1): p. 218-223.spa
dc.relation.referencesPirvu, F., Iancu, V.-I., Niculescu, M., Lehr, C., Pascu, L., and Galaon, T. 2020. Environmental detection of brilliant blue, sunset yellow and tartrazine using direct injection HPLC-DAD technique. Revista de Chimie, 71(6): p. 390-400.spa
dc.relation.referencesMotta, C.M., Simoniello, P., Arena, C., Capriello, T., Panzuto, R., Vitale, E., Agnisola, C., Tizzano, M., Avallone, B., and Ferrandino, I. 2019. Effects of four food dyes on development of three model species, Cucumis sativus, Artemia salina and Danio rerio: Assessment of potential risk for the environment. Environmental Pollution, 253: p. 1126-1135.spa
dc.relation.referencesAmeta, S.C. 2018. Chapter 1. Introduction, in Advanced Oxidation Processes for Waste Water Treatment. Emerging Green Chemical Technology. Ameta, S.C. and Ameta, R. (Eds). Academic Press: London, UK. p. 1-12.spa
dc.relation.referencesJamee, R. and Siddique, R. 2019. Biodegradation of synthetic dyes of textile effluent by microorganisms: An environmentally and economically sustainable approach. European Journal of Microbiology and Immunology, 9(4): p. 114-118.spa
dc.relation.referencesVincenzo, V., Giuseppina, I., Luigi, R., and Diana, S. 2017. Advanced oxidation processes for the removal of food dyes in wastewater. Current Organic Chemistry, 21(12): p. 1068-1073.spa
dc.relation.referencesRobinson, T., McMullan, G., Marchant, R., and Nigam, P. 2001. Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresource Technology, 77(3): p. 247-255.spa
dc.relation.referencesBokare, A.D. and Choi, W. 2014. Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes. Journal of Hazardous Materials, 275: p. 121-135.spa
dc.relation.referencesTetzlaff, H.R. and Espenson, J.H. 1999. Kinetics and mechanism of the epoxidation of allylic alcohols by hydrogen peroxide with methyltrioxorhenium as catalyst. Inorganic Chemistry, 38(5): p. 881-885.spa
dc.relation.referencesde Vos, D.E., Sels, B.F., Reynaers, M., Subba Rao, Y.V., and Jacobs, P.A. 1998. Epoxidation of terminal or electron-deficient olefins with H2O2, catalysed by Mn-trimethyltriazacyclonane complexes in the presence of an oxalate buffer. Tetrahedron Letters, 39(20): p. 3221-3224.spa
dc.relation.referencesPayne, G.B. 1961. Reactions of hydrogen peroxide. VIII. Oxidation of isopropylidenemalononitrile and ethyl isopropylidenecyanoacetate. The Journal of Organic Chemistry, 26(3): p. 663-668.spa
dc.relation.referencesYao, H. and Richardson, D.E. 2000. Epoxidation of alkenes with bicarbonate-activated hydrogen peroxide. Journal of the American Chemical Society, 122(13): p. 3220-3221.spa
dc.relation.referencesJawad, A., Chen, Z., and Yin, G. 2016. Bicarbonate activation of hydrogen peroxide: A new emerging technology for wastewater treatment. Chinese Journal of Catalysis, 37(6): p. 810-825.spa
dc.relation.referencesPan, H., Gao, Y., Li, N., Zhou, Y., Lin, Q., and Jiang, J. 2021. Recent advances in bicarbonate-activated hydrogen peroxide system for water treatment. Chemical Engineering Journal, 408: p. Article ID 127332.spa
dc.relation.referencesXu, A., Li, X., Xiong, H., and Yin, G. 2011. Efficient degradation of organic pollutants in aqueous solution with bicarbonate-activated hydrogen peroxide. Chemosphere, 82(8): p. 1190-1195.spa
dc.relation.referencesYang, Z., Wang, H., Chen, M., Luo, M., Xia, D., Xu, A., and Zeng, Q. 2012. Fast degradation and biodegradability improvement of reactive brilliant red X-3B by the cobalt(II)/bicarbonate/hydrogen peroxide system. Industrial & Engineering Chemistry Research, 51(34): p. 11104-11111.spa
dc.relation.referencesMacías-Quiroga, I.F., Rojas-Méndez, E.F., Giraldo-Gómez, G.I., and Sanabria-González, N.R. 2020. Experimental data of a catalytic decolorization of ponceau 4R dye using the cobalt (II)/NaHCO3/H2O2 system in aqueous solution. Data in Brief, 30: p. Article ID 105463.spa
dc.relation.referencesBruland, K.W., Donat, J.R., and Hutchins, D.A. 1991. Interactive influences of bioactive trace metals on biological production in oceanic waters. Limnology and Oceanography, 36(8): p. 1555-1577.spa
dc.relation.referencesBarceloux, D.G. and Barceloux, D. 1999. Cobalt. Journal of Toxicology: Clinical Toxicology, 37(2): p. 201-216.spa
dc.relation.referencesJawad, A., Li, Y., Lu, X., Chen, Z., Liu, W., and Yin, G. 2015. Controlled leaching with prolonged activity for Co–LDH supported catalyst during treatment of organic dyes using bicarbonate activation of hydrogen peroxide. Journal of Hazardous Materials, 289: p. 165-173.spa
dc.relation.referencesZhou, L., Song, W., Chen, Z., and Yin, G. 2013. Degradation of organic pollutants in wastewater by bicarbonate-activated hydrogen peroxide with a supported cobalt catalyst. Environmental Science & Technology, 47(8): p. 3833-3839.spa
dc.relation.referencesDuan, L., Chen, Y., Zhang, K., Luo, H., Huang, J., and Xu, A. 2015. Catalytic degradation of acid orange 7 with hydrogen peroxide using CoxOy-N/GAC catalysts in a bicarbonate aqueous solution. RSC Advances, 5(102): p. 84303-84310.spa
dc.relation.referencesBaloyi, J., Ntho, T., and Moma, J. 2018. Synthesis and application of pillared clay heterogeneous catalysts for wastewater treatment: A review. RSC Advances, 8(10): p. 5197-5211.spa
dc.relation.referencesCardona, Y., Vicente, M.A., Korili, S., and Gil, A. 2020. Progress and perspectives for the use of pillared clays as adsorbents for organic compounds in aqueous solution. Reviews in Chemical Engineering, 1: p. 1-25.spa
dc.relation.referencesTorres, M., de los Santos, C., Portugau, P., Yeste, M.D.P., and Castiglioni, J. 2021. Utilization of a PILC-Al obtained from Uruguayan clay as support of mesoporous MnOx-catalysts on the combustion of toluene. Applied Clay Science, 201: p. Article ID 105935.spa
dc.relation.referencesMarković, M., Marinović, S., Mudrinić, T., Ajduković, M., Jović-Jovičić, N., Mojović, Z., Orlić, J., Milutinović-Nikolić, A., and Banković, P. 2019. Co(II) impregnated Al(III)-pillared montmorillonite–Synthesis, characterization and catalytic properties in Oxone® activation for dye degradation. Applied Clay Science, 182: p. Article ID 105276.spa
dc.relation.referencesSchoonheydt, R.A., Pinnavaia, T., Lagaly, G., and Gangas, N. 1999. Pillared clays and pillared layered solids (technical report). Pure and Applied Chemistry 71(12): p. 2367-2371.spa
dc.relation.referencesGil, A., Massinon, A., and Grange, P. 1995. Analysis and comparison of the microporosity in Al-, Zr- and Ti-pillared clays. Microporous Materials, 4(5): p. 369-378.spa
dc.relation.referencesZuo, S., Yang, P., and Wang, X. 2017. Efficient and environmentally friendly synthesis of AlFe-PILC-Supported MnCe catalysts for benzene combustion. ACS Omega, 2(8): p. 5179-5186.spa
dc.relation.referencesGálvez-Serna, Á.D., Macías-Quiroga, I.F., Giraldo-Gómez, G.I., Dávila-Arias, M.T., and Sanabria-González, N.R. 2021. Catalytic oxidation of tartrazine in aqueous solution using a pillared clay with aluminum and iron. Bulletin of Chemical Reaction Engineering & Catalysis, 16(1): p. 76-87.spa
dc.relation.referencesHenao-Aguirre, P.A., Macías-Quiroga, I.F., Giraldo-Gómez, G.I., and Sanabria-González, N.R. 2021. Catalytic oxidation of ponceau 4R in aqueous solution using iron-impregnated Al-pillared bentonite: Optimization of the process. Bulletin of Chemical Reaction Engineering & Catalysis, 16(3): p. 15spa
dc.relation.referencesVicente, M.A., Gil, A., and Bergaya, F. 2013. Chapter 10.5. Pillared Clays and Clay Minerals, in Developments in Clay Science. Bergaya, F. and Lagaly, G. (Eds). Elsevier: Oxford, UK. p. 523-557.spa
dc.relation.referencesMacías-Quiroga, I.F., Pérez-Flórez, A., Arcila, J.S., Giraldo-Goméz, G.I., and Sanabria-Gonzalez, N.R. 2021. Synthesis and characterization of Co/Al-PILCs for the oxidation of an azo dye using the bicarbonate-activated hydrogen peroxide system. Catalysis Letters: p. In Press.spa
dc.relation.referencesJawad, A., Lu, X., Chen, Z., and Yin, G. 2014. Degradation of chlorophenols by supported Co–Mg–Al layered double hydrotalcite with bicarbonate activated hydrogen peroxide. The Journal of Physical Chemistry A, 118(43): p. 10028-10035.spa
dc.relation.referencesZhang, L., Li, F., Evans, D.G., and Duan, X. 2004. Structure and surface characteristics of Cu-based composite metal oxides derived from layered double hydroxides. Materials Chemistry and Physics, 87(2-3): p. 402-410.spa
dc.relation.referencesAy, F., Catalkaya, E.C., and Kargi, F. 2009. A statistical experiment design approach for advanced oxidation of direct red azo-dye by photo-Fenton treatment. Journal of Hazardous Materials, 162(1): p. 230-236.spa
dc.relation.referencesAbdel-Rahman, M.A., Hassan, S.E.D., El-Din, M.N., Azab, M.S., El-Belely, E.F., Alrefaey, H.M.A., and Elsakhawy, T. 2020. One-factor-at-a-time and response surface statistical designs for improved lactic acid production from beet molasses by Enterococcus hirae ds10. SN Applied Sciences, 2(4): p. Article ID 573.spa
dc.relation.referencesRamírez, J.H., Costa, C.A., and Madeira, L.M. 2005. Experimental design to optimize the degradation of the synthetic dye orange II using Fenton's reagent. Catalysis Today, 107-108: p. 68-76.spa
dc.relation.referencesRamírez, J.H., Lampinen, M., Vicente, M.A., Costa, C.A., and Madeira, L.M. 2008. Experimental design to optimize the oxidation of orange II dye solution using a clay-based Fenton-like catalyst. Industrial & Engineering Chemistry Research, 47(2): p. 284-294.spa
dc.relation.referencesFrancis, F., Sabu, A., Nampoothiri, K.M., Ramachandran, S., Ghosh, S., Szakacs, G., and Pandey, A. 2003. Use of response surface methodology for optimizing process parameters for the production of α-amylase by Aspergillus oryzae. Biochemical Engineering Journal, 15(2): p. 107-115.spa
dc.relation.referencesAl-Bsoul, A., Al-Shannag, M., Tawalbeh, M., Al-Taani, A.A., Lafi, W.K., Al-Othman, A., and Alsheyab, M. 2020. Optimal conditions for olive mill wastewater treatment using ultrasound and advanced oxidation processes. Science of the Total Environment, 700: p. Article ID 134576.spa
dc.relation.referencesCastro-Castro, J.D., Macías-Quiroga, I.F., Giraldo-Gómez, G.I., and Sanabria-González, N.R. 2020. Adsorption of Cr(VI) in aqueous solution using a surfactant-modified bentonite. The Scientific World Journal, 2020: p. Article ID 3628163.spa
dc.relation.referencesSingh, S.K., Dodge, J., Durrani, M.J., and Khan, M.A. 1995. Optimization and characterization of controlled release pellets coated with an experimental latex: I. Anionic drug. International Journal of Pharmaceutics, 125(2): p. 243-255.spa
dc.relation.referencesSánchez-Lafuente, C., Furlanetto, S., Fernández-Arévalo, M., Alvarez-Fuentes, J., Rabasco, A.M., Faucci, M.T., Pinzauti, S., and Mura, P. 2002. Didanosine extended-release matrix tablets: optimization of formulation variables using statistical experimental design. International Journal of Pharmaceutics, 237(1): p. 107-118.spa
dc.relation.referencesPelalak, R., Alizadeh, R., Ghareshabani, E., and Heidari, Z. 2020. Degradation of sulfonamide antibiotics using ozone-based advanced oxidation process: Experimental, modeling, transformation mechanism and DFT study. Science of the Total Environment, 734: p. Article ID 139446.spa
dc.relation.referencesNarayanasamy, L. and Murugesan, T. 2014. Degradation of alizarin yellow R using UV/H2O2 advanced oxidation process. Environmental Progress & Sustainable Energy, 33(2): p. 482-489.spa
dc.relation.referencesAbu Amr, S.S., Aziz, H.A., and Adlan, M.N. 2013. Optimization of stabilized leachate treatment using ozone/persulfate in the advanced oxidation process. Waste Management, 33(6): p. 1434-1441.spa
dc.relation.referencesMuniyasamy, A., Sivaporul, G., Gopinath, A., Lakshmanan, R., Altaee, A., Achary, A., and Velayudhaperumal Chellam, P. 2020. Process development for the degradation of textile azo dyes (mono-, di-, poly-) by advanced oxidation process - Ozonation: Experimental & partial derivative modelling approach. Journal of Environmental Management, 265: p. Article ID 110397.spa
dc.relation.referencesWang, Z.-P., Wang, Z.-W., and Xu, K. 2017. Optimization of wet denitration by dual oxidant (H2O2/S2O82−) advanced oxidation process. Fuel Processing Technology, 156: p. 82-89.spa
dc.relation.referencesAbbey, J., Fields, B., O'Mullane, M., and Tomaska, L.D. 2014. Chapter 23. Food Additives: Colorants, in Encyclopedia of Food Safety. Motarjemi, Y. (Ed). Academic Press: Waltham, USA. p. 459-465.spa
dc.relation.referencesBenincá, C., Peralta-Zamora, P., Tavares, C.R.G., and Igarashi-Mafra, L. 2013. Degradation of an azo dye (ponceau 4R) and treatment of wastewater from a food industry by ozonation. Ozone: Science & Engineering, 35(4): p. 295-301.spa
dc.relation.referencesThiam, A., Brillas, E., Garrido, J.A., Rodríguez, R.M., and Sirés, I. 2016. Routes for the electrochemical degradation of the artificial food azo-colour ponceau 4R by advanced oxidation processes. Applied Catalysis B: Environmental, 180: p. 227-236.spa
dc.relation.referencesGuo, X., Li, H., and Zhao, S. 2015. Fast degradation of acid orange II by bicarbonate-activated hydrogen peroxide with a magnetic S-modified CoFe2O4 catalyst. Journal of the Taiwan Institute of Chemical Engineers, 55: p. 90-100.spa
dc.relation.referencesGuechi, E.-K. and Hamdaoui, O. 2016. Biosorption of methylene blue from aqueous solution by potato (Solanum tuberosum) peel: equilibrium modelling, kinetic, and thermodynamic studies. Desalination and Water Treatment, 57(22): p. 10270-10285.spa
dc.relation.referencesAguiar, J.E., Bezerra, B.T.C., Siqueira, A.C.A., Barrera, D., Sapag, K., Azevedo, D.C.S., Lucena, S.M.P., and Silva, I.J. 2014. Improvement in the adsorption of anionic and cationic dyes from aqueous solutions: A comparative study using aluminium pillared clays and activated carbon. Separation Science and Technology, 49(5): p. 741-751.spa
dc.relation.referencesValverde, J.L., de Lucas, A., Sánchez, P., Dorado, F., and Romero, A. 2003. Cation exchanged and impregnated Ti-pillared clays for selective catalytic reduction of NOx by propylene. Applied Catalysis B: Environmental, 43(1): p. 43-56.spa
dc.relation.referencesBahranowski, K., Kielski, A., Serwicka, E.M., Wisła-Walsh, E., and Wodnicka, K. 2000. Influence of doping with copper on the texture of pillared montmorillonite catalysts. Microporous and Mesoporous Materials, 41(1): p. 201-215.spa
dc.relation.referencesCarriazo, J., Guélou, E., Barrault, J., Tatibouët, J.M., Molina, R., and Moreno, S. 2005. Synthesis of pillared clays containing Al, Al-Fe or Al-Ce-Fe from a bentonite: Characterization and catalytic activity. Catalysis Today, 107-108: p. 126-132.spa
dc.relation.referencesOhtsuka, K., Koga, J., Suda, M., Ono, M., and Takahashi, M. 1987. Preparation and properties of cobalt(II) hydroxide–(sodium fluoride tetrasilicic mica) intercalation complexes and of highly dispersed cobalt on mica. Bulletin of the Chemical Society of Japan, 60(8): p. 2843-2847.spa
dc.relation.referencesBagal, M.V. and Gogate, P.R. 2012. Sonochemical degradation of alachlor in the presence of process intensifying additives. Separation and Purification Technology, 90: p. 92-100.spa
dc.relation.referencesChaplin, B.P., Schrader, G., and Farrell, J. 2010. Electrochemical destruction of N-nitrosodimethylamine in reverse osmosis concentrates using boron-doped diamond film electrodes. Environmental Science & Technology, 44(11): p. 4264-4269.spa
dc.relation.referencesWu, C. and Linden, K.G. 2010. Phototransformation of selected organophosphorus pesticides: Roles of hydroxyl and carbonate radicals. Water Research, 44(12): p. 3585-3594.spa
dc.relation.referencesGultekin, I. and Ince, N.H. 2004. Degradation of reactive azo dyes by UV/H2O2: Impact of radical scavengers. Journal of Environmental Science and Health, Part A, 39(4): p. 1069-1081.spa
dc.relation.referencesHuang, J. and Mabury, S.A. 2000. A new method for measuring carbonate radical reactivity toward pesticides. Environmental Toxicology and Chemistry, 19(6): p. 1501-1507.spa
dc.relation.referencesHung, H.-M., Kang, J.-W., and Hoffmann, M.R. 2002. The Sonolytic Destruction of Methyl tert-Butyl Ether Present in Contaminated Groundwater. Water Environment Research, 74(6): p. 545-556.spa
dc.relation.referencesMinero, C., Pellizzari, P., Maurino, V., Pelizzetti, E., and Vione, D. 2008. Enhancement of dye sonochemical degradation by some inorganic anions present in natural waters. Applied Catalysis B: Environmental, 77(3-4): p. 308-316.spa
dc.relation.referencesRichardson, D.E., Regino, C.A.S., Yao, H., and Johnson, J.V. 2003. Methionine oxidation by peroxymonocarbonate, a reactive oxygen species formed from CO2/bicarbonate and hydrogen peroxide. Free Radical Biology and Medicine, 35(12): p. 1538-1550.spa
dc.relation.referencesRegino, C.A.S. and Richardson, D.E. 2007. Bicarbonate-catalyzed hydrogen peroxide oxidation of cysteine and related thiols. Inorganica Chimica Acta, 360(14): p. 3971-3977.spa
dc.relation.referencesArslan, I. and Balcioğlu, I.A. 1999. Degradation of commercial reactive dyestuffs by heterogenous and homogenous advanced oxidation processes: A comparative study. Dyes and Pigments, 43(2): p. 95-108.spa
dc.relation.referencesWu, C.-H. and Chang, C.-L. 2006. Decolorization of reactive red 2 by advanced oxidation processes: Comparative studies of homogeneous and heterogeneous systems. Journal of Hazardous Materials, 128(2-3): p. 265-272.spa
dc.relation.referencesSadik, W. and Shama, G. 2002. UV-Induced decolourization of an azo dye by homogeneous advanced oxidation processes. Process Safety and Environmental Protection, 80(6): p. 310-314.spa
dc.relation.referencesGiwa, A.-R.A., Bello, I.A., Olabintan, A.B., Bello, O.S., and Saleh, T.A. 2020. Kinetic and thermodynamic studies of Fenton oxidative decolorization of methylene blue. Heliyon, 6(8): p. Article ID e04454.spa
dc.relation.referencesHashemian, S. 2013. Fenton-Like oxidation of malachite green solutions: Kinetic and thermodynamic study. Journal of Chemistry, 2013: p. Article ID 809318.spa
dc.relation.referencesChirchi, L. and Ghorbel, A. 2002. Use of various Fe-modified montmorillonite samples for 4-nitrophenol degradation by H2O2. Applied Clay Science, 21(5): p. 271-276.spa
dc.relation.referencesSun, S.-P., Li, C.-J., Sun, J.-H., Shi, S.-H., Fan, M.-H., and Zhou, Q. 2009. Decolorization of an azo dye orange G in aqueous solution by Fenton oxidation process: Effect of system parameters and kinetic study. Journal of Hazardous Materials, 161(2): p. 1052-1057.spa
dc.relation.referencesSantana, C.S., Nicodemos Ramos, M.D., Vieira Velloso, C.C., and Aguiar, A. 2019. Kinetic evaluation of dye decolorization by fenton processes in the presence of 3-hydroxyanthranilic acid. International Journal of Environmental Research and Public Health, 16(9): p. Article ID 31067822.spa
dc.relation.referencesCastro-Castro, J.D., Macías-Quiroga, I.F., Giraldo-Gómez, G.I., and Sanabria-González, N.R. 2020. Adsorption of Cr(VI) in aqueous solution using a surfactant-modified bentonite. The Scientific World Journal, 2020: p. Article ID 3628163.spa
dc.relation.referencesBehnajady, M.A., Modirshahla, N., and Ghanbary, F. 2007. A kinetic model for the decolorization of C.I. acid yellow 23 by Fenton process. Journal of Hazardous Materials, 148(1): p. 98-102.spa
dc.relation.referencesNicodemos-Ramos, M.D., Sousa, L.A., and Aguiar, A. 2020. Effect of cysteine using Fenton processes on decolorizing different dyes: A kinetic study. Environmental Technology: p. 1-13.spa
dc.relation.referencesRamírez, J.H. and Madeira, L., 2010. Chapter 6. Use of Pillared Clay-Based Catalysts for Wastewater Treatment Through Fenton-Like Processes, in Pillared Clays and Related Catalysts. Gil, A., Korili, S., Trujillano, R., and Vicente, M. (Eds). Springer, New York, USA. p. 129-165.spa
dc.relation.referencesLevenspiel, O., 2007. Chapter 18. Solid Catalyzed Reactions, in Chemical Reactor Engineering. Levenspiel, O. (Ed). John Wiley and Sons, Chichester, UK. p. 376-426.spa
dc.relation.referencesRamírez, J.H., Silva, A.M.T., Vicente, M.A., Costa, C.A., and Madeira, L.M. 2011. Degradation of acid orange 7 using a saponite-based catalyst in wet hydrogen peroxide oxidation: Kinetic study with the Fermi's equation. Applied Catalysis B: Environmental, 101(3): p. 197-205.spa
dc.relation.referencesTimofeeva, M.N., Khankhasaeva, S.T., Badmaeva, S.V., Chuvilin, A.L., Burgina, E.B., Ayupov, A.B., Panchenko, V.N., and Kulikova, A.V. 2005. Synthesis, characterization and catalytic application for wet oxidation of phenol of iron-containing clays. Applied Catalysis B: Environmental, 59(3-4): p. 243-248.spa
dc.relation.referencesLuo, M., Bowden, D., and Brimblecombe, P. 2009. Catalytic property of Fe-Al pillared clay for Fenton oxidation of phenol by H2O2. Applied Catalysis B: Environmental, 85(3): p. 201-206.spa
dc.relation.referencesDonlagić, J. and Levec, J. 1998. Comparison of Catalyzed and Noncatalyzed Oxidation of Azo Dye and Effect on Biodegradability. Environmental Science & Technology, 32(9): p. 1294-1302.spa
dc.relation.referencesSilva, A.M.T., Quinta-Ferreira, R.M., and Levec, J. 2003. Catalytic and Noncatalytic Wet Oxidation of Formaldehyde. A Novel Kinetic Model. Industrial & Engineering Chemistry Research, 42(21): p. 5099-5108.spa
dc.relation.referencesLevec, J. 1997. Oxidation of an Azo Dye in Subcritical Aqueous Solutions. Industrial & Engineering Chemistry Research, 36(9): p. 3480-3486.spa
dc.relation.referencesGordon, T.R. and Marsh, A.L. 2009. Temperature dependence of the oxidation of 2-chlorophenol by hydrogen peroxide in the presence of goethite. Catalysis Letters, 132(3): p. 349-354.spa
dc.relation.referencesKhieu, D.Q., Quang, D.T., Lam, T.D., Phu, N.H., Lee, J.H., and Kim, J.S. 2009. Fe-MCM-41 with highly ordered mesoporous structure and high Fe content: Synthesis and application in heterogeneous catalytic wet oxidation of phenol. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 65(1): p. 73-81.spa
dc.relation.referencesHenao-Aguirre, P.A., Macías-Quiroga, I.F., Giraldo-Gómez, G.I., and Sanabria-González, N.R. 2021. Catalytic oxidation of ponceau 4R in aqueous solution using iron-impregnated Al-pillared bentonite: Optimization of the process. Bulletin of Chemical Reaction Engineering & Catalysis, 16(3): p. 15spa
dc.relation.referencesCovinich, L., Felissia, F., Massa, P., Fenoglio, R., and Area, M.C. 2018. Kinetic modeling of a heterogeneous Fenton-type oxidative treatment of complex industrial effluent. International Journal of Industrial Chemistry, 9(3): p. 215-229.spa
dc.relation.referencesLázaro Martínez, J.M., Leal Denis, M.F., Piehl, L.L., de Celis, E.R., Buldain, G.Y., and Campo Dall’ Orto, V. 2008. Studies on the activation of hydrogen peroxide for color removal in the presence of a new Cu(II)-polyampholyte heterogeneous catalyst. Applied Catalysis B: Environmental, 82(3): p. 273-283.spa
dc.relation.referencesBergamini, R.B.M., Azevedo, E.B., and Araújo, L.R.R.d. 2009. Heterogeneous photocatalytic degradation of reactive dyes in aqueous TiO2 suspensions: Decolorization kinetics. Chemical Engineering Journal, 149(1): p. 215-220.spa
dc.relation.referencesMacías-Quiroga, I.F., Pérez-Flórez, A., Arcila, J.S., Giraldo-Goméz, G.I., and Sanabria-González, N.R. 2021. Synthesis and characterization of Co/Al-PILCs for the oxidation of an azo dye using the bicarbonate-activated hydrogen peroxide system. Catalysis Letters: p. 1-12.spa
dc.relation.referencesPan, H., Gao, Y., Li, N., Zhou, Y., Lin, Q., and Jiang, J. 2021. Recent advances in bicarbonate-activated hydrogen peroxide system for water treatment. Chemical Engineering Journal, 408: p. Article ID 127332.spa
dc.relation.referencesJawad, A., Chen, Z., and Yin, G. 2016. Bicarbonate activation of hydrogen peroxide: A new emerging technology for wastewater treatment. Chinese Journal of Catalysis, 37(6): p. 810-825.spa
dc.relation.referencesMacías-Quiroga, I.F., Rojas-Méndez, E.F., Giraldo-Gómez, G.I., and Sanabria-González, N.R. 2020. Experimental data of a catalytic decolorization of ponceau 4R dye using the cobalt (II)/NaHCO3/H2O2 system in aqueous solution. Data in Brief, 30: p. Article ID 105463.spa
dc.relation.referencesLi, Y., Li, L., Chen, Z.-X., Zhang, J., Gong, L., Wang, Y.-X., Zhao, H.-Q., and Mu, Y. 2018. Carbonate-activated hydrogen peroxide oxidation process for azo dye decolorization: Process, kinetics, and mechanisms. Chemosphere, 192: p. 372-378.spa
dc.relation.referencesXu, A., Li, X., Ye, S., Yin, G., and Zeng, Q. 2011. Catalyzed oxidative degradation of methylene blue by in situ generated cobalt (II)-bicarbonate complexes with hydrogen peroxide. Applied Catalysis B: Environmental, 102(1-2): p. 37-43.spa
dc.relation.referencesDuan, L., Chen, Y., Zhang, K., Luo, H., Huang, J., and Xu, A. 2015. Catalytic degradation of acid orange 7 with hydrogen peroxide using CoxOy-N/GAC catalysts in a bicarbonate aqueous solution. RSC Advances, 5(102): p. 84303-84310.spa
dc.relation.referencesGosetti, F., Gianotti, V., Polati, S., and Gennaro, M.C. 2005. HPLC-MS degradation study of E110 sunset yellow FCF in a commercial beverage. Journal of Chromatography A, 1090(1-2): p. 107-115.spa
dc.relation.referencesAstals, S., Batstone, D.J., Tait, S., and Jensen, P.D. 2015. Development and validation of a rapid test for anaerobic inhibition and toxicity. Water Research, 81: p. 208-215.spa
dc.relation.referencesGuélou, E., Barrault, J., Fournier, J., and Tatibouët, J.-M. 2003. Active iron species in the catalytic wet peroxide oxidation of phenol over pillared clays containing iron. Applied Catalysis B: Environmental, 44(1): p. 1-8.spa
dc.relation.referencesBarrault, J., Bouchoule, C., Tatibouët, J.M., Abdellaoui, M., Majesté, A., Louloudi, I., Papayannakos, N., and Gangas, N.H. 2000. Catalytic wet peroxide oxidation over mixed (Al-Fe) pillared clays. Studies in Surface Science and Catalysis, 130: p. 749-754.spa
dc.relation.referencesRamírez, J.H., Lampinen, M., Vicente, M.A., Costa, C.A., and Madeira, L.M. 2008. Experimental design to optimize the oxidation of orange II dye solution using a clay-based Fenton-like catalyst. Industrial & Engineering Chemistry Research, 47(2): p. 284-294.spa
dc.relation.referencesLi, X., Xiong, Z., Ruan, X., Xia, D., Zeng, Q., and Xu, A. 2012. Kinetics and mechanism of organic pollutants degradation with cobalt–bicarbonate–hydrogen peroxide system: Investigation of the role of substrates. Applied Catalysis A: General, 411-412: p. 24-30.spa
dc.relation.referencesTakagi, J. and Ishigure, K. 1985. Thermal Decomposition of Hydrogen Peroxide and Its Effect on Reactor Water Monitoring of Boiling Water Reactors. Nuclear Science and Engineering, 89(2): p. 177-186.spa
dc.relation.referencesLin, C., Smith, F., Ichikawa, N., Baba, T., and Itow, M. 1991. Decomposition of hydrogen peroxide in aqueous solutions at elevated temperatures. Journal of International Journal of Chemical Kinetics, 23(11): p. 971-987.spa
dc.relation.referencesRamírez, J.H., Costa, C.A., and Madeira, L.M. 2005. Experimental design to optimize the degradation of the synthetic dye orange II using Fenton's reagent. Catalysis Today, 107-108: p. 68-76.spa
dc.relation.referencesRamírez, J.H., Maldonado-Hódar, F.J., Pérez-Cadenas, A.F., Moreno-Castilla, C., Costa, C.A., and Madeira, L.M. 2007. Azo-dye orange II degradation by heterogeneous Fenton-like reaction using carbon-Fe catalysts. Applied Catalysis B: Environmental, 75(3): p. 312-323.spa
dc.relation.referencesYuranova, T., Enea, O., Mielczarski, E., Mielczarski, J., Albers, P., and Kiwi, J. 2004. Fenton immobilized photo-assisted catalysis through a Fe/C structured fabric. Applied Catalysis B: Environmental, 49(1): p. 39-50.spa
dc.relation.referencesSum, O.S.N., Feng, J., Hub, X., and Yue, P.L. 2005. Photo-assisted Fenton mineralization of an azo-dye acid black 1 using a modified laponite clay-based Fe nanocomposite as a heterogeneous catalyst. Topics in Catalysis, 33(1): p. 233-242.spa
dc.relation.referencesRevell, L.E. and Williamson, B.E. 2013. Why are some reactions slower at higher temperatures? Journal of Chemical Education, 90(8): p. 1024-1027.spa
dc.relation.referencesMozurkewich, M. and Benson, S.W. 1984. Negative activation energies and curved Arrhenius plots. 1. Theory of reactions over potential wells. The Journal of Physical Chemistry, 88(25): p. 6429-6435.spa
dc.relation.referencesMozurkewich, M., Lamb, J.J., and Benson, S.W. 1984. Negative activation energies and curved Arrhenius plots. 2. Hydroxyl + carbon monoxide. The Journal of Physical Chemistry, 88(25): p. 6435-6441.spa
dc.relation.referencesThiam, A., Brillas, E., Garrido, J.A., Rodríguez, R.M., and Sirés, I. 2016. Routes for the electrochemical degradation of the artificial food azo-colour ponceau 4R by advanced oxidation processes. Applied Catalysis B: Environmental, 180: p. 227-236.spa
dc.relation.referencesMoreira, F.C., García-Segura, S., Vilar, V.J.P., Boaventura, R.A.R., and Brillas, E. 2013. Decolorization and mineralization of sunset yellow FCF azo dye by anodic oxidation, electro-Fenton, UVA photoelectro-Fenton and solar photoelectro-Fenton processes. Applied Catalysis B: Environmental, 142-143: p. 877-890.spa
dc.relation.referencesChaimaa, B. and Byoud, F. 2017. Decolorization and degradation of ponceau 4R by the super-iron (VI) in an aqueous solution. Journal of Materials and Environmental Science, 8(5): p. 1668-1675.spa
dc.relation.referencesTerres, J., Battisti, R., Andreaus, J., and de Jesus, P.C. 2014. Decolorization and degradation of indigo carmine dye from aqueous solution catalyzed by horseradish peroxidase. Biocatalysis and Biotransformation, 32(1): p. 64-73.spa
dc.relation.referencesYang, J. 1987. Analysis of Dye. Chemical Industry Press, 1: p. 156–163.spa
dc.relation.referencesEl-Desoky, H.S., Ghoneim, M.M., and Zidan, N.M. 2010. Decolorization and degradation of ponceau S azo-dye in aqueous solutions by the electrochemical advanced Fenton oxidation. Desalination, 264(1): p. 143-150.spa
dc.relation.referencesFónagy, O., Szabó-Bárdos, E., and Horváth, O. 2021. 1,4-Benzoquinone and 1,4-hydroquinone based determination of electron and superoxide radical formed in heterogeneous photocatalytic systems. Journal of Photochemistry and Photobiology A: Chemistry, 407: p. Article ID 113057.spa
dc.relation.referencesKan, H., Soklun, H., Yang, Z., Wu, R., Shen, J., Qu, G., and Wang, T. 2020. Purification of dye wastewater using bicarbonate activated hydrogen peroxide: Reaction process and mechanisms. Separation and Purification Technology, 232: p. Article ID 115974.spa
dc.relation.referencesPhaniendra, A., Jestadi, D.B., and Periyasamy, L. 2015. Free radicals: Properties, sources, targets, and their implication in various diseases. Indian Journal of Clinical Biochemistry, 30(1): p. 11-26.spa
dc.relation.referencesJawad, A., Li, Y., Lu, X., Chen, Z., Liu, W., and Yin, G. 2015. Controlled leaching with prolonged activity for Co–LDH supported catalyst during treatment of organic dyes using bicarbonate activation of hydrogen peroxide. Journal of Hazardous Materials, 289: p. 165-173.spa
dc.relation.referencesZhou, L., Song, W., Chen, Z., and Yin, G. 2013. Degradation of organic pollutants in wastewater by bicarbonate-activated hydrogen peroxide with a supported cobalt catalyst. Environmental Science & Technology, 47(8): p. 3833-3839.spa
dc.relation.referencesTanaka, K., Padermpole, K., and Hisanaga, T. 2000. Photocatalytic degradation of commercial azo dyes. Water Research, 34(1): p. 327-333.spa
dc.relation.referencesGuivarch, E., Trevin, S., Lahitte, C., and Oturan, M.A. 2003. Degradation of azo dyes in water by Electro-Fenton process. Environmental Chemistry Letters, 1(1): p. 38-44.spa
dc.relation.referencesBaughman, G.L. and Weber, E.J. 1994. Transformation of dyes and related compounds in anoxic sediment: Kinetics and products. Environmental Science & Technology, 28(2): p. 267-276.spa
dc.relation.referencesWeber, E.J. and Adams, R.L. 1995. Chemical- and sediment- mediated reduction of the azo dye disperse blue 79. Environmental Science & Technology, 29(5): p. 1163-1170.spa
dc.relation.referencesYang, Z., Wang, H., Chen, M., Luo, M., Xia, D., Xu, A., and Zeng, Q. 2012. Fast degradation and biodegradability improvement of reactive brilliant red X-3B by the cobalt(II)/bicarbonate/hydrogen peroxide system. Industrial & Engineering Chemistry Research, 51(34): p. 11104-11111.spa
dc.relation.referencesMeriç, S., Kaptan, D., and Ölmez, T. 2004. Color and COD removal from wastewater containing reactive black 5 using Fenton’s oxidation process. Chemosphere, 54(3): p. 435-441.spa
dc.relation.referencesGanesh, R., Boardman, G.D., and Michelsen, D. 1994. Fate of azo dyes in sludges. Water Research, 28(6): p. 1367-1376.spa
dc.relation.referencesBafana, A., Devi, S.S., and Chakrabarti, T. 2011. Azo dyes: Past, present and the future. Journal of Environmental Reviews, 19: p. 350-371.spa
dc.relation.referencesSmith, R., 2005. Chapter 2. Process Economics, in Chemical Process: Design and Integration. Smith, R. (Ed). John Wiley & Sons, West Sussex, UK. p. 17-35.spa
dc.relation.referencesRodríguez Miranda, J., García-Ubaque, C., and Londoño, J. 2015. Analysis of the investment costs in municipal wastewater treatment plants in Cundinamarca. DYNA, 82(192): p. 230-238.spa
dc.relation.referencesGil-Pavas, E., Medina, J., Dobrosz-Gómez, I., and Gómez, M.-Á. 2016. Optimización de los costos de operación del proceso de electro-oxidación para una planta de tratamiento de aguas mediante análisis estadístico de superficie de respuesta. Información Tecnológica, 27(4): p. 73-82.spa
dc.relation.referencesAcampa, G., Giustra, M., and Parisi, C. 2019. Water treatment emergency: Cost evaluation tools. Sustainability, 11(9): p. Article ID 2609.spa
dc.relation.referencesTowler, G. and Sinnott, R., 2013. Chapter 9. Economic Evaluation of Projects, in Chemical Engineering Design. Towler, G. and Sinnott, R. (Eds). Butterworth-Heinemann, Boston, USA. p. 389-429.spa
dc.relation.referencesTowler, G. and Sinnott, R., 2013. Chapter 7. Capital Cost Estimating, in Chemical Engineering Design. Towler, G. and Sinnott, R. (Eds). Butterworth-Heinemann, Boston, USA. p. 307-354.spa
dc.relation.referencesTowler, G. and Sinnott, R., 2013. Chapter 8. Estimating Revenues and Production Costs, in Chemical Engineering Design. Towler, G. and Sinnott, R. (Eds). Butterworth-Heinemann, Boston, USA. p. 355-387.spa
dc.relation.referencesDouglas, J.M., 1988. Conceptual Design of Chemical Processes. Bradley, J.W. (Ed). McGraw-Hill New York, USA. p. 1-601.spa
dc.relation.referencesSilla, H., 2003. Chapter 2. Production and Capital Cost Estimation, in Chemical Process Engineering: Design and Economics. Silla, H. (Ed). CRC Press, New York, USA. p. 41-94.spa
dc.relation.referencesDodane, P.-H., Mbéguéré, M., Sow, O., and Strande, L. 2012. Capital and operating costs of full-scale fecal sludge management and wastewater treatment systems in dakar, Senegal. Environmental Science & Technology, 46(7): p. 3705-3711.spa
dc.relation.referencesKhoshgoftar-Manesh, M.H., Abadi, S.K., Amidpour, M., and Hamedi, M.H. 2013. A new targeting method for estimation of cogeneration potential and total annualized cost in process industries. Chemical Engineering Research and Design, 91(6): p. 1039-1049.spa
dc.relation.referencesBashar, R., Gungor, K., Karthikeyan, K.G., and Barak, P. 2018. Cost effectiveness of phosphorus removal processes in municipal wastewater treatment. Chemosphere, 197: p. 280-290.spa
dc.relation.referencesMahamuni, N.N. and Adewuyi, Y.G. 2010. Advanced oxidation processes (AOPs) involving ultrasound for waste water treatment: A review with emphasis on cost estimation. Ultrasonics Sonochemistry, 17(6): p. 990-1003.spa
dc.relation.referencesBaloyi, J., Ntho, T., and Moma, J. 2018. Synthesis and application of pillared clay heterogeneous catalysts for wastewater treatment: A review. RSC Advances, 8(10): p. 5197-5211.spa
dc.relation.referencesRusso, D. 2021. Kinetic modeling of advanced oxidation processes using microreactors: Challenges and opportunities for Scale-Up. Applied Sciences, 11(3): p. 1-19.spa
dc.relation.referencesDonati, G. and Paludetto, R. 1997. Scale up of chemical reactors. Catalysis Today, 34(3): p. 483-533.spa
dc.relation.referencesZlokarnik, M., 2006. Scale-Up in Chemical Engineering. Zlokarnik, M. (Ed). Wiley-VCH, Weinheim, Germany. p. 296.spa
dc.relation.referencesZlokarnik, M., 2010. Scale-Up of Chemical and Biotechnological Processes. Zlokarnik, M. (Ed). Wiley-VCH, Weinheim, Germany. p. 296.spa
dc.relation.referencesElliott, L.D., Knowles, J.P., Stacey, C.S., Klauber, D.J., and Booker-Milburn, K.I. 2018. Using batch reactor results to calculate optimal flow rates for the scale-up of UV photochemical reactions. Reaction Chemistry & Engineering, 3(1): p. 86-93.spa
dc.relation.referencesToulouse, C., Cezerac, J., Cabassud, M., Le Lann, M.V., and Casamatta, G. 1996. Optimisation and scale-up of batch chemical reactors: Impact of safety constraints. Chemical Engineering Science, 51(10): p. 2243-2252.spa
dc.relation.referencesRueda Márquez, J.J., Levchuk, I., and Sillanpää, M. 2018. Application of catalytic wet peroxide oxidation for industrial and urban wastewater treatment: A review. Catalysts, 8(12): p. 1-18.spa
dc.relation.referencesSAC, ONG Servicios Ambientales de Caldas, Corpocaldas, Informe red de monitoreo quebrada Manizales–I Semestre (2015), Manizales, Colombia. p. 1-204spa
dc.relation.referencesUTP, Universidad Tecnológica de Pereira, Selección de alternativas para el tratamiento de aguas residuales del interceptor quebrada Manizales, incluyendo la estabilización, tratamiento y disposicion adecuada de lodos fase 1, Corpocaldas. p. 1-226spa
dc.relation.referencesGutiérrez, D.L., El azul de la quebrada Manizales era tinta para dulces. La Patria. Manizales, Colombia. Recuperado el 2 de marzo del 2021 en https://www.lapatria.com/denuncie/el-azul-de-la-quebrada-manizales-era-tinta-para-dulces-452338spa
dc.relation.referencesSeshadri, S., Bishop, P.L., and Agha, A.M. 1994. Anaerobic/aerobic treatment of selected azo dyes in wastewater. Waste Management, 14(2): p. 127-137.spa
dc.relation.referencesYaseen, D.A. and Scholz, M. 2019. Textile dye wastewater characteristics and constituents of synthetic effluents: a critical review. International Journal of Environmental Science and Technology, 16(2): p. 1193-1226.spa
dc.relation.referencesAl Prol, A.E. 2019. Study of environmental concerns of dyes and recent textile effluents treatment technology: A review. Asian Journal of Fisheries Aquatic Research, 3(2): p. 1-18.spa
dc.relation.referencesTurton, R., Bailie, R.C., Whiting, W.B., and Shaeiwitz, J.A., 2008. Capítulo 3. Batch Processing, in Analysis, Synthesis and Design of Chemical Processes. Turton, R. (Ed). Pearson Education, Massachusetts, USA. p. 106-135.spa
dc.relation.referencesCouper, J.R., 2003. Chapter 4. Estimation of Capital Requirements, in Process Engineering Economics. Heinemann, H. (Ed). Marcel Dekker Inc, Miami, USA. p. 65-134.spa
dc.relation.referencesMacías-Quiroga, I.F., Pérez-Flórez, A., Arcila, J.S., Giraldo-Goméz, G.I., and Sanabria-Gonzalez, N.R. 2021. Synthesis and characterization of Co/Al-PILCs for the oxidation of an azo dye using the bicarbonate-activated hydrogen peroxide system. Catalysis Letters: p. In Press.spa
dc.relation.referencesVicente, M.A., Gil, A., and Bergaya, F., 2013. Chapter 10.5. Pillared Clays and Clay Minerals, in Developments in Clay Science. Bergaya, F. and Lagaly, G. (Eds). Elsevier, Oxford, UK. p. 523-557.spa
dc.relation.referencesMoreno, S., Gutiérrez, E., Alvarez, A., Papayannakos, N.G., and Poncelet, G. 1997. Al-pillared clays: From lab syntheses to pilot scale production characterisation and catalytic properties. Applied Catalysis A: General, 165(1): p. 103-114.spa
dc.relation.referencesAouad, A., Mandalia, T., and Bergaya, F. 2005. A novel method of Al-pillared montmorillonite preparation for potential industrial up-scaling. Applied Clay Science, 28(1-4): p. 175-182.spa
dc.relation.referencesIkehata, K., Gamal El-Din, M., and Snyder, S.A. 2008. Ozonation and Advanced Oxidation Treatment of Emerging Organic Pollutants in Water and Wastewater. Ozone: Science & Engineering, 30(1): p. 21-26.spa
dc.relation.referencesSanz, J., Lombraña, J.I., and de Luis, A. 2013. Estado del arte en la oxidación avanzada a efluentes industriales: Nuevos desarrollos y futuras tendencias. Afinidad, 70(561): p. 25-33.spa
dc.relation.referencesCañizares, P., Paz, R., Sáez, C., and Rodrigo, M.A. 2009. Costs of the electrochemical oxidation of wastewaters: A comparison with ozonation and Fenton oxidation processes. Journal of Environmental Management, 90(1): p. 410-420.spa
dc.relation.referencesdos Santos Napoleão, D.A., Hizário Filho, H.J., Sakis Cezar, F., and Francisco Siqueira, A. 2017. Economic analysis of Fenton process in the slurry treatment. Journal of Environmental Science, Toxicology and Food Technology (IOSR-JESTFT) 11(8): p. 12-16.spa
dc.relation.referencesHassan, H. and Hameed, B. 2011. Decolorization of acid red 1 by heterogeneous Fenton-like reaction using Fe-ball clay catalyst. International Conference on Environment Science and Engineering 8: p. 232-236.spa
dc.relation.referencesOchoa-Gutiérrez, K.S. and Mueses, M.A. 2014. Experimental and mathematical evaluation of molecular adsorption models for organic pollutants on TiO2-P25 particles. Ingeniería y Competitividad, 16(2): p. 309-320.spa
dc.relation.referencesAnirudhan, T.S. and Ramachandran, M. 2015. Adsorptive removal of basic dyes from aqueous solutions by surfactant modified bentonite clay (organoclay): Kinetic and competitive adsorption isotherm. Process Safety and Environmental Protection, 95: p. 215-225.spa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc540 - Química y ciencias afinesspa
dc.subject.proposalColorantes azoicosspa
dc.subject.proposalArcillas pilarizadasspa
dc.subject.proposalProcesos avanzados de oxidaciónspa
dc.subject.proposalPeróxido de hidrógeno activado con bicarbonatospa
dc.subject.proposalCinéticaspa
dc.subject.proposalCostosspa
dc.subject.proposalAzo dyeseng
dc.subject.proposalPillared clayseng
dc.subject.proposalAdvanced oxidation processeseng
dc.subject.proposalBicarbonate-activated hydrogen peroxide systemeng
dc.subject.proposalKineticseng
dc.subject.proposalCostseng
dc.subject.unescoQuímica experimental
dc.subject.unescoExperimental chemistry
dc.subject.unescoQuímica mineral
dc.subject.unescoInorganic chemistry
dc.titleArcillas pilarizadas con cobalto (Al-Co-PILC) como catalizadores para la degradación de colorantes empleando el sistema HCO3-/H2O2spa
dc.title.translatedAluminium-Cobalt-Pillared Clays (Al-Co-PILCs) as catalysts for dye degradation using HCO3-/H2O2 systemeng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentImagespa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/PAspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_14cbspa
oaire.awardtitleConvocatoria 757 de 2016spa
oaire.fundernameMincienciasspa
oaire.fundernameColfuturospa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1053777983.2021.pdf
Tamaño:
7.35 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería – Ingeniería Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: