Sedimentary facies distribution Impact on heavy oil production in a Llanos Basin field, eastern Colombia.

dc.contributor.advisorGutierrez Granados, Zorel
dc.contributor.advisorCardona Molina, Agustín
dc.contributor.authorBetancur Soto, Ángela María
dc.date.accessioned2021-08-12T20:32:03Z
dc.date.available2021-08-12T20:32:03Z
dc.date.issued2021-07-01
dc.descriptionilustracionesspa
dc.description.abstractHistorically, lithofacies modeling and its uncertainty has been Aquila’s ankle in achieving reservoir model objectives, as the uncertainty generally is evaluated through variogram sensitivity. Throughout this thesis a new workflow will focused on capturing lithofacies uncertainty and assess its impact on heavy oil production. The workflow combines static and dynamic properties into the three-dimensional grid without performing a dynamic simulation process. Seed is the starting point of a random number generator for geostatistical simulation. In disciplines outside of oil and gas industry this is well understood and researched. However, during geological modeling seeds are fixed as an input parameter, which ignore the effect on unsampled areas. The new proposed methodology assesses the impact of seed number on lithofacies uncertainty distribution. In the dynamic section, the thesis focus on the applicability of Darcy’s equation to QC the static model and proposed a modified heavy oil relative permeability correlation to calculate oil rate directly from static model. 1D analysis shows excellent results in vertical wells which gives confidence on static model. A 3D blind test of the integrated workflow shows precision of the lithofacies and potential oil rate prediction ranging between 50 and 80 % within the ±1 feet window. The results show the importance of seed input on the distribution of properties in unsampled areas, which has been ignored for decades, on reducing the uncertainty on lithofacies distribution which has significant impact on STOIIP, hydrocarbon productivity and sweet spots identification. By including the modified oil relative permeability correlation in the static reservoir modeling workflow, a geomodeler can highlight prospective oil areas (sweet spots) through heat maps. This novel methodology can be implemented to any static reservoir modeling project from dry gas up to heavy oil. (Tomado de la fuente)eng
dc.description.abstractHistóricamente, el modelamiento de las litofacies y su incertidumbre han sido el talón de Aquiles para lograr los objetivos del modelamiento de yacimientos, ya que la incertidumbre generalmente se evalúa a través de la sensibilidad del variograma. A lo largo de esta tesis, un nuevo flujo de trabajo se centrará en capturar la incertidumbre de las litofacies y evaluará su impacto en la producción de crudo pesado. El flujo de trabajo combina propiedades estáticas y dinámicas en la malla tridimensional sin realizar un proceso de simulación dinámica. La semilla es el punto de partida de un generador de números aleatorios para la simulación geoestadística. En disciplinas fuera de la industria del petróleo y el gas, esta está bien entendida e investigada. Sin embargo, durante el modelamiento geológico, las semillas se fijan como un parámetro de entrada, que ignora el efecto en las áreas no muestreadas. La nueva metodología propuesta evalúa el impacto de la semilla en la distribución de la incertidumbre de las litofacies. En la sección dinámica, la tesis se centra en la aplicabilidad de la ecuación de Darcy al control de calidad del modelo estático y se propone una correlación de permeabilidad relativa para petróleo pesado modificada para calcular la tasa de petróleo directamente a partir del modelo estático. El análisis 1D muestra excelentes resultados en pozos verticales, lo que brinda confianza en el modelo estático. Una prueba ciega en el flujo de trabajo 3D integrado muestra la precisión de la predicción de las litofacies y el potencial de la tasa de aceite, que varía entre el 50 y el 80% evaluado dentro de la ventana de ± 1 pie. Los resultados muestran la importancia de la entrada de la semilla en la distribución de propiedades en áreas no muestreadas, la cual ha sido ignorada durante décadas, en la reducción de la incertidumbre en la distribución de litofacies que tiene un impacto significativo en STOIIP, productividad de hidrocarburos e identificación de zonas de hidrocarburo prospectivas. Al incluir la correlación de la permeabilidad relativa del petróleo modificado en el flujo de trabajo de modelamiento de yacimientos estáticos, un geomodelador puede resaltar las posibles áreas de petróleo (Sweet spots) a través de mapas de prospectividad de aceite. Esta nueva metodología se puede implementar en cualquier proyecto de modelamiento de yacimientos estáticos, desde gas seco hasta petróleo pesado. (Tomado de la fuente)spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería – Ingeniería de Petróleosspa
dc.format.extent160 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79932
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de Procesos y Energíaspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellínspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Ingeniería de Petróleosspa
dc.relation.referencesAlfaro, C., & Alvarado, I. (2014). Heat Flow Evaluation at Eastern Llanos Sedimentary Basin , Colombia.spa
dc.relation.referencesArcher, J., & Wall, C. (1992). Petroleum Engineering Principles and Practice. London: Graham and Trotman.spa
dc.relation.referencesBahar, A. (2014, November 18). Integrated 3D Reservoir Modelling-Practical Workshop. Bogotá: Next.spa
dc.relation.referencesBarca, E., Bruno, D., Lay-Ekuakille, A., Maggi, S., & Passarella, G. (2016). Heuristic Rules for a Reliable Variogram Parameters Tuning. Symposium on Environmental Instrumentation and Measurements. Reggio Calabria.spa
dc.relation.referencesBoggs, S. (2006). Principles of Sedimentology and Stratigraphy (Vol. Fourth Edition). (P. Lynch, Ed.) New Jersery: Pearson Prentice Hall.spa
dc.relation.referencesBohling, G. (2005). Introduction to Geostatistics and Variogram Analysis. Kansas: Kansas Geological Survey.spa
dc.relation.referencesCampos, H., & Mann, P. (2015). Tectonostratigraphic Evolution of the Northern Llanos Foreland Basin of Colombia and Implications for its Hydrocarbon Potential. The American Association of Petroleum Geologists, 517-545.spa
dc.relation.referencesCannon, S. (2018). Reservoir Modelling: A Practical Guide. Hoboken, Nj: John Wiley & sons, Inc .spa
dc.relation.referencesCant, D.J. 1992. Subsurface facies analysis. In Facies Models: Response to Sea level Change (Walker, R.G.; James, N.P.; editors). Geological Association of Canada, p. 195-218.spa
dc.relation.referencesCao, R., Zee, Y. M., & Gomez, E. (2014). Geostatistical Applications in Petroleum Reservoir Modelling. South African Institute of Mining and Metallurgy.spa
dc.relation.referencesCorreia, U. M., Batezelli, A., & Pereira Leite, E. (2016). 3-D Geological Modelling: A Siliciclastic Reservoir Case Study from Campos Basin. REM- International Engineering Journal, vol.69 no.4.spa
dc.relation.referencesEcopetrol, S. (2017). Static Model Rubiales Field. Bogotá: Ecopetrol.spa
dc.relation.referencesG.J, M. (1997). Sampling Space of Uncertainty Through Stochastic Modelling of Geological Facies. Society of petroleum engineers, 273-287.spa
dc.relation.referencesGalloway, W. E., & Hobday, D. K. (1983). Terrigenous Clastic Depositional System. New York: Springer-Verlag. doi:10.1007/978-1-4684-0170-7.spa
dc.relation.referencesGarcía Lugo, R., & Eggenschwiler, M. (2001). How Fluid and Rock Properties Affect Production Rates in a Heavy Oil Reservoir. SPE, SPE69694.spa
dc.relation.referencesGolan, M., & Whitson, C. H. (1991). Well performance, Second Edition. Trondheim: Prentice-Hall, Inc.spa
dc.relation.referencesHenry, C., & Mann, P. (2015). Tectonostratigraphic Evolution of the Northern Llanos Foreland Basin of Colombia and Implications for Its Hydrocarbon Potential. AAPG, 517-546. Hussein, A., Joao, F., Taylor, S., Badry, R., Brough, B., Baker, A., . . . Calvo, R. (2006). Highlighting Heavy Oil. Oilfield Review, 34-53.spa
dc.relation.referencesIsaacs, E. H., & Srivastava, R. M. (1989). Introduction to Applied Geostatistics. New York: Oxford University.spa
dc.relation.referencesJames, N. P., & Dalrymple, R. W. (2010). Facies Models 4. Kingtong, Canada: Geological Association of Canada.spa
dc.relation.referencesJassim M, A., & Mohammed S, A. (2019). Study of Different Geostatistical Methods to Model Formation Porosity (Cast Study of Zubair Formation in Luhais Oil Field). IOP. doi:10.1088/1757-899X/579/1/012031.spa
dc.relation.referencesJika, H., Onuoha, K., & Dim, C. (2019, October 15). Application of Geostatistics in Facies Modelling of Reservoir E, “Hatch Field” Offshore Niger Delta Basin, Nigeria. Petroleum Exploration and Production Technology. Retrieved from https://doi.org/10.1007/s13202-019-00788-1.spa
dc.relation.referencesJournel, A., Gundeso, R., Gringarten, E., & Yao, T. (1998). Stochastic Modelling of a Fluvial Reservoir: A Comparative Review Algorithm. Journal of Petroleum Science and Engineering, 95-121.spa
dc.relation.referencesLi, Y., Xin, X., Yu, G., Wang, W., Zhang, Z., Zhang, M., . . . Chen, Z. (2017). Non-Newtonian Flow Characteristics of Heavy Oil in the Bohai Bay Oilfield: Experimental and Simulation Studies. MDPI.spa
dc.relation.referencesMadani, N., Biranvand, B., Naderi, A., & Keshavarz, N. (2019). Lithofacies Uncertainty Modelling in a Siliciclastic Reservoir Setting by Incorporating Geological Contacts and Seismic Information. Journal of Petroleum Exploration and Production Technology, 1-16.spa
dc.relation.referencesMai, A. (2008). Mechanisms of Heavy Oil Recovery by Waterflooding. Phd, Thesis, University of Calgary, Calgary.spa
dc.relation.referencesMariethoz, G., Renard, P., & Straubhaar, J. (2010). The Direct Sampling Method to Perform Multiple‐Point Geostatistical Simulations. Water Resources Research.spa
dc.relation.referencesMenad, N. A., Noureddine, Z., Hemmati-Sarapardeh, A., Shamshirband, S., Mosavi, A., & Chau, K.-w. (2019). Modelling Temperature Dependency of Oil - Water Relative Permeability in Thermal Enhanced Oil Recovery Processes Using Group Method of Data Handling and Gene Expression Programming. Engineering Applications of Computational Fluid mechanics, 724-743.spa
dc.relation.referencesNavas, G. A. (2016). Modelo Sedimentológico Rubiales. Bogotá: Ecopetrol S.A.spa
dc.relation.referencesNichols, G. (2009). Sedimentology and Stratigraphy (Vol. Second Edition). United Kingdom: Wiley- Blackwell. Ortiz, J., & Deutsh V, C. (n.d.). Testing Pseudo-random Number Generators. Alberta: Alberta University.spa
dc.relation.referencesPaque, J., & Dercourt, J. (1985). Sedimentary Facies. In D. J. Paquet, Geology Principles & Methods (pp. 195-206). Springer, Dordecht. doi: https://doi.org/10.1007/978-94-009-4956-0_12spa
dc.relation.referencesPark, H., Scheidt, C., Fenwick, D., Boucher, A., & Caers, J. (2013). History matching and uncertainty quantification of facies models with multiple geological interpretations. Springer.spa
dc.relation.referencesPorta, J. d. (1974). Stratigraphic Lexicon. Colombia:(Part Two). Tertiary and Quaternary. Paris: Centre National de la Reserche Scientifique.spa
dc.relation.referencesPosamentier, H. W., Jervey, M. T., & Vail, P. R. (1988). Eustatic Controls on Clastic Deposition I. Calgary: SEPM (Society of Economic paleontologists and mineralogits).spa
dc.relation.referencesPyrcz, M., & Deutsch, C. (2014). Geostatistical Reservoir Modelling (Vol. 2). New York, United States of America: Oxford University.spa
dc.relation.referencesRamirez, R. (2010). Informe Descripción de Corazones. Piedecuesta: Instituto Colombiano del Petróleo.spa
dc.relation.referencesRamon, G. H. (2002). Introducción a la Geoestadística Teoria y Aplicación. Bogotá: Universidad Nacional de Colombia.spa
dc.relation.referencesReading, H., & Levell, B. (1996). Controls on the Sedimentary Rock Record. In H. Reading, & H. Reading (Ed.), Sedimentary Environments: Process, Facies and Stratigraphy (Vol. Third edition, pp. 5-36). Wiley.spa
dc.relation.referencesSarmiento, L. F. (2011). Petroleum Geology of Colombia: Llanos Basin. Medellín: Universidad EAFIT.spa
dc.relation.referencesSchlumberger. (2011). Multipoint and Conditional Facies Modelling. Houston: Schlumberger.spa
dc.relation.referencesSeifert, D., & Jensen, J. L. (1999). Using Sequential Indicator Simulation as a Tool in Reservoir Description: Issues and Uncertainties. In Mathematical Geology (pp. 527-550).spa
dc.relation.referencesSisinni, V., Villarroel, V., McDougall, N., Victoria, M., Vallez, Y., & Garcia Mojonero, C. (2016). Facies Modelling Described by Probabilistic Patterns Using Multi-Point Statistics: An Application to the K-Field, Libya. AAPG/SEG International Conference & Exhibition. Barcelona.spa
dc.relation.referencesTalabi, O., & Okazawa, T. (2003). Effect of Rate and Viscosity on Gas Mobility during Solution-Gas Drive in Heavy Oils. SPE, SPE84032.spa
dc.relation.referencesTorabi, F., Mosavat, N., & Zarivnyy, O. (2016). Predicting Heavy Oil/Water Relative Permeability Using Modified Corey-Based Correlations. Elsevier, 196-204.spa
dc.relation.referencesWalker, R. G. (2006). Facies Models Revisited. (H. W. Posamentier, & R. G. Walker, Eds.) SEPM (Society for Sedimentary Geology), 1-17. Yang, S., Li, S., Nie, X., & Cao, L. (2016). The Effect of Temperature and Rock Permeability on Oil-Water Relative Permeability Curves of Waxy Crude Oil. International Journal of Engineering Research and Applications, 16-21.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.lembGeología - Métodos estadísticos
dc.subject.lembPetróleo
dc.subject.proposalLitofaciesspa
dc.subject.proposalSemillaspa
dc.subject.proposalIncertidumbrespa
dc.subject.proposalAleatoriospa
dc.subject.proposalCorrelación de permeabilidad relativa para crudo pesadospa
dc.subject.proposalPredictibilidadspa
dc.subject.proposalPrecisiónspa
dc.subject.proposalLithofacieseng
dc.subject.proposalSeedeng
dc.subject.proposalUncertaintyeng
dc.subject.proposalRandomeng
dc.subject.proposalHeavy oil relative permeability correlationeng
dc.subject.proposalPredictabilityeng
dc.subject.proposalPrecisioneng
dc.titleSedimentary facies distribution Impact on heavy oil production in a Llanos Basin field, eastern Colombia.eng
dc.title.translatedImpacto de la distribución de las facies sedimentarias en la producción de crudo pesado en un campo de la Cuenca Llanos, oriente de Colombia.spa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audienceEspecializadaspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 3 de 3
Cargando...
Miniatura
Nombre:
24347143.2021.RESULTS.pdf
Tamaño:
20.44 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería de Petróleos.2
Cargando...
Miniatura
Nombre:
24347143.2021.APPENDICES.pdf
Tamaño:
7.39 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería de Petróleos.3
Cargando...
Miniatura
Nombre:
24347143.2021.GENERAL.pdf
Tamaño:
4.41 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería de Petróleos.1

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: