Búsqueda racional de alcaloides isoquinolínicos del género Zanthoxylum (Rutaceae) como posibles agentes multifuncionales para el tratamiento del Alzheimer

dc.contributor.advisorCuca Suárez, Luis Enriquespa
dc.contributor.authorPlazas González, Erika Andreaspa
dc.contributor.researchgroupGrupo de Investigación en Química de Productos Naturales Vegetales Bioactivosspa
dc.date.accessioned2020-07-23T21:19:36Zspa
dc.date.available2020-07-23T21:19:36Zspa
dc.date.issued2020-07-22spa
dc.description.abstractLos trastornos neurodegenerativos multifactoriales, como la enfermedad de Alzheimer (EA), son un problema creciente de salud pública mundial debido al aumento de su incidencia y la baja efectividad de los tratamientos actuales. Dado que la farmacoterapia basada en un blanco molecular ha sido insuficiente en el descubrimiento de agentes para el tratamiento o cura de enfermedades complejas, el enfoque multi-diana se ha posicionado como una de las estrategias más promisorias en la búsqueda de nuevos candidatos a fármacos. En el presente trabajo se realizó una búsqueda racional de alcaloides isoquinolínicos con potencial inhibitorio frente a colinesterasas en especies del género Zanthoxylum; y la determinación de la actividad multi-diana frente a mecanismos claves asociados a la patogénesis de la EA, como el agotamiento de neurotransmisores, la agregación de beta-amiloide (Aβ1-42) y el estrés oxidativo. Inicialmente, se realizó un perfilado metabolómico (LC-MS) de extractos alcaloidales de especies del género Zanthoxylum (Rutaceae), con el fin de identificar posibles alcaloides inhibidores de colinesterasas, priorizar los extractos más promisorios y hacer la selección de una especie para continuar con el aislamiento bio-dirigido de los metabolitos de interés. Para este propósito, se analizaron 41 extractos alcaloidales de nueve especies de Zanthoxylum por HPLC-UV-HRMS y se determinó la actividad inhibitoria frente a colinesterasas (AChE/BChE). Haciendo uso de un análisis bioquimiométrico, se seleccionaron 11 alcaloides biomarcadores, los cuales fueron identificados tentativamente por dereplicación manual. Los extractos con mayor actividad inhibitoria frente a las enzimas (Z. schreberi y Z. monophylum) mostraron alta presencia de dos biomarcadores identificados tentativamente como berberina y queleritrina, los cuales han sido ampliamente reportados como inhibidores de colinesterasas y monoamino oxidasas. Por lo tanto, se realizó un estudio químico dirigido del extracto de corteza de Z. schreberi en búsqueda de berberina y queleritrina, a fin de validar los resultados del modelo estadístico y hacer la priorización de los extractos con mayor potencial inhibitorio y baja presencia de estos alcaloides. Los resultados del estudio bio-dirigido de Z. schreberi permitieron confirmar la predicción realizada por el modelo bioquimiométrico y hacer la selección de la especie Z. rigidum para continuar con la búsqueda racional de alcaloides inhibidores de colinesterasas con potencial multi-diana. Por medio del estudio bio-dirigido del extracto de raíz de Z. rigidum se aislaron ocho alcaloides isoquinolínicos y uno quinolónico, a los cuales se les evaluó la actividad inhibitoria frente a colinesterasas (AChE y BChE), monoamino oxidasas (MAO-A y B) y en la agregación de Aβ1-42. En el estudio preliminar de actividad biológica se encontró que dos alcaloides benzofenantridínicos, nitidina (EP4) y avicina (EP12), presentaron el mayor potencial inhibitorio frente a todos blancos moleculares, por lo cual fueron seleccionados para continuar con la caracterización multi-diana. Estas benzofenantridinas poseen actividad inhibitoria frente a la dupla de colinesterasas con valores de IC50 en el rango micromolar, siendo más activos frente a AChE. En el análisis cinético con las colinesterasas los dos alcaloides mostraron mecanismos de inhibición mixta y contantes (Ki) menores a 1 µM. La avicina presentó mayor potencial inhibitorio de las colinesterasas con valores de Ki de 0,063 µM (EeAChE), 0,511 µM (HrAChE) y 0,123 µM (EqBChE). Asimismo, avicina y nitidina poseen actividad antiagregante de Aβ1–42 con IC50 de 5,6 y 1,9 µM, respectivamente. Adicionalmente, los dos alcaloides presentaron inhibición selectiva de la monoamino oxidasa A, con valores de IC50 menores a 2 µM e índices de selectividad superiores a 100. En el estudio cinético con MAO A los dos compuestos mostraron mecanismo de inhibición mixta y constantes de inhibición (Ki) en el rango nanomolar. Estos resultados sugieren que las benzofenantridinas avicina (EP12) y nitidina (EP4) poseen un alto potencial multi-diana, por lo tanto, representan un importante punto de partida en la búsqueda y desarrollo de moléculas con potencial terapéutico para la enfermedad de Alzheimer.spa
dc.description.abstractMultifactorial neurodegenerative disorders such as Alzheimer's disease (AD) are considered a growing public health problem due the rising incidence and low effectiveness of current treatment. Since pharmacotherapy based on a single target has been insufficient for drug development in complex diseases, the emerging multi-target approach is a promising strategy in the search of new anti-AD drug candidates. Herein the rational search and isolation of anti-cholinergic isoquinoline alkaloids from Zanthoxylum genus and the multi-target activity on key mechanisms associated with AD’s pathogenesis, i.e. cholinergic and monoaminergic depletion, β-amyloid (Aβ) aggregation, and oxidative stress were investigated. Initially, a LC-MS-based metabolomic approach of Zanthoxylum species was performed to identify potential anti-cholinesterase alkaloids predictors, rank the most promising extracts and selected one to carry out bio-directed isolation of potential bioactive alkaloids. 41 alkaloid extracts of nine Zanthoxylum species were analyzed by HPLC-UV-HRMS and inhibitory activity against cholinesterase (AChE/BChE). 11 alkaloid biomarkers were selected using a biochemometric analysis, and tentatively identified by manual dereplication approach. The most active extracts against cholinesterase (Z. schreberi and Z. monophylum) showed higher concentration of two biomarkers tentatively identified as berberine and chelerythrine, which have been reported as cholinesterase and monoamine oxidase inhibitors. Thus, a targeted isolation of berberine and chelerythrine from the bark extract of Z. schreberi was performed, in order to validate the results of the statistical model and select those extracts with the highest inhibitory activity and lowest concentration of these biomarkers. The findings in bio-guided isolation of Z. schreberi support the biochemometric model prediction and allowed us to select the species Z. rigidum to continue the rational search of anticholinesterase-multimodal alkaloids. Alkaloid isolation from root extract of Zanthoxylum rigidum was carried out using multi-step chromatography and monitoring by TLC-bioautography against acetylcholinesterase (AChE) giving eight purified isoquinoline and one quinolone alkaloids. Isolated compounds were tested for inhibitory activity against cholinesterase (AChE and BChE), monoamine oxidase (MAO-A and B) and Aβ aggregation. Our study revealed two benzophenanthridine alkaloids, nitidine (EP4) and avicine (EP12), as the most promising multi-target candidates. Both benzophenanthridines presented dual cholinesterase inhibition with IC50 values in micromolar range, being more active against AChE than BChE. Kinetic analysis with cholinesterase showed both compounds are reversible-mixed inhibitors, where avicine presented highest potency with Ki values of 0.063 µM (EeAChE), 0.511 µM (HrAChE) and 0.123 µM (EqBChE). Likewise, avicine and nitidine presented moderate Aβ1–42 anti-aggregation activity with IC50 values of 5.6 y 1.9 µM, respectively. In addition, both benzophenanthridines are MAO-A selective inhibitors, with IC50 values lower than 2 µM and selective index higher than 100. In the kinetic analysis with MAO A both alkaloids showed mixed-type inhibition and Ki values in the nanomolar range. Our findings suggest that avicine and nitidine are promising natural compounds and multifunctional candidates, representing a suitable starting point for the development of new therapeutic agents for Alzheimer’s disease.spa
dc.description.additionalLínea de Investigación: Bioprospección en agentes terapéuticosspa
dc.description.degreelevelDoctoradospa
dc.description.sponsorshipColcienciasspa
dc.format.extent207spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77833
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Químicaspa
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Químicaspa
dc.relation.referencesAdalbert, R., Gilley, J., Coleman, M.P., 2007. Aβ, tau and ApoE4 in Alzheimer’s disease: the axonal connection. Trends Mol. Med. 13, 135–142. https://doi.org/10.1016/j.molmed.2007.02.004spa
dc.relation.referencesAdsersen, A., Gauguin, B., Gudiksen, L., Jäger, A.K., 2006. Screening of plants used in Danish folk medicine to treat memory dysfunction for acetylcholinesterase inhibitory activity. J. Ethnopharmacol. 104, 418–422. https://doi.org/10.1016/j.jep.2005.09.032spa
dc.relation.referencesAffini, A., Hagenow, S., Zivkovic, A., Marco-Contelles, J., Stark, H., 2018. Novel indanone derivatives as MAO B/H3R dual-targeting ligands for treatment of Parkinson’s disease. Eur. J. Med. Chem. 148, 487–497. https://doi.org/10.1016/j.ejmech.2018.02.015spa
dc.relation.referencesAgis-torres, A., Söllhuber, M., Fernandez, M., 2014. Multi-target-directed ligands and other therapeutic strategies in the search of a real solution for Alzheimer’s disease. Curr. Neuropharmacol. 12, 2–36. https://doi.org/10.2174/1570159X113116660047spa
dc.relation.referencesAhmed, T., Gilani, A.-H., Abdollahi, M., Daglia, M., Nabavi, S., Nabavi, S.M., 2015. Berberine and neurodegeneration: A review of literature. Pharmacol. Reports 67, 970–979. https://doi.org/doi.org/10.1016/j.pharep.2015.03.002spa
dc.relation.referencesAniszewski, T., 2015. Alkaloids: Chemistry, Biology, Ecology, and Applications: Second Edition, Alkaloids: Chemistry, Biology, Ecology, and Applications: Second Edition. Elsevier. https://doi.org/10.1016/C2011-0-04166-2spa
dc.relation.referencesAtri, A., 2019. The Alzheimer’s Disease Clinical Spectrum: Diagnosis and Management. Med. Clin. 103, 263–293. https://doi.org/doi.org/10.1016/j.mcna.2018.10.009spa
dc.relation.referencesBaek, M. Y., Park, H. J., Kim, G. M., Lee, D. Y., Lee, G. Y., Moon, S. J., Baek, N.I., 2013. Insecticidal alkaloids from the seeds of Macleaya cordata on cotton aphid (Aphis gossypii). J. Korean Soc. Appl. Biol. Chem. 56, 135–140. https://doi.org/10.1007/s13765-013-3013-0spa
dc.relation.referencesBautista-Aguilera, Ó.M., Budni, J., Mina, F., Medeiros, E.B., Deuther-Conrad, W., Entrena, J.M., Moraleda, I., Iriepa, I., López-Muñoz, F., Marco-Contelles, J., 2018. Contilisant, a Tetratarget Small Molecule for Alzheimer’s Disease Therapy Combining Cholinesterase, Monoamine Oxidase Inhibition, and H3R Antagonism with S1R Agonism Profile. J. Med. Chem. 61, 6937–6943. https://doi.org/10.1021/acs.jmedchem.8b00848spa
dc.relation.referencesBean, M., 2002. Enzyme Kinetics Principles and methods, Psychiatric Annals.spa
dc.relation.referencesBennett, D., Yu, L., De Jager, P., 2014. Building a pipeline to discover and validate novel therapeutic targets and lead compounds for Alzheimer’s disease. Biochem. Pharmacol. 88, 617–630. https://doi.org/10.1016/j.bcp.2014.01.037spa
dc.relation.referencesBiancalana, M., Koide, S., 2010. Molecular mechanism of Thioflavin-T binding to amyloid fibril. Biochim. Biophys. Acta 1804, 1405–1412. https://doi.org/10.1016/j.bbapap.2010.04.001spa
dc.relation.referencesBinutu, O.A., Cordell, G.A., 2000. Constituents of Zanthoxylum Sprucei. Pharm. Biol. 38, 210–213. https://doi.org/10.1076/1388-0209(200007)3831-SFT210spa
dc.relation.referencesBird, D.A., Facchini, P.J., 2001. Berberine bridge enzyme, a key branch-point enzyme in benzylisoquinoline alkaloid biosynthesis, contains a vacuolar sorting determinant. Plant 213, 888–897. https://doi.org/10.1007/s004250100582spa
dc.relation.referencesBird, M.J., Thorburn, D.R., Frazier, A.E., 2014. Modelling biochemical features of mitochondrial neuropathology. Biochim. Biophys. Acta. https://doi.org/10.1016/j.bbagen.2013.10.017spa
dc.relation.referencesBitzinger, D.I., Gruber, M., Tümmler, S., Michels, B., Bundscherer, A., Hopf, S., Trabold, B., Graf, B.M., Zausig, Y.A., 2016. Species and concentration dependent differences of acetyl and butyrylcholinesterase sensitivity to physostigmine and neostigmine. Neuropharmacology 109, 1–6. https://doi.org/10.1016/j.neuropharm.2016.01.005spa
dc.relation.referencesBräse, S. (Ed)., 2015. Privileged Scaffolds in Medicinal Chemistry, RSC Drug D. ed. https://doi.org/10.1039/9781782622246spa
dc.relation.referencesBritton, E.R., Kellogg, J.J., Kvalheim, O.M., Cech, N.B., 2018. Biochemometrics to Identify Synergists and Additives from Botanical Medicines: A Case Study with Hydrastis canadensis (Goldenseal). J. Nat. Prod. 81, 484–493. https://doi.org/10.1021/acs.jnatprod.7b00654spa
dc.relation.referencesBrunhofer, G., Fallarero, A., Karlsson, D., Batista-Gonzalez, A., Shinde, P., Mohan, C.G., Vuorela, P., 2012. Exploration of natural compounds as sources of new bifunctional scaffolds targetingspa
dc.relation.referencesBrunhofer, G., Fallarero, A., Karlsson, D., Batista-Gonzalez, A., Shinde, P., Mohan, C.G., Vuorela, P., 2012. Exploration of natural compounds as sources of new bifunctional scaffolds targetingspa
dc.relation.referencesCai, Z., 2014. Monoamine oxidase inhibitors: promising therapeutic agents for Alzheimer’s disease (Review). Mol. Med. Rep. 9, 1533–1541. https://doi.org/10.3892/mmr.2014.2040spa
dc.relation.referencesCarpinella, M.C., Andrione, D.G., Ruiz, G., Palacios, S.M., 2010. Screening for acetylcholinesterase inhibitory activity in plant extracts from Argentina. Phyther. Res. 24, 259–263. https://doi.org/10.1002/ptr.2923spa
dc.relation.referencesCarradori, S., D’Ascenzio, M., Chimenti, P., Secci, D., Bolasco, A., 2014. Selective MAO-B inhibitors: A lesson from natural products. Mol. Divers. https://doi.org/10.1007/s11030-013-9490-6spa
dc.relation.referencesCheignon, C., Tomas, M., Faller, P., Hureau, C., Collin, F., 2018. Oxidative stress and the amyloid beta peptide in Alzheimer’s disease. Redox Biol. 14, 450–464. https://doi.org/10.1016/j.redox.2017.10.014spa
dc.relation.referencesChen, G., Xu, T., Yan, Y., Zhou, Y., Jiang, Y., Melcher, K., Xu, E., 2017. Amyloid beta: structure, biology and structure-based therapeutic development. Acta Pharmacol. Sin. 38, 1205–1235. https://doi.org/10.1038/aps.2017.28spa
dc.relation.referencesChen, Z., Zhong, C., 2014. Oxidative stress in Alzheimer’s disease. Neurosci. Bull. 30, 271–281. https://doi.org/10.1007/s12264-013-1423-yspa
dc.relation.referencesCheung, J., Rudolph, M.J., Burshteyn, F., Cassidy, M.S., Gary, E.N., Love, J., Franklin, M.C., Height, J.J., 2012. Structures of Human Acetylcholinesterase in Complex with Pharmacologically Important Ligands. J. Med. Chem. 55, 10282–10286. https://doi.org/10.1021/jm300871xspa
dc.relation.referencesChia, Y.C., Chang, F.R., Li, C.M., Wu, Y.C., 1998. Protoberberine alkaloids from Fissistigma balansae. Phytochemistry. https://doi.org/10.1016/S0031-9422(97)00775-9spa
dc.relation.referencesChu, M., Chen, X., Wang, J., Guo, L., Wang, Q., Gao, Z., Kang, J., Zhang, M., Feng, J., Guo, Q., Li, B., Zhang, C., 2018. Polypharmacology of Berberine Based on Multi-Target Binding Motifs. Front. Pharmacol. 9, 801. https://doi.org/10.3389/fphar.2018.00801spa
dc.relation.referencesCollaborators, G. 2016 D., 2019. Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 18, 88–106. https://doi.org/10.1016/S1474-4422(18)30403-4spa
dc.relation.referencesCosta, R.S., Lins, M.O., Le, M., Barros, T.F., Velozo, E.S., 2017. In vitro antibacterial effects of Zanthoxylum tingoassuiba root bark extracts and two of its alkaloids against multiresistant Staphylococcus aureus. Rev. Bras. Farmacogn. 27, 195–198. https://doi.org/10.1016/j.bjp.2016.11.001spa
dc.relation.referencesCruz, M.I., Cidade, H., Pinto, M., 2017. Dual/multitargeted xanthone derivatives for Alzheimer’s disease: where do we stand? Future Med. Chem. 9, 1611–1630.spa
dc.relation.referencesDawkins, E., Small, D., 2014. Insights into the physiological function of the β‐amyloid precursor protein: beyond Alzheimer’s disease. J. Neurochem. 129, 756–769. https://doi.org/10.1111/jnc.12675spa
dc.relation.referencesDinamarca, M., Sagal, J., Quintanilla, R., Godoy, J., Arrázola, M., Inestrosa, N., 2010. Amyloid-beta-Acetylcholinesterase complexes potentiate neurodegenerative changes induced by the Abeta peptide. Implications for the pathogenesis of Alzheimer’s disease. Mol. Neurodegener. 5, 4. https://doi.org/10.1186/1750-1326-5-4.spa
dc.relation.referencesDoncheva, T., Yordanova, G., Vutov, V., Kostova, N., Philipov, S., 2015. Comparative study of alkaloid profile of Corydalis slivenensis Vel. And Corydalis solida L. Comptes Rendus L’Academie Bulg. des Sci. 68, 843.spa
dc.relation.referencesDong, S., Duan, Y., Hu, Y., Zhao, Z., 2012. Advances in the pathogenesis of Alzheimer’s disease: a re-evaluation of amyloid cascade hypothesis. Transl. Neurodegener. 1, 18. https://doi.org/10.1186/2047-9158-1-18spa
dc.relation.referencesDreyer, D., Brenner, R., 1980. Alkaloids of some Mexican Zanthoxylum species. Phytochemistry 19, 935–939. https://doi.org/10.1016/0031-9422(80)85141-7spa
dc.relation.referencesDundar, Y., Kuyrukcu, O., Eren, G., Senol, S., Onkol, T., Orhan, I., 2019. Novel pyridazinone derivatives as butyrylcholinesterase inhibitors. Bioorg. Chem. 92, 103304. https://doi.org/10.1016/j.bioorg.2019.103304spa
dc.relation.referencesDvir, H., Silman, I., Harel, M., Rosenberry, T., Sussman, J., 2010. Acetylcholinesterase: From 3D structure to function. Chem. Biol. Interact. 187, 10–22. https://doi.org/10.1016/j.cbi.2010.01.042spa
dc.relation.referencesEdmondson, D., Mattevi, A., Binda, C., Li, M., Hubalek, F., 2004. Structure and Mechanism of Monoamine Oxidase. Curr. Med. Chem. 11, 1983–1993. https://doi.org/10.2174/0929867043364784spa
dc.relation.referencesEsteban, G., Allan, J., Samadi, A., Mattevi, A., Unzeta, M., Marco-Contelles, J., Binda, C., Ramsay, R.R., 2014. Kinetic and structural analysis of the irreversible inhibition of human monoamine oxidases by ASS234, a multi-target compound designed for use in Alzheimer’s disease. Biochim. Biophys. Acta - Proteins Proteomics. https://doi.org/10.1016/j.bbapap.2014.03.006spa
dc.relation.referencesFazel, N., Uriarte, E., Rastrelli, L., Modak, B., Sobarzo-Sánchez, E., 2016. Aporphines and Parkinson’s Disease: Medical Tools for the Future. Curr. Top. Med. Chem. 16, 1906–1909. https://doi.org/10.2174/1568026616666160204122935spa
dc.relation.referencesFeng, X., Liang, N., Zhu, D., Gao, Q., Peng, L., Dong, H., Yue, Q., Liu, H., Bao, L., Zhang, J., Hao, J., Gao, Y., Yu, X., Sun, J., 2013. Resveratrol Inhibits β-Amyloid-Induced Neuronal Apoptosis through Regulation of SIRT1-ROCK1 Signaling Pathway. PLoS One 8, e59888. https://doi.org/10.1371/journal.pone.0059888spa
dc.relation.referencesFernandes, C., Vieira, P., Silva, V., Dall’Oglio, E., Silva, L., Sousa, P., 2009. 6-Acetonyl-N-methyl-dihydrodecarine, a new alkaloid from Zanthoxylum riedelianum. J. Braz. Chem. Soc 20, 379–382. https://doi.org/dx.doi.org/10.1590/S0103-50532009000200025spa
dc.relation.referencesFerrari, G.V. De, Mallender, W.D., Inestrosa, N.C., Rosenberry, T.L., 2001. Thioflavin T is a fluorescent probe of the acetylcholinesterase peripheral site that reveals conformational interactions between the peripheral and acylation sites. J. Biol. Chem. 276, 23282–23287. https://doi.org/10.1074/jbc.M009596200spa
dc.relation.referencesGao, C., Du, Y., Wang, X., Cao, H., Lin, B., Liu, Y., Di, X., 2018. Hexahydrobenzophenanthridine alkaloids from Corydalis bungeana Turcz. and their anti-inflammatory activity. Bioorganic Med. Chem. Lett. 28, 2265–2269. https://doi.org/10.1016/j.bmcl.2018.05.039spa
dc.relation.referencesGareri, P., Putignano, D., Castagna, A., Cotroneo, A., De Palo, G., Fabbo, A., Simone, M., 2014. Retrospective study on the benefits of combined Memantine and cholinEsterase inhibitor treatMent in AGEd Patients affected with Alzheimer’s Disease: the MEMAGE study. J. Alzheimer’s Dis. 41, 633–640. https://doi.org/10.3233/JAD-132735spa
dc.relation.referencesGeldenhuys, W., Schyf, C., 2013. Designing drugs with multi-target activity: the next step in the treatment of neurodegenerative disorders. Expert Opin. Drug Discov. 8, 115–129. https://doi.org/10.1517/17460441.2013.744746spa
dc.relation.referencesGreenblatt, H., Dvir, H., Silman, I., Sussman, J., 2003. Acetylcholinesterase. J. Mol. Neurosci. 20, 369–383. https://doi.org/10.1385/JMN:20:3:369spa
dc.relation.referencesGuzior, N., Wieckowska, A., Panek, D., Malawska, B., 2015. Recent development of multifunctional agents as potential drug candidates for the treatment of Alzheimer’s disease. Curr. Med. Chem. 22, 373–404.spa
dc.relation.referencesHagel, J., Facchini, P., 2013. Benzylisoquinoline alkaloid metabolism: a century of discovery and a brave new world. Plant Cell. Physiol. 54, 647–672. https://doi.org/10.1093/pcp/pct020spa
dc.relation.referencesHamouda, A., Kimm, T., Cohen, J., 2013. Physostigmine and galanthamine bind in the presence of agonist at the canonical and noncanonical subunit interfaces of a nicotinic acetylcholine receptor. J. Neurosci. 33, 485–494. https://doi.org/10.1523/JNEUROSCI.3483-12.2013spa
dc.relation.referencesHarvey, A., Edrada-Ebel, R., Quinn, R., 2015. The re-emergence of natural products for drug discovery in the genomics era. Nat. Rev. Drug Discov. 14, 111–129. https://doi.org/10.1038/nrd4510spa
dc.relation.referencesHoldgate, G.A., Meek, T.D., Grimley, R.L., 2018. Mechanistic enzymology in drug discovery: A fresh perspective. Nat. Rev. Drug Discov. https://doi.org/10.1038/nrd.2017.219spa
dc.relation.referencesHuang, L., Luo, Z., He, F., Shi, A., Qin, F., Li, X., 2010b. Berberine derivatives, with substituted amino groups linked at the 9-position, as inhibitors of acetylcholinesterase/butyrylcholinesterase. Bioorganic Med. Chem. Lett. 20, 6649–6652. https://doi.org/10.1016/j.bmcl.2010.09.013spa
dc.relation.referencesInestrosa, N., Dinamarca, M., Alvarez, A., 2008. Amyloid–cholinesterase interactions Implications for Alzheimer’s disease. FEBS J. 275, 625–632. https://doi.org/10.1111/j.1742-4658.2007.06238.xspa
dc.relation.referencesIngkaninan, K., Temkitthawon, P., Chuenchom, K., Yuyaem, T., Thongnoi, W., 2003. Screening for acetylcholinesterase inhibitory activity in plants used in Thai traditional rejuvenating and neurotonic remedies. J. Ethnopharmacol. https://doi.org/10.1016/j.jep.2003.08.008spa
dc.relation.referencesjackisch, R., Förster, S., Kammerer, M., Rothmaier, A., Ehret, A., Zentner, J., Feuerstein, T., 2009. Inhibitory potency of choline esterase inhibitors on acetylcholine release and choline esterase activity in fresh specimens of human and rat neocortex. J. Alzheimer’s Dis. 16, 635–647. https://doi.org/10.3233/JAD-2009-1008spa
dc.relation.referencesJeon, Y., Jung, J., Kang, M., Chung, I.-K., Lee, W., 2002. NMR studies on antitumor drug candidates, berberine and berberrubine. Bull. Korean Chem. Soc. 23, 391–394. https://doi.org/10.5012/bkcs.2002.23.3.391spa
dc.relation.referencesJin, M., Shepardson, N., Yang, T., Chen, G., Walsh, D., Selkoe, D., 2011. Soluble amyloid β-protein dimers isolated from Alzheimer cortex directly induce Tau hyperphosphorylation and neuritic degeneration. Proc. Natl. Acad. Sci. 108, 5819–5824. https://doi.org/10.1073/pnas.1017033108spa
dc.relation.referencesamigauchi, M., Yoshida, M., Noda, Y., Nishijo, J., In, Y., Tomoo, K., Ohishi, H., Ishida, T., 2003. Difference between Enzymatic and Chemical N-methylations of Protoberberine-Type Alkaloid, Dependent on the Stereoisomer of (−)-N-methyl-7, 8, 13, 13a-tetrahydroberberinium Salt. ulletin Chem. Soc. Japan 76, 587–593. https://doi.org/doi.org/10.1246/bcsj.76.587spa
dc.relation.referencesKepp, K.P., 2012. Bioinorganic chemistry of Alzheimer’s disease. Chem. Rev. 112, 5193–5239. https://doi.org/10.1021/cr300009xspa
dc.relation.referencesKhanna, I., 2012. Drug discovery in pharmaceutical industry: productivity challenges and trends. Drug Discov. Today 17, 1088–1102. https://doi.org/10.1016/j.drudis.2012.05.007spa
dc.relation.referencesKong, L., Cheng, C., Tan, R., 2001. Monoamine oxidase inhibitors from rhizoma of Coptis chinensis. Planta Med. 67, 74–76.spa
dc.relation.referencesKrane, B., Fagbule, M., Shamma, M., Gözler, M., 1984. The Benzophenanthridine Alkaloids. J. Nat. Prod. 4, 1–43.spa
dc.relation.referencesKumar, R., Nordberg, A., Darreh-Shori, T., 2016. Amyloid-β peptides act as allosteric modulators of cholinergic signalling through formation of soluble BAβACs. Brain 139, 174–192. https://doi.org/10.1093/brain/awv318spa
dc.relation.referencesLane, R., Potkin, S., Enz, A., 2016. Targeting Acetylcholinesterase and butyrylcholinesterase in dementia Targeting acetylcholinesterase and butyrylcholinesterase in dementia. Int. J. Neuropsychopharmacol. 9, 101–124. https://doi.org/10.1017/S1461145705005833spa
dc.relation.referencesLeon, R., Garcia, A., Marco‐Contelles, J., 2013. Recent advances in the multitarget‐directed ligands approach for the treatment of Alzheimer’s disease. Med. Res. Rev. 33, 139–189. https://doi.org/10.1002/med.20248spa
dc.relation.referencesLiscombe, D., Macleod, B., Loukanina, N., Nandi, O., Facchini, P., 2005. Evidence for the monophyletic evolution of benzylisoquinoline alkaloid biosynthesis in angiosperms. Phytochemistry 66, 1374–1393. https://doi.org/10.1016/j.phytochem.2005.04.029spa
dc.relation.referencesMacalino, S.J.Y., Gosu, V., Hong, S., Choi, S., 2015. Role of computer-aided drug design in modern drug discovery. Arch. Pharm. Res. 38, 1686–1701. https://doi.org/10.1007/s12272-015-0640-5spa
dc.relation.referencesMaity, S., Gundampati, R.K., Kumar, T.K.S., 2019. NMR methods to characterize protein-ligand interactions. Nat. Prod. Commun. 14, 1934578X19849296. https://doi.org/10.1177/1934578X19849296spa
dc.relation.referencesMallya, R., Malim, F., Naik, A., Bhitre, M., 2019. Evaluation of Anthelmintic Potential of Leaves and Fruits of Zanthoxylum rhetsa. Pharmacogn. J. 11, 475–478. https://doi.org/10.5530/pj.2019.11.75spa
dc.relation.referencesMarco-Contelles, J., 2019. Facts, Results, and Perspectives of the Current Alzheimer’s Disease Research. ACS Chem. Neurosci. 10, 1127–1128. https://doi.org/10.1021/acschemneuro.9b00034spa
dc.relation.referencesMathew, M., Subramanian, S., 2014. In vitro screening for anti-cholinesterase and antioxidant activity of methanolic extracts of ayurvedic medicinal plants used for cognitive disorders. PLoS One 9, In vitro screening for anti-cholinesterase and ant. https://doi.org/10.1371/journal.pone.0086804spa
dc.relation.referencesMishra, P., Kumar, A., Panda, G., 2019. Anti-cholinesterase hybrids as multi-target-directed ligands against Alzheimer’s disease (1998-2018). Bioorg. Med. Chem. 27, 895–930. https://doi.org/10.1016/j.bmc.2019.01.025spa
dc.relation.referencesMohamed, T., Shakeri, A., Rao, P., 2016. Amyloid cascade in Alzheimer’s disease: recent advances in medicinal chemistry. Eur. J. Med. Chem. 113, 258–272. https://doi.org/10.1016/j.ejmech.2016.02.049spa
dc.relation.referencesNantongo, J., Odoi, J., Abigaba, G., Gwali, S., 2018. Variability of phenolic and alkaloid content in different plant parts of Carissa edulis Vahl and Zanthoxylum chalybeum Engl. BMC Res. Notesspa
dc.relation.referencesNg, Y., Cho, T., Or, T., Ip, N., 2015. Plant alkaloids as drug leads for Alzheimer’s disease. Neurochem. Int. 89, 260–270. https://doi.org/10.1016/j.neuint.2015.07.018spa
dc.relation.referencesO’Keefe, B., Beecher, C., 1994. Isolation and characterization of S-adenosyl-L-methionine: tetrahydroberberine-cis-N-methyltransferase from suspension cultures of Sanguinaria canadensis L. Plant Physiol. 105, 395–403. https://doi.org/137.189.171.235spa
dc.relation.referencesOset-Gasque, M., Marco-Contelles, J., 2018. Alzheimer’s Disease, the “one-Molecule, One-Target” Paradigm, and the Multitarget Directed Ligand Approach. ACS Chem. Neurosci. 9, 401–403. https://doi.org/10.1021/acschemneuro.8b00069spa
dc.relation.referencesPadilla, F., Diazgranados, M., Da Costa, F., 2017. Biogeography shaped the metabolome of the genus Espeletia: A phytochemical perspective on an Andean adaptive radiation. Sci. Rep. 7, 8835. https://doi.org/10.1038/s41598-017-09431-7spa
dc.relation.referencesPadilla, F., Diazgranados, M., Da Costa, F., 2017. Biogeography shaped the metabolome of the genus Espeletia: A phytochemical perspective on an Andean adaptive radiation. Sci. Rep. 7, 8835. https://doi.org/10.1038/s41598-017-09431-7spa
dc.relation.referencesPatiño, O., Cuca, L., 2011. Monophyllidin, a new alkaloid L-proline derivative from Zanthoxylum monophyllum. Phytochem. Lett. 4, 22–25. https://doi.org/10.1016/j.phytol.2010.10.002spa
dc.relation.referencesPatiño, O., Prieto, J., Lozano, J., Lesmes, L., Cuca, L., 2011. Propiedades antibacterianas in vitro de metabolitos secundarios aislados de dos especies del género Zanthoxylum (Rutaceae). Rev. Cuba. Farm. 45, 431–438.spa
dc.relation.referencesPerrett, S., Whitfield, P.J., 1995. Atanine (3-dimethylallyl-4-methoxy-2-quinolone), an alkaloid with anthelmintic activity from the Chinese medicinal plant, Evodia rutaecarpa. Planta Med. https://doi.org/10.1055/s-2006-958073spa
dc.relation.referencesingali, S., Donahue, J., Payton-stewart, F., 2015. Tetrahydroberberine, a pharmacologically active naturally occurring alkaloid. Acta Crystallogr. Sect. C Struct. Chem. 71, 262–265. https://doi.org/10.1107/S2053229615004076spa
dc.relation.referencesPluskal, T., Castillo, S., Villar-Briones, A., Orešič, M., 2010. MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics 11, 395. https://doi.org/10.1186/1471-2105-11-395spa
dc.relation.referencesPorat, Y., Abramowitz, A., Gazit, E., 2006. Inhibition of amyloid fibril formation by polyphenols: Structural similarity and aromatic interactions as a common inhibition mechanism. Chem. Biol. Drug Des. 67, 27–37. https://doi.org/10.1111/j.1747-0285.2005.00318.xspa
dc.relation.referencesQing, Z., Cheng, P., Liu, X., Liu, Y., Zeng, J., 2015. Systematic identification of alkaloids in Macleaya microcarpa fruits by liquid chromatography tandem mass spectrometry combined with the isoquinoline alkaloids biosynthetic pathway. J. Pharm. Biomed. Anal. 103, 26–34. https://doi.org/10.1016/j.jpba.2014.11.002spa
dc.relation.referencesR-antagonismus, M.H., Ismaili, L., Joffrin, P., Jimeno, M.L., Kalinowsky, L., Proschak, E., Iriepa, I., Moraleda, I., Schwed, J.S., Martínez, A.R., López-muçoz, F., Chioua, M., Egea, J., Ramsay, R.R., Marco-contelles, J., Stark, H., 2017. Multipotente Liganden mit kombinierter Cholinesterase- und Monoaminooxidase-Inhibition sowie Histamin-H 3 R-Antagonismus bei neurodegenerativen Erkrankungen 1–6. https://doi.org/10.1002/ange.201706072spa
dc.relation.referencesRamsay, R., Albreht, A., 2018. Kinetics, mechanism, and inhibition of monoamine oxidase. J. Neural Transm. 125, 1659–1683. https://doi.org/10.1007/s00702-018-1861-9spa
dc.relation.referencesRamsay, R., Nikolic, M., Nikolic, K., Uliassi, E., Bolognesi, M., 2018. A perspective on multi-target drug discovery and design for complex diseases. Clin. Transl. Med. 7, 3. https://doi.org/10.1186/s40169-017-0181-2spa
dc.relation.referencesRamsay, R.R., Majekova, M., Medina, M., Valoti, M., 2016. Key targets for multi-target ligands designed to combat neurodegeneration. Front. Neurosci. 10. https://doi.org/10.3389/fnins.2016.00375spa
dc.relation.referencesRenaud, J., Delsuc, M.-A., 2009. Biophysical techniques for ligand screening and drug design. Curr. Opin. Pharmacol. 9, 622–628. https://doi.org/10.1016/j.coph.2009.06.008spa
dc.relation.referencesRoher, A.E., Kokjohn, T.A., Clarke, S.G., Sierks, M.R., Maarouf, C.L., Serrano, G.E., Sabbagh, M.S., Beach, T.G., 2017. APP/Aβ structural diversity and Alzheimer’s disease pathogenesis. Neurochem. Int. 110, 1–13. https://doi.org/10.1016/j.neuint.2017.08.007spa
dc.relation.referencesSandjo, L., Kuete, V., Tchangna, R., Efferth, T., Ngadjui, B., 2014. Cytotoxic Benzophenanthridine and Furoquinoline Alkaloids from Zanthoxylum buesgenii (Rutaceae). Chem. Cent. J. 8, 61. https://doi.org/10.1186/s13065-014-0061-4spa
dc.relation.referencesSchliebs, R., Arendt, T., 2011. The cholinergic system in aging and neuronal degeneration. Behav. Brain Res. 221, 555–563. https://doi.org/10.1016/j.bbr.2010.11.058 Schliebs, R., Arendt, T., 2006. Review The significance of the cholinergic system in the brain during aging and in Alzheimer ’ s disease 1625–1644. https://doi.org/10.1007/s00702-006-0579-2spa
dc.relation.referencesSilva, T., Reis, J., Teixeira, J., Borges, F., 2014. Alzheimer’s disease, enzyme targets and drug discovery struggles: From natural products to drug prototypes. Ageing Res. Rev. 15, 116–145. https://doi.org/10.1016/j.arr.2014.03.008spa
dc.relation.referencesSingh, A., Bajpai, V., Srivastava, M., Arya, K., Kumar, B., 2014. apid profiling and structural characterization of bioactive compounds and their distribution in different parts of Berberis petiolaris Wall. ex G. Don applying hyphenated mass spectrometric techniques. Rapid Commun. Mass Spectrom. 28, 2089–2100. https://doi.org/10.1002/rcm.7001spa
dc.relation.referencesSugino, H., Watanabe, A., Amada, N., Yamamoto, M., Ohgi, Y., Kostic, D., Sanchez, R., 2015. Global Trends in Alzheimer Disease Clinical Development : Increasing the Probability of Success. Clin. Ther. 37, 1632–1642. https://doi.org/10.1016/j.clinthera.2015.07.006spa
dc.relation.referencesSwerdlow, R.H., 2007. Pathogenesis of Alzheimer’s disease. Clin Interv Aging 2, 347–359.spa
dc.relation.referencesTalevi, A., 2015. Multi-target pharmacology: possibilities and limitations of the “skeleton key approach” from a medicinal chemist perspective. Front. Pharmacol. 6, 205. https://doi.org/10.3389/fphar.2015.00205spa
dc.relation.referencesTalić, S., Dragičević, I., Ćorajević, L., Martinović, A., 2014. Acetylcholinesterase and butyrylcholinesterase inhibitory activity of extracts from medicinal plants. Bull. Chem. Technol. Bosnia Herzegovina 43, 11–14.spa
dc.relation.referencesTavares, L., Graciane, Z., Weber, D., Neto, A., Mostardeiro, C., Cruz, I., Oliveira, R., Ilha, V., Dalcol, I., Morel, A., 2014. Structure-activity relationship of benzophenanthridine alkaloids from Zanthoxylum rhoifolium having antimicrobial activity. PLoS One 9, e97000. https://doi.org/10.1371/journal.pone.0097000spa
dc.relation.referencesTsai, S., Lee, S., 2010. Characterization of acetylcholinesterase inhibitory constituents from Annona glabra assisted by HPLC microfractionation. J. Nat. Prod. 73, 1632–1635. https://doi.org/10.1021/np100247rspa
dc.relation.referencesViegas, A., Manso, J., Nobrega, F., Cabrita, E., 2011. Saturation-transfer difference (STD) NMR: a simple and fast method for ligand screening and characterization of protein binding. J. Chem. Educ. 88, 990–994. https://doi.org/10.1021/ed101169tspa
dc.relation.referencesVinutha, B., Prashanth, D., Salma, K., Sreeja, S., Pratiti, D., Padmaja, R., Radhika, S., Amit, A., Venkateshwarlu, K., Deepak, M., 2007. Screening of selected Indian medicinal plants for acetylcholinesterase inhibitory activity. J. Ethnopharmacol. 109, 359–363. https://doi.org/10.1016/j.jep.2006.06.014spa
dc.relation.referencesWang, Y., Liu, D., Wyss, D.F., 2015. Competition STD NMR for the detection of high-affinity ligands and NMR-based screening 485–489. https://doi.org/10.1002/mrc.1381spa
dc.relation.referencesWei, X., Shen, H., Wang, L., Meng, Q., Liu, W., 2016. Analyses of total alkaloid extract of corydalis yanhusuo by comprehensive RP× RP liquid chromatography with pH difference. J. Anal. Methods Chem. 2016, 1–8. https://doi.org/10.1155/2016/9752735spa
dc.relation.referencesWeinreb, O., Amit, T., Bar-Am, O., Youdim, M., 2012. Ladostigil: A Novel Multimodal Neuroprotective Drug with Cholinesterase and Brain-Selective Monoamine Oxidase Inhibitory Activities for Alzheimers Disease Treatment. Curr. Drug Targets 13, 483–494. https://doi.org/10.2174/138945012799499794spa
dc.relation.referencesWiklund, S., Johansson, E., Sjöström, L., Mellerowicz, E., Edlund, U., Shockcor, J., Gottfries, J., Moritz, T., Trygg, J., 2008. Visualization of GC/TOF-MS-based metabolomics data for identification of biochemically interesting compounds using OPLS class models. Anal. Chem. 80, 115–122. https://doi.org/10.1021/ac0713510spa
dc.relation.referencesWilliams, P., Sorribas, A., Howes, M.J.R., 2011. Natural products as a source of Alzheimer’s drug leads. Nat. Prod. Rep. 28, 48–77. https://doi.org/10.1039/c0np00027bspa
dc.relation.referencesProd. Rep. 36, 855–868. https://doi.org/10.1039/c9np00004f Wolfender, J., Marti, G., Thomas, A., Bertrand, S., 2015. Current approaches and challenges for the metabolite profiling of complex natural extracts. J. Chromatogr. A 1382, 136–164. https://doi.org/10.1016/j.chroma.2014.11.043spa
dc.relation.referencesWszelaki, N., Kuciun, A., Kiss, A., 2010. Screening of traditional European herbal medicines for acetylcholinesterase and butyrylcholinesterase inhibitory activity. Acta Pharm. 60, 119–128. https://doi.org/10.2478/v10007-010-0006-yspa
dc.relation.referencesXiao, J., Tundis, R., 2013. Natural products for Alzheimer’s disease therapy: basic and application. J. Pharm. Pharmacol. 65, 1679–1680. https://doi.org/10.1111/jphp.12186spa
dc.relation.referencesYang, S., Liu, Y., Wang, J., Wang, Y., Pan, W., Sheng, W., 2014. Isoquinoline alkaloids from Zanthoxylum simulans and their biological evaluation 1–4. https://doi.org/10.1038/ja.2014.139spa
dc.relation.referencesYeong, K., Liew, W., Murugaiyah, V., Ang, C., Osman, H., Tan, S., 2017. Ethyl nitrobenzoate: A novel scaffold for cholinesterase inhibition. Bioorg. Chem. 70, 27–33. https://doi.org/10.1016/j.bioorg.2016.11.005spa
dc.relation.referencesYuliana, N., Khatib, A., Choi, Y., Verpoorte, R., 2011. Metabolomics for bioactivity assessment of natural products. Phyther. Res. 25, 157–169. https://doi.org/10.1002/ptr.3258spa
dc.relation.referencesZheng, H., Fridkin, M., Youdim, M., 2014. From single target to multitarget/network therapeutics in Alzheimer’s therapy. Pharmaceuticals 7, 113–135. https://doi.org/10.3390/ph7020113spa
dc.relation.referencesZuo, Z., Zheng, Y., Liang, Z., Liu, Y., Tang, Q., Liu, X., Zhao, Z., 2017. Tissue-specific metabolite profiling of benzylisoquinoline alkaloids in the root of Macleaya cordata by combining laser microdissection with ultra-high-performance liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom 31, 397–410. https://doi.org/10.1002/rcm.7804spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc610 - Medicina y salud::615 - Farmacología y terapéuticaspa
dc.subject.proposalBenzophenanthridineseng
dc.subject.proposalBenzofenantridinasspa
dc.subject.proposalMetabolómicaspa
dc.subject.proposalMetabolomicseng
dc.subject.proposalAnálisis estadístico multivariadospa
dc.subject.proposalMultivariate statistical analyseseng
dc.subject.proposalEnzyme inhibitorseng
dc.subject.proposalInhibidores enzimáticosspa
dc.subject.proposalCholinesteraseeng
dc.subject.proposalColinesterasasspa
dc.subject.proposalMonoamino oxidasasspa
dc.subject.proposalMonoamine oxidaseeng
dc.subject.proposalβ-Amyloideng
dc.subject.proposalβ-amiloidespa
dc.titleBúsqueda racional de alcaloides isoquinolínicos del género Zanthoxylum (Rutaceae) como posibles agentes multifuncionales para el tratamiento del Alzheimerspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
46385503.2020.pdf.pdf
Tamaño:
11.14 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.9 KB
Formato:
Item-specific license agreed upon to submission
Descripción: