Many-objective problems optimization focused on energy efficiency applied to 5G heterogeneous cellular networks using the small cell switch-off framework

dc.contributor.advisorEslava Garzon, Johan Sebastianspa
dc.contributor.authorAriza Vesga, Luis Felilpespa
dc.contributor.researchgroup¨Sistemas de telecomunicaciones de próxima generación¨ del centro de investigaciones ID: TOLUspa
dc.date.accessioned2020-06-01T18:45:39Zspa
dc.date.available2020-06-01T18:45:39Zspa
dc.date.issued2020-05-29spa
dc.description.abstractThis Ph.D. dissertation addresses the Many-Objective Optimization Problem (MaOP) study to reduce the inter-cell interference and the power consumption for realistic Centralized, Collaborative, Cloud, and Clean Radio Access Networks (C-RANs). It uses the Cell Switch-Off (CSO) scheme to switch-off/on Remote Radio Units (RRUs) and the Coordinated Scheduling (CS) technique to allocate resource blocks smartly. The EF1-NSGA-III (It is a variation of the NSGA-III algorithm that uses the front 1 to find extreme points at the normalization procedure extended in this thesis) algorithm is employed to solve a proposed Many-Objective Optimization Problem (MaOP). It is composed of four objective functions, four constraints, and two decision variables. However, the above problem is redefined to have three objective functions to see the performance comparison between the NSGA-II and EF1-NSGA-III algorithms. The OpenAirInterface (OAI) platform is used to evaluate and validate the performance of an indoor coverage system because most of the user-end equipment of next-generation cellular networks will be in an indoor environment. It constitutes the fastest growing 5G open-source platform that implements 3GPP technology on general-purpose computers, fast Ethernet transport ports, and Commercial-Off-The-Shelf (COTS) software-defined radio hardware. This document is composed of five contributions. The first one is a survey about testbed, emulators, and simulators for 4G/5G cellular networks. The second one is the extension of the KanGAL's NSGA-II code to implement the EF1-NSGA-III, adaptive EF1-NSGA-III (A-EF1-NSGA-III), and efficient adaptive EF1-NSGA-III (A$^2$-EF1-NSGA-III). They support up to 10 objective functions, manage real, integer, and binary decision variables, and many constraints. The above algorithms outperform other works in terms of the Inverted Generational Distance (IGD) metric. The third contribution is the implementation of real-time emulation methodologies for C-RANs using a frequency domain representation in OAI. It improves the average computation time 10-fold compared to the time domain without using Radio Frequency hardware and avoids their uncertainties. The fourth one is the implementation of the Coordination Scheduling (CS) technique as a proof-of-concept to validate the advantages of frequency domain methodologies and to allocate resource blocks dynamically among RRUs. Finally, a many-objective optimization problem is defined and solved with evolutionary algorithms where diversity is managed based on crowded-distance and reference points to reduce the power consumption for C-RANs. The solutions obtained are considered to control the scheduling task at the Radio Cloud Center (RCC) and to switch RRUs.spa
dc.description.abstractEste disertación aborda el estudio del problema de optimización de varios objetivos (MaOP) para reducir la interferencia entre células y el consumo de energía para redes de acceso de radio en tiempo real, colaborativas, en la nube y limpias (C-RAN). Utiliza el esquema de conmutacion de celdas (CSO) para apagar / encender unidades de radio remotas (RRU) y la técnica de programación coordinada (CS) para asignar bloques de recursos de manera inteligente. El algoritmo EF1-NSGA-III (es una variación del algoritmo NSGA-III que usa el primer frente de pareto para encontrar puntos extremos en el procedimiento de normalización extendido en esta tesis) se utiliza para resolver un problema de optimización de varios objetivos (MaOP) propuesto. Se compone de cuatro funciones objetivos, cuatro restricciones y dos variables de decisión. Sin embargo, el problema anterior se redefine para tener tres funciones objetivas para ver la comparación de rendimiento entre los algoritmos NSGA-II y EF1-NSGA-III. La plataforma OpenAirInterface (OAI) se utiliza para evaluar y validar el rendimiento de un sistema de cobertura en interiores porque la mayoría del equipos móviles de las redes celulares de próxima generación estarán en un entorno interior. Ella constituye la plataforma de código abierto 5G de más rápido crecimiento que implementa la tecnología 3GPP en computadoras de uso general, puertos de transporte Ethernet rápidos y hardware de radio definido por software comercial (COTS). Este documento se compone de cinco contribuciones. La primera es una estudio sobre banco de pruebas, emuladores y simuladores para redes celulares 4G / 5G. El segundo es la extensión del código NSGA-II de KanGAL para implementar EF1-NSGA-III, EF1-NSGA-III adaptativo (A-EF1-NSGA-III) y EF1-NSGA-III adaptativo eficiente (A $ ^ 2 $ -EF1-NSGA-III). Admiten hasta 10 funciones objetivas, gestionan variables de decisión reales, enteras y binarias, y muchas restricciones. Los algoritmos anteriores superan a otros trabajos en términos de la métrica de distancia generacional invertida (IGD). La tercera contribución es la implementación de metodologías de emulación en tiempo real para C-RAN utilizando una representación de dominio de frecuencia en OAI. Mejora el tiempo de cálculo promedio 10 veces en comparación con el dominio del tiempo sin usar hardware de radiofrecuencia y evita sus incertidumbres. El cuarto es la implementación de la técnica de Programación de Coordinación (CS) como prueba de concepto para validar las ventajas de las metodologías de dominio de frecuencia y asignar bloques de recursos dinámicamente entre las RRU. Finalmente, un problema de optimización de muchos objetivos se define y resuelve con algoritmos evolutivos en los que la diversidad se gestiona en función de la distancia de crouding y los puntos de referencia para reducir el consumo de energía de las C-RAN. Las soluciones obtenidas controlan la tarea de programación en Radio Cloud Center (RCC) y conmutan las RRU.spa
dc.description.additionalProyecto personal: Redes celulares de próxima generaciónspa
dc.description.degreelevelDoctoradospa
dc.format.extent117spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77582
dc.language.isoengspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.programBogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Eléctricaspa
dc.relation.references3GPP: Study on new radio access technology: Radio access architecture and interfaces. 2017 ( TR 38.801). – Informe de Investigaciónspa
dc.relation.references3GPP: Evolved Universal Terrestrial Radio Access (E- UTRA): Physical layer procedures / 3rd Generation Partnership Project (3GPP). 2018 ( 36.213). – Technical Specifications (TS). Version 15.3.0.spa
dc.relation.references3GPP: Study on channel model for frequencies from 0.5 to 100 GHz / 3rd Generation Partnership Project (3GPP). 2018 ( 38.901). – Technical Report (TR). Version 14.0.0.spa
dc.relation.referencesAKIYAMA, Yuko: New Potential of OpenAirInterface as the Private LTE. Mai 2018. – https://goo.gl/3LGVXu.spa
dc.relation.referencesAlba, A. M. ; Basta, A. ; Velasquez, J. H. G. ; Kellerer, W.: A Realistic Coordinated Scheduling Scheme for the Next-Generation RAN. En: 2018 IEEE Global Communications Conference (GLOBECOM), 2018. – ISSN 2576–6813, p. 1–7.spa
dc.relation.referencesAldaeabool, S. R. ; Abbod, M. F.: Reducing power consumption by dynamic BBUsRRHs allocation in C-RAN. En: 2017 25th Telecommunication Forum (TELFOR), 2017, p. 1–4.spa
dc.relation.referencesSoftware alliance, 5G O.: 5th OAI General Workshop: Status and Objectives for 2018-2019. Januar 2018. – https://goo.gl/wyauqA.spa
dc.relation.referencesAlliance, O. S.: OpenAirInterface5G master repository. 2020. https://gitlab.eurecom.fr/oai/openairinterface5g.spa
dc.relation.referencesAlliance, O. S.: OpenAirInterface5G master large scale emulations repository. 2020. https://gitlab.eurecom.fr/oai/openairinterface5g/tree/master_large_scale_emulations,spa
dc.relation.referencesAlliance, OpenAirInterface S.: OpenAirInterface. 2020. http://www.openairinterface.org.spa
dc.relation.referencesAlliance, OpenAirInterface S.: OpenAirInterface5G large scale simulations repository. 2020. https://gitlab.eurecom.fr/oai/openairinterface5g/tree/large_scale_simulations.spa
dc.relation.referencesAnand, A. ; de Veciana, G.: Resource Allocation and HARQ Optimization for URLLC Traffic in 5G Wireless Networks. En: IEEE Journal on Selected Areas in Communications 36 (2018), Nov, Nr. 11, p. 2411–2421.spa
dc.relation.referencesAnouar, Hicham ; Bonnet, Christian ; Camara ˆ , Daniel ; Filali, Fethi ; Knopp, Raymond: An Overview of OpenAirInterface Wireless Network Emulation Methodology. En: SIGMETRICS Perform. Eval. Rev. 36 (2008), August, Nr. 2, p. 90–94. – ISSN 0163–5999.spa
dc.relation.referencesAriza Vesga, L. F.: Box-Muller and Ziggurat optimized algorithms using SIMD instructions. 2020. https://github.com/lfarizav/pseudorandomnumbergenerators.spa
dc.relation.referencesAriza Vesga, L. F.: NSGA-III: A Fast Non-Dominated Sorting Genetic Algorithm Extension to Solve Many-Objective Problems. 2020. https://github.com/lfarizav/NSGA-III.spa
dc.relation.referencesAriza Vesga, L. F.: NSGA-III: A Fast Non-Dominated Sorting Genetic Algorithm Extension to Solve Many-Objective Problems. 2020. https://ieee-dataport.org/documents/nsga-iii.spa
dc.relation.referencesAriza Vesga, L. F. ; Knopp, R. ; Garzon, S. E.: Real-time Emulation Methodologies for Centralized Radio Access Networks. En: 2019 IEEE 20th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), 2019, p. 1–5.spa
dc.relation.referencesAriza Vesga, Luis F.: A basic Genetic Algorithm. 2020. https://github.com/lfarizav/geneticalgorithm.spa
dc.relation.referencesAriza Vesga, Luis F.: Emulacion de redes 5G. 2020. https://escueladeverano.javerianaeducacioncontinua.com/redes-5g.spa
dc.relation.referencesBader, J. ; Zitzler, E.: HypE: An Algorithm for Fast Hypervolume-Based ManyObjective Optimization. En: Evolutionary Computation 19 (2011), March, Nr. 1, p. 45–76. – ISSN 1063–6560.spa
dc.relation.referencesBai, Jiasong ; Bi, Jun ; Kuang, Peng ; Fan, Chengze ; Zhou, Yu ; Zhang, Cheng: NS4: Enabling Programmable Data Plane Simulation. En: Proceedings of the Symposium on SDN Research. New York, NY, USA : ACM, 2018 (SOSR ’18). – ISBN 978–1–4503–5664–0, p. 12:1–12:7.spa
dc.relation.referencesBi, Xiaojun ; Wang, Chao: An improved NSGA-III algorithm based on elimination operator for many-objective optimization. En: Memetic Computing 9 (2017), Dec, Nr. 4, p. 361–383. – ISSN 1865–9292.spa
dc.relation.referencesBilel, Ben R. ; Navid, Nikaein ; Raymond, Knopp ; Christian, Bonnet: OpenAirInterface Large-scale Wireless Emulation Platform and Methodology. En: Proceedings of the 6th ACM Workshop on Performance Monitoring and Measurement of Heterogeneous Wireless and Wired Networks. New York, NY, USA : ACM, 2011 (PM2HW2N’11). – ISBN 978–1–4503–0902–8, p. 109–112.spa
dc.relation.referencesBlank, J. ; Deb, K.: pymoo: Multi-objective Optimization in Python. En: IEEE Access (2020), p. 1–1.spa
dc.relation.referencesBlank, Julian ; Deb, Kalyanmoy ; Roy, Proteek C.: Investigating the Normalization Procedure of NSGA-III. En: Deb, Kalyanmoy (Ed.) ; Goodman, Erik (Ed.) ; Coello Coello, Carlos A. (Ed.) ; Klamroth, Kathrin (Ed.) ; Miettinen, Kaisa (Ed.) ; Mostaghim, Sanaz (Ed.) ; Reed, Patrick (Ed.): Evolutionary Multi-Criterion Optimization. Cham : Springer International Publishing, 2019. – ISBN 978–3–030– 12598–1, p. 229–240.spa
dc.relation.referencesBloomerg: Keysight, Qualcomm Collaborate to Obtain Industry-First GCF Validation of 5G Radio Frequency (RF) Demodulation and Radio. 2020. – https://www.bloomberg.com/press-releases/2019-07-25/keysightqualcomm-collaborate-to-obtain industry-first-gcf-validation-of-5g-radio-frequency-rfdemodulation-and-radio.spa
dc.relation.referencesBox, G. E. P. ; Muller, Mervin E.: A Note on the Generation of Random Normal Deviates. En: Ann. Math. Statist. 29 (1958), 06, Nr. 2, p. 610–611. https://doi.org/10.1214/aoms/1177706645.spa
dc.relation.referencesBuzzi, S. ; I, C. ; Klein, T. E. ; Poor, H. V. ; Yang, C. ; Zappone, A.: A Survey of Energy-Efficient Techniques for 5G Networks and Challenges Ahead. En: IEEE Journal on Selected Areas in Communications 34 (2016), April, Nr. 4, p. 697–709.spa
dc.relation.referencesCentre Tecnologic de Telecomunicacions de Catalunya: 5G-LENA Simulator. 2020. – https://5g-lena.cttc.es.spa
dc.relation.referencesChang, C. ; Nikaein, N. ; Arouk, O. ; Katsalis, K. ; Ksentini, A. ; Turletti, T. ; Samdanis, K.: Slice Orchestration for Multi-Service Disaggregated Ultra-Dense RANs. En: IEEE Communications Magazine 56 (2018), August, Nr. 8, p. 70–77.spa
dc.relation.referencesChang, Chia-Yu ; Nikaein, Navid ; Knopp, Raymond ; Spyropoulos, Thrasyvoulos ; Kumar, Sandeep: FlexCRAN: A flexible functional split framework over ethernet fronthaul in Cloud-RAN. En: ICC 2017, IEEE International Conference on Communications, May 21-25, 2017, Paris, France. Paris, FRANCE, 05 2017. http://www.eurecom.fr/publication/5155.spa
dc.relation.referencesChecko, A. ; Christiansen, H. L. ; Yan, Y. ; Scolari, L. ; Kardaras, G. ; Berger, M. S. ; Dittmann, L.: Cloud RAN for Mobile Networks ”A Technology Overview. En: IEEE Communications Surveys Tutorials 17 (2015), Firstquarter, Nr. 1, p. 405–426.spa
dc.relation.referencesChiang, Tsung-Che ; Collaborators: nsga3cpp: A C++ implementation of NSGAIII. 2014. http://web.ntnu.edu.tw/ tcchiang/publications/nsga3cpp/nsga3cpp.htm.spa
dc.relation.referencesCifuentes, Valerie: Implementación 5G no estará antes de 2024: Ignacio Román, presidente Avantel. 2020. – https://www.larepublica.co/empresas/implementacion5g-no-estara-antes-de-2024-ignacio-roman-presidente-avantel-2818352.spa
dc.relation.referencesCisco: open-nFAPI. Januar 2018. – https://github.com/cisco/open-nFAPI.spa
dc.relation.referencesde Colombia, Universidad-Catolica: Evento IEEE zona centro de la Universidad Catolica de Colombia. 2020. – https://www.ticketcode.co/eventos/zona-centro-univcatolica-de-colombia.spa
dc.relation.referencesCommunications, Spirent: Solutions for 5G. Januar 2018. – https://www.spirent.com/Solutions/5G-Network-Testing.spa
dc.relation.referencesConsorzio Nazionale Interuniversitario per le Telecomunicazioni: D3.1 Initial report on Data Plane Programmability and infrastructure components. 2018. – https://www.5g-picture-project.eu/download/5g-picture d31.pdf.spa
dc.relation.referencesCOSMOS: Cloud Enhanced Open Software Defined Mobile Wireless Testbed for CityScale Deployment. 2020. – https://cosmos-lab.org.spa
dc.relation.referencesCostanzo, S. ; Fajjari, I. ; Aitsaadi, N. ; Langar, R.: A network slicing prototype for a flexible cloud radio access network. En: 2018 15th IEEE Annual Consumer Communications Networking Conference (CCNC), 2018. – ISSN 2331–9860, p. 1–4.spa
dc.relation.referencesCostanzo, S. ; Fajjari, I. ; Aitsaadi, N. ; Langar, R.: A network slicing prototype for a flexible cloud radio access network. En: 2018 15th IEEE Annual Consumer Communications Networking Conference (CCNC), 2018. – ISSN 2331–9860, p. 1–4.spa
dc.relation.referencesCPRI. Specification Overview. Januar 2020.spa
dc.relation.referencesDas, Indraneel ; Dennis, J. E.: Normal-Boundary Intersection: A New Method for Generating the Pareto Surface in Nonlinear Multicriteria Optimization Problems. En: SIAM J. on Optimization 8 (1998), Marz, Nr. 3, p. 631–657. – http://dx.doi.org/10.1137/S1052623496307510. – ISSN 1052–6234.spa
dc.relation.referencesDeb, K. ; Jain, H.: An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints. En: IEEE Transactions on Evolutionary Computation 18 (2014), Aug, Nr. 4, p. 577–601. – ISSN 1089–778X.spa
dc.relation.referencesDeb, K. ; Pratap, A. ; Agarwal, S. ; Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. En: IEEE Transactions on Evolutionary Computation 6 (2002), April, Nr. 2, p. 182–197. – ISSN 1089–778X.spa
dc.relation.referencesDeb, Kalyanmoy: An introduction to genetic algorithms. En: Sadhana 24 (1999), Aug, Nr. 4, p. 293–315. – ISSN 0973–7677.spa
dc.relation.referencesIn: Deb, Kalyanmoy ; Thiele, Lothar ; Laumanns, Marco ; Zitzler, Eckart: Scalable Test Problems for Evolutionary Multiobjective Optimization. London : Springer London, 2005, p. 105–145. – ISBN 978–1–84628–137–2.spa
dc.relation.referencesDini, P. ; Miozzo, M. ; Bui, N. ; Baldo, N.: A Model to Analyze the Energy Savings of Base Station Sleep Mode in LTE HetNets. En: 2013 IEEE International Conference on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber, Physical and Social Computing, 2013, p. 1375–1380.spa
dc.relation.referencesDugan, Jon ; Elliott, Seth ; Mah, Bruce A. ; Poskanzer, Jeff ; Prabhu, Kaustubh: iPerf - The ultimate speed test tool for TCP, UDP and SCTP. 2020. https://iperf.fr.spa
dc.relation.referencesETSI: Joint ETSI - OSA Workshop: Open Implementations and Standardization. 2018. – https://www.etsi.org/news-events/events/1319-etsi-osa-workshop.spa
dc.relation.referencesEURECOM: GRADUATE SCHOOL AND RESEARCH CENTER IN DIGITAL SCIENCES. 2020. – http://www.eurecom.fr/en/people/ariza-vesga-luis-felipe.spa
dc.relation.referencesFeng, L. ; Zhao, P. ; Zhou, F. ; Yin, M. ; Yu, P. ; Li, W. ; Qiu, X.: Resource Allocation for 5G D2D Multicast Content Sharing in Social-Aware Cellular Networks. En: IEEE Communications Magazine 56 (2018), March, Nr. 3, p. 112–118.spa
dc.relation.referencesFeng, M. ; Mao, S. ; Jiang, T.: Base Station ON-OFF Switching in 5G Wireless Networks: Approaches and Challenges. En: IEEE Wireless Communications 24 (2017), Aug, Nr. 4, p. 46–54.spa
dc.relation.referencesFonseca, Carlos M. ; Paquete, Luís ; Lopez-Ibáñez , Manuel: An improved dimension-sweep algorithm for the hypervolume indicator. En: Proceedings of the 2006 Congress on Evolutionary Computation (CEC 2006). Piscataway, NJ : IEEE Press, Juli 2006, p. 1157–1163.spa
dc.relation.referencesFraser, A. S.: Simulation of Genetic Systems by Automatic Digital Computers II. Effects of Linkage on Rates of Advance Under Selection. En: Australian Journal of Biological Sciences 10 (1957), December, Nr. 4, p. 492 –500.spa
dc.relation.referencesG, D. G. ; Yanikomeroglu, H. ; Garcia-Lozano, M. ; Boqué , S. R.: A novel multiobjective framework for cell switch-off in dense cellular networks. En: 2014 IEEE International Conference on Communications (ICC), 2014, p. 2641–2647.spa
dc.relation.referencesGiannone, F. ; Gupta, H. ; Kondepu, K. ; Manicone, D. ; Franklin, A. ; Castoldi, P. ; Valcarenghi, L.: Impact of RAN Virtualization on Fronthaul Latency Budget: An Experimental Evaluation. En: 2017 IEEE Globecom Workshops (GC Wkshps), 2017, p. 1–5.spa
dc.relation.referencesGNU Radio: About GNU Radio. 2020. – https://www.gnuradio.org/about.spa
dc.relation.referencesGoldsmith, Andrea: Wireless Communications. New York, NY, USA : Cambridge University Press, 2005. – ISBN 0521837162.spa
dc.relation.referencesGonzález , D. G. ; Hamalainen , J. ; Yanikomeroglu, H. ; García-Lozano , M. ; Senarath, G.: A Novel Multiobjective Cell Switch-Off Framework for Cellular Networks. En: IEEE Access 4 (2016), p. 7883–7898.spa
dc.relation.references] Guo, H. ; Wang, K. ; Ji, H. ; Leung, V. C. M.: Energy saving in C-RAN based on BBU switching scheme. En: 2016 IEEE International Conference on Network Infrastructure and Digital Content (IC-NIDC), 2016, p. 44–49.spa
dc.relation.referencesHabibi, M. A. ; Nasimi, M. ; Han, B. ; Schotten, H. D.: A Comprehensive Survey of RAN Architectures Toward 5G Mobile Communication System. En: IEEE Access 7 (2019), p. 70371–70421.spa
dc.relation.referencesHalabian, H.: Optimal Distributed Resource Allocation in 5G Virtualized Networks. En: 2019 IFIP/IEEE Symposium on Integrated Network and Service Management (IM), 2019, p. 28–35.spa
dc.relation.referencesHan, F. ; Zhao, S. ; Zhang, L. ; Wu, J.: Survey of Strategies for Switching Off Base Stations in Heterogeneous Networks for Greener 5G Systems. En: IEEE Access 4 (2016), p. 4959–4973.spa
dc.relation.referencesHolland, John H.: Adaptation in Natural and Artificial Systems. Ann Arbor, MI : University of Michigan Press, 1975. – second edition, 1992.spa
dc.relation.referencesHossain, Md. F. ; Mahin, Ayman U. ; Debnath, Topojit ; Mosharrof, Farjana B.; Islam, Khondoker Z.: Recent research in cloud radio access network (C-RAN) for 5G cellular systems - A survey. En: Journal of Network and Computer Applications 139 (2019), p. 31 – 48. – ISSN 1084–8045.spa
dc.relation.referencesI, C. ; Rowell, C. ; Han, S. ; Xu, Z. ; Li, G. ; Pan, Z.: Toward green and soft: a 5G perspective. En: IEEE Communications Magazine 52 (2014), February, Nr. 2, p. 66–73. – ISSN 0163–6804.spa
dc.relation.referencesIn: I, Chih-Lin ; Huang, Jinri ; Yuan, Yannan ; Ma, Shijia: 5G RAN Architecture: C-RAN with NGFI. Cham : Springer International Publishing, 2017, p. 431–455. – ISBN 978–3–319–34208–5.spa
dc.relation.referencesIardella, N. ; Nardini, G. ; Stea, G. ; Virdis, A. ; Frangioni, A. ; Galli, L.; Sabella, D. ; Mauro, F. ; Dell’Aera, G. ; Caretti, M.: Flexible dynamic coordinated scheduling in virtual-RAN deployments. En: 2017 IEEE International Conference on Communications Workshops (ICC Workshops), 2017. – ISSN 2474– 9133, p. 126–131.spa
dc.relation.referencesIardella, N. ; Nardini, G. ; Stea, G. ; Virdis, A. ; Frangioni, A. ; Galli, L.; Sabella, D. ; Mauro, F. ; Dell’Aera, G. ; Caretti, M.: Flexible dynamic coordinated scheduling in virtual-RAN deployments. En: 2017 IEEE International Conference on Communications Workshops (ICC Workshops), 2017, p. 126–131.spa
dc.relation.referencesIardella, N. ; Nardini, G. ; Stea, G. ; Virdis, A. ; Frangioni, A. ; Galli, L.; Sabella, D. ; Mauro, F. ; Dell’Aera, G. ; Caretti, M.: A testbed for flexible and energy-efficient resource management with virtualized LTE-A nodes. En: 2017 Fifth International Workshop on Cloud Technologies and Energy Efficiency in Mobile Communication Networks (CLEEN), 2017, p. 1–6.spa
dc.relation.references] Iardella, Niccolo ; Nardini, Giovanni ; Stea, Giovanni ; Sabella, Dario: Coordinated scheduling in a Virtual-RAN prototype with OpenAirInterface, 2016.spa
dc.relation.referencesInzillo, V. ; Quintana, A. A. ; De Rango, F. ; Zampogna, L.: Design and Implementation of New Planar Massive MIMO Systems for 5G Wireless Networks Extending Omnet++ Simulator. En: 2018 IEEE/ACM 22nd International Symposium on Distributed Simulation and Real-Time Applications (DS-RT), 2018, p. 1–8.spa
dc.relation.referencesIshibuchi, H. ; Imada, R. ; Setoguchi, Y. ; Nojima, Y.: Performance comparison of NSGA-II and NSGA-III on various many-objective test problems. En: 2016 IEEE Congress on Evolutionary Computation (CEC), 2016, p. 3045–3052.spa
dc.relation.referencesITU: Transport network support of IMT-2020/5G / TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU. 2018. – Technical Report. https://www.itu.int/dms_pub/itu-t/opb/tut/T-TUT-HOME-2018-MSW-E.docx.spa
dc.relation.referencesJain, H. ; Deb, K.: An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point Based Nondominated Sorting Approach, Part II: Handling Constraints and Extending to an Adaptive Approach. En: IEEE Transactions on Evolutionary Computation 18 (2014), Aug, Nr. 4, p. 602–622. – ISSN 1089–778X.spa
dc.relation.referencesJain, Himanshu ; Deb, Kalyanmoy: An Improved Adaptive Approach for Elitist Nondominated Sorting Genetic Algorithm for Many-Objective Optimization. En: Purshouse, Robin C. (Ed.) ; Fleming, Peter J. (Ed.) ; Fonseca, Carlos M. (Ed.) ; Greco, Salvatore (Ed.) ; Shaw, Jane (Ed.): Evolutionary Multi-Criterion Optimization. Berlin, Heidelberg : Springer Berlin Heidelberg, 2013. – ISBN 978–3–642–37140–0, p. 307–321.spa
dc.relation.referencesJiang, S. ; Yang, S.: A Strength Pareto Evolutionary Algorithm Based on Reference Direction for Multiobjective and Many-Objective Optimization. En: IEEE Transactions on Evolutionary Computation 21 (2017), June, Nr. 3, p. 329–346. – ISSN 1089– 778X.spa
dc.relation.referencesjMetal: Metaheuristic algorithms in Java. 2018. – http://jmetal.sourceforge.net/spa
dc.relation.referencesKaltenberger, F. ; Latif, I. ; Knopp, R.: On scalability, robustness and accuracy of physical layer abstraction for large-scale system-level evaluations of LTE networks. En: 2013 Asilomar Conference on Signals, Systems and Computers, 2013, p. 1644–1648.spa
dc.relation.referencesKaltenberger, Florian.: Low-Complexity Real-Time Signal Processing for Wireless Communications. Vienna, Austria, Vienna University of Technology, Tesis de Grado, May 2007.spa
dc.relation.referencesKeysight: Keysight’s 5G Test Solutions and Qualcomm Snapdragon X55 5G Modem Establish Mobile Industry’s First Announced 5G NR Data Call in FDD Mode. 2020. https://about.keysight.com/en/newsroom/pr/2019/01apr-nr19054.shtml.spa
dc.relation.referencesKiran, P. ; Jibukumar, M. G. ; Premkumar, C. V.: Resource allocation optimization in LTE-A/5G networks using big data analytics. En: 2016 International Conference on Information Networking (ICOIN), 2016, p. 254–259.spa
dc.relation.referencesKnopp, Raymond: OpenAirInterface L1/L2 procedures. 2018. https://gitlab.eurecom.fr/oai/openairinterface5g/blob/master/targets/DOCS/oai_L1_L2_procedures.pdf.spa
dc.relation.referencesLi, K. ; Wang, R. ; Zhang, T. ; Ishibuchi, H.: Evolutionary Many-Objective Optimization: A Comparative Study of the State-of-the-Art. En: IEEE Access 6 (2018), p. 26194–26214. – ISSN 2169–3536.spa
dc.relation.referencesLi, Miqing ; Yao, Xin: What Weights Work for You? Adapting Weights for Any Pareto Front Shape in Decomposition-based Evolutionary Multi-Objective Optimisation. En: CoRR abs/1709.02679 (2017).spa
dc.relation.referencesLine, Larsen ; Michael, Berger ; Henrik, Christiansen: Fronthaul for Cloud-RAN Enabling Network Slicing in 5G Mobile Networks. En: Hindawi: Wireless Communications and Mobile Computing (2018), Nr. 4860212, p. 1–8.spa
dc.relation.referencesLuis, Ariza:masterlargescaleemulations repository.January 2020. https://gitlab.eurecom.fr/oai/openairinterface5g /tree/master_large_scale_emulations.spa
dc.relation.referencesLuna, F. ; Luque-Baena, R. M. ; Martínez, J. ; Valenzuela-Valdés, J. F.; Padilla, P.: Addressing the 5G Cell Switch-off Problem with a Multi-objective Cellular Genetic Algorithm. En: 2018 IEEE 5G World Forum (5GWF), 2018, p. 422– 426.spa
dc.relation.referencesMarkets-Insider: Keysight Technologies, Qualcomm Extend 5G Collaboration to Accelerate Commercialization of Dynamic Spectrum Sharing Technology. 2020. – https://markets.businessinsider.com/news/stocks/keysight-technologiesqualcomm-extend-5g-collaboration-to-accelerate-commercialization-of-dynamicspectrum-sharing-technology-1028556781.spa
dc.relation.referencesMarotta, Antonio ; D'andreagiovanni, Fabio ; Kassler, Andreas ; Zola, Enrica: On the energy cost of robustness for green virtual network function placement in 5G virtualized infrastructures. En: Computer Networks 125 (2017), p. 64 – 75. – Softwarization and Caching in NGN. – ISSN 1389–1286.spa
dc.relation.referencesMarsaglia, George ; Tsang, Wai W.: The Ziggurat Method for Generating Random Variables. En: Journal of Statistical Software, Articles 5 (2000), Nr. 8, p. 1–7. https://www.jstatsoft.org/v005/i08. – ISSN 1548–7660.spa
dc.relation.referencesMarti, Luis: An implementation of NSGA-III in Python. 2016. – https://github.com/lmarti/nsgaiii.spa
dc.relation.referencesMatlab: 5G toolbox. September 2020. – https://www.mathworks.com/products/5g.html.spa
dc.relation.referencesMatlab: Matlab. 2020. – https://www.mathworks.com.spa
dc.relation.referencesMosaic5G. O-RAN Alliance Overview. Oktober 2020.spa
dc.relation.referencesMohamed Amine DRIDI, Ralf K.: Prototyping with OAI: C-RAN CoMP use-case. May 2018. – https://goo.gl/49xJ6G.spa
dc.relation.referencesMosaic5G. Leveraging an Ecosystem of 5G Services. 2018.spa
dc.relation.referencesNardini, G. ; Stea, G. ; Virdis, A. ; Frangioni, A. ; Galli, L. ; Sabella, D.; Dell’Aera, G. M.: Scalability and energy efficiency of Coordinated Scheduling in cellular networks towards 5G. En: 2017 Fifth International Workshop on Cloud Technologies and Energy Efficiency in Mobile Communication Networks (CLEEN), 2017, p. 1–6.spa
dc.relation.referencesNardini, G. ; Virdis, A. ; Iardella, N. ; Frangioni, A. ; Galli, L. ; Stea, G.: Minimizing Power Consumption in Virtualized Cellular Networks. En: 2018 IEEE 87th Vehicular Technology Conference (VTC Spring), 2018. – ISSN 2577–2465, p. 1–6.spa
dc.relation.referencesNetworks, Polaris: NetTest 5G Network Emulators. Januar 2018. – http://www.polarisnetworks.net/5g-network-emulators.html.spa
dc.relation.referencesNGFI: White paper of next generation fronthaul interface / China Mobile Research Institute. 2015. – Technical Report. Version 1.0.spa
dc.relation.referencesNGMN: Further Study on Critical C-RAN Technologies / Next Generation Mobile Network (NGMN). 2015. – Technical Report. Version 1.0.spa
dc.relation.referencesNokia. China Mobile and Nokia launch industry-first commercially ready 5G hybrid indoor radio solution. 2018.spa
dc.relation.referencesNokia: ANTEL and Nokia make the first 5G call on a commercial network in Latin America. 2020. – https://www.nokia.com/about-us/news/releases/2019/04/10/anteland-nokia-make-the-first-5g-call-on-a-commercial-network-in-latin-america.spa
dc.relation.referencesNsnam: The Network Simulator - ns-2. 2020. – https://www.isi.edu/nsnam/ns.spa
dc.relation.referencesNsnam: NS3. 2020. – https://www.nsnam.org.spa
dc.relation.referencesO-RAN. Leading the industry towards open, interoperable interfaces and RAN virtualization. September 2020.spa
dc.relation.referencesOMNeT++: OMNeT++: Discrete Event Simulator. Mai 2020. – https://omnetpp.org/.spa
dc.relation.referencesOpenAirInterface: Building OAI executables (Trunk and next release). 2020. – https://gitlab.eurecom.fr/oai/openairinterface5g/wikis/AutoBuild.spa
dc.relation.referencesOpenAirInterface: GRADOS DE POST MASTER. 2020. https://www.masterstudies.co/universidades/Francia/EURECOM.spa
dc.relation.referencesOpenAirInterface: Large Scale Network Emulations. 2020. – https://www.openairinterface.org/?page_id=791.spa
dc.relation.referencesOpenAirInterface: OPENAIR-CN: An implementation of the Evolved Packet Core network. September 2020. – https://github.com/OPENAIRINTERFACE/openair-cn.spa
dc.relation.referencesOpenAirInterface: Qualcomm Technologies Inc. joins the board of the OpenAirInterface Software Alliance. 2020. – https://www.openairinterface.org/?news=qualcomm-technologies-inc-joins-theboard-of-the-openairinterface-software-alliance.spa
dc.relation.referencesOSA: Members. September 2020. – https://www.openairinterface.org/?page_id=83spa
dc.relation.referencesOSA: OpenAirInterface: 5G software alliance for democratising wireless innovation. September 2020. – https://www.openairinterface.org.spa
dc.relation.referencesPietila, Anna-Kaarina: China Mobile verifies Cloud RAN benefits to pave the way to 5G. Januar 2018. – https://goo.gl/nA8Wc3.spa
dc.relation.referencesPOWDER: The Platform for Open Wireless Data-driven Experimental Research (POWDER). 2020. – https://powderwireless.net.spa
dc.relation.references] Purshouse, R. C. ; Fleming, P. J.: On the Evolutionary Optimization of Many Conflicting Objectives. En: IEEE Transactions on Evolutionary Computation 11 (2007), Dec, Nr. 6, p. 770–784. – ISSN 1089–778X.spa
dc.relation.referencesQ.Zhang, S.Z. Zhao P.N. Suganthan W. L. ; Tiwari, S.: Multiobjective optimization test instances for the CEC-2009 special session and competition. En: Nanyang Technol. Univ., Singapore, Tech (2008). – http://www.nyu.edu.sg/home/epnsugan.spa
dc.relation.referencesR. Knopp, C. Bonnet F. Kaltenberger A. Ksentini R. G.: Prototyping of Next Generation Fronthaul Interfaces (NGFI) using OpenAirInterface / EURECOM. 2017. – Technical Report. White paper.spa
dc.relation.referencesRedcedartech: HEEDS Smashes Barriers on Multi-Objective Design Studies. 2015. – https://redcedartech.com/newsletters/HEEDS News-Mar15.htm.spa
dc.relation.referencesRiverbed: Riverbed modeler. Mai 2020. – https://www.riverbed.com/mx/products/steelcentral/steelcentral-riverbedmodeler.html.spa
dc.relation.referencesRohde-schwarz: MWC 2018: Rohde Schwarz to present cutting-edge TM equipment for 5G, LTE-A Pro, IoT and IP security. Mai 2017. – https://www.rohdeschwarz.com/es/acerca-de/noticias-y-prensa/details/rohdeschwarz-en-laprensa/comunicados-de-prensa-paginas-de-detalles/comunicados-de-prensa-pagina-dedetalles 229356-527191.html.spa
dc.relation.referencesRomdhanne, Bilel B.: Large-scale network simulation over heterogeneous computing architecture. 46, Rue Barrault - 75634 Paris, France, Telecom ParisTech, Tesis de Grado, December 2013.spa
dc.relation.referencesScalable-Network-Technologies: QualNet Network Simulator Software. May 2020. – https://web.scalable-networks.com/qualnet-network-simulator-software.spa
dc.relation.referencesSCF: Small cell virtualization functional splits and use cases / Small Cell Forum (SCF). 2016. – Technical Report. Relesase 7.0.spa
dc.relation.referencesShajaiah, Haya ; Abdelhadi, Ahmed ; Clancy, Charles: An Efficient Multi-carrier Resource Allocation with User Discrimination Framework for 5G Wireless Systems. En: International Journal of Wireless Information Networks 22 (2015), Dec, Nr. 4, p. 345–356. – ISSN 1572–8129.spa
dc.relation.referencesSigwele, Tshiamo ; Alam, Atm S. ; Pillai, Prashant ; Hu, Yim F.: Energy-efficient cloud radio access networks by cloud based workload consolidation for 5G. En: Journal of Network and Computer Applications 78 (2017), p. 1 – 8. – ISSN 1084–8045.spa
dc.relation.referencesSlim Bechikh, Lamjed Ben S.: Many-objective Optimization Using Evolutionary Algorithms:. Vol. 20: A Survey in Recent Advances in Evolutionary Multi-objective Optimization. New York, NY : Springer, 2017. – http://dx.doi.org/8843/10.1007/978-3-319-42978-6.spa
dc.relation.referencesSpeedtest: OOKLA 5G Map. 2020. – https://www.speedtest.net/ookla-5g-map.spa
dc.relation.referencesSu, R. ; Zhang, D. ; Venkatesan, R. ; Gong, Z. ; Li, C. ; Ding, F. ; Jiang, F. ; Zhu, Z.: Resource Allocation for Network Slicing in 5G Telecommunication Networks: A Survey of Principles and Models. En: IEEE Network (2019), p. 1–8.spa
dc.relation.referencesTCL, Syrtem: 5G New Radio in OpenAirInterface. Januar 2018. – https://goo.gl/VuK7P5.spa
dc.relation.referencesTechnologies, Keysight: Keysight 5G Network Emulation Solutions Portfolio. Januar 2018. – https://about.keysight.com/en/newsroom/images/5G-Protocol.spa
dc.relation.referencesTelecompaper: TIM Brasil launches 5G pilot in Florianopolis. 2020. – https://www.telecompaper.com/news/tim-brasil-launches-5g-pilot-in-florianopolis–1298578.spa
dc.relation.referencesTetcos: 5G NR mmWave. 2020. – https://www.tetcos.com/5g.html.spa
dc.relation.referencesTetcos: NetSim Academic. Mai 2020. – https://www.tetcos.com/netsim-acad.html.spa
dc.relation.referencesThomas, Laurent: 4G and 5G reference software. 2020. – https://open-cells.com.spa
dc.relation.referencesTian, Ye ; Cheng, Ran ; Zhang, Xingyi ; Jin, Yaochu: PlatEMO: A MATLAB platform for evolutionary multi-objective optimization. En: IEEE Computational Intelligence Magazine 12 (2017), Nr. 4, p. 73–87.spa
dc.relation.referencesValid8: 5G Network Emulator. Januar 2018. – https://www.valid8.com/solutions/5gnetwork-emulator-copy.spa
dc.relation.referencesVarga, András ; Hornig, Rudolf: An Overview of the OMNeT++ Simulation Environment. En: Proceedings of the 1st International Conference on Simulation Tools and Techniques for Communications, Networks and Systems & Workshops. ICST, Brussels, Belgium, Belgium : ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), 2008 (Simutools ’08). – ISBN 978–963–9799–20–2, p. 60:1–60:10.spa
dc.relation.referencesVIAVI: VIAVI delivers industry-first 5G network test solution. Mai 2014. – https://cobhamwireless.com/validation/press-and-events/press-releases/cobhamdelivers-industry-first-5g-network-test-solution.spa
dc.relation.referencesVirdis, A. ; Iardella, N. ; Stea, G. ; Sabella, D.: Performance Analysis of OpenAirInterface System Emulation. En: 2015 3rd International Conference on Future Internet of Things and Cloud, 2015, p. 662–669.spa
dc.relation.referencesVora, A. ; k. D. Kang: Effective 5G Wireless Downlink Scheduling and Resource Allocation in Cyber-Physical Systems. En: MDPI 6 (2018), p. 1–20.spa
dc.relation.referencesWang, R. ; Peng, Y. ; Qu, H. ; Li, W. ; Zhao, H. ; Wu, B.: OpenAirInterface-an effective emulation platform for LTE and LTE-Advanced. En: 2014 Sixth International Conference on Ubiquitous and Future Networks (ICUFN), 2014. – ISSN 2165–8528, p. 127–132.spa
dc.relation.referencesWireless, NYU: MilliLabs: Enabling 5G millimeter Wave Technology. Mai 2017. – http://www.millilabs.com.spa
dc.relation.referencesWireless, NYU: NYU WIRELESS Unveils Emulator For 5G Millimeter Wave Systems. Mai 2017. – https://wireless.engineering.nyu.edu/nyu-wireless-unveils-emulatorfor-5g-millimeter-wave-systems.spa
dc.relation.referencesWorldTimeZone: 5G commercial network world coverage map: 5G field testing / 5G trials / 5G research / 5G development by country (June 15, 2019). 2020. – https://www.worldtimezone.com/5g.html.spa
dc.relation.referencesXu, F. ; Li, Y. ; Wang, H. ; Zhang, P. ; Jin, D.: Understanding Mobile Traffic Patterns of Large Scale Cellular Towers in Urban Environment. En: IEEE/ACM Transactions on Networking 25 (2017), April, Nr. 2, p. 1147–1161.spa
dc.relation.referencesXue, T. ; Qiu, L. ; Li, X.: Resource Allocation for Massive M2M Communications in SCMA Network. En: 2016 IEEE 84th Vehicular Technology Conference (VTC-Fall), 2016, p. 1–5.spa
dc.relation.referencesYarpiz: NSGA-III: Non-dominated Sorting Genetic Algorithm, the Third Version. 2018. – http://yarpiz.com/456/ypea126-nsga3.spa
dc.relation.referencesYip, Milo: Normally Distributed Random Number Generator Benchmark. 2015. – https://github.com/miloyip/normaldist-benchmark.spa
dc.relation.referencesYuko, Akiyama. Activity of Fujitsu in OAI. Januar 2020.spa
dc.relation.referencesZhang, Q. ; Li, H.: MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition. En: IEEE Transactions on Evolutionary Computation 11 (2007), Dec, Nr. 6, p. 712–731. – ISSN 1089–778X.spa
dc.relation.referencesZhang, X. ; Tian, Y. ; Jin, Y.: A Knee Point-Driven Evolutionary Algorithm for Many-Objective Optimization. En: IEEE Transactions on Evolutionary Computation 19 (2015), Dec, Nr. 6, p. 761–776. – ISSN 1089–778X.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afinesspa
dc.subject.proposalOpenAirInterfacespa
dc.subject.proposalOpenAirinterfaceeng
dc.subject.proposaloaisimspa
dc.subject.proposaloaisimeng
dc.subject.proposallte-softmodemeng
dc.subject.proposallte-softmodemspa
dc.subject.proposal5Geng
dc.subject.proposal5Gspa
dc.subject.proposalC-RANeng
dc.subject.proposalC-RANspa
dc.subject.proposalEF1-NSGA-IIIspa
dc.subject.proposalFrequency-domain methodologieseng
dc.subject.proposalPower consumption optimizationeng
dc.subject.proposalNSGA-IIIspa
dc.subject.proposalNSGA-IIspa
dc.subject.proposalCoordinated schedulingeng
dc.subject.proposalNetwork simulatorseng
dc.subject.proposalSIMDspa
dc.subject.proposalEmulación en tiempo realspa
dc.subject.proposalNetwork emulatorseng
dc.subject.proposalSimuladores de redesspa
dc.subject.proposalTest-bedseng
dc.subject.proposalReal-timeeng
dc.subject.proposalEmuladores de redesspa
dc.subject.proposalSynthetic networkseng
dc.subject.proposalEF1-NSGA-IIIeng
dc.subject.proposalNSGA-IIIeng
dc.subject.proposalSIMD instructionseng
dc.subject.proposalMultithreadseng
dc.subject.proposalInteleng
dc.titleMany-objective problems optimization focused on energy efficiency applied to 5G heterogeneous cellular networks using the small cell switch-off frameworkspa
dc.title.alternativeOptimización de problemas de varios objetivos desde un enfoque de eficiencia energética aplicado a redes celulares heterogéneas 5G usando un marco de conmutación de celdas pequeñasspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
LuisAriza.2020.pdf
Tamaño:
9.12 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.9 KB
Formato:
Item-specific license agreed upon to submission
Descripción: