Morphisms between semi-graded rings and polynomial applications
dc.contributor.advisor | Reyes Villamil, Milton Armando | spa |
dc.contributor.author | Ramírez Cubillos, María Camila | spa |
dc.date.accessioned | 2024-10-31T16:38:45Z | |
dc.date.available | 2024-10-31T16:38:45Z | |
dc.date.issued | 2023 | |
dc.description | ilustraciones | spa |
dc.description.abstract | In this thesis, we study several kinds of morphisms between families of semi-graded rings with their corresponding polynomial applications. First, we present some ring-theoretical notions of these objects that are necessary throughout the thesis. With the aim of showing the generality of these rings in areas such as ring theory and noncommutative geometry, we include a non-exhaustive list of noncommutative algebras that are particular examples of these rings. Second, we develop a theory of cv-polynomials for iterated Ore extensions over arbitrary rings extending some results in the literature. We characterize these polynomials by using inner derivations of the coefficient ring, and also consider the problem of isomorphisms between these extensions. We illustrate our treatment with several noncommutative algebras. Third, for double Ore extensions introduced by Zhang and Zhang in the problem of classification of Artin-Schelter regular algebras of dimension four, we propose a theory of homomorphisms between them by introducing an adequate notion of cv-polynomial, and show that the computation of homomorphisms corresponding to these polynomials is non-trivial. Since there are no inclusions between the classes of all double Ore extensions of an algebra and of all length two iterated Ore extensions of the same algebra, we also present a comparison between theories of cv-polynomials between both families of algebras. We illustrate our results with Nakayama automorphisms of trimmed double Ore extensions. Finally, motivated by the research on maps between noncommutative projective spaces over $\mathbb{N}$-graded rings in the sense of Rosenberg and Van den Bergh, and the notion of schematicness introduced by Van Oystaeyen and Willaert to $\mathbb{N}$-graded rings with the aim of formulating a noncommutative scheme theory \`a la Grothendieck, we investigate maps in the setting of noncommutative projective spaces over schematic semi-graded rings, and extend different results from the category of schematic $\mathbb{N}$-graded rings to the category of schematic semi-graded rings. | eng |
dc.description.abstract | En esta tesis, estudiamos diversas clases de morfismos entre familias de anillos semigraduados con sus correspondientes aplicaciones polinomiales. En primer lugar, presentamos algunas nociones de la teoría de anillos de estos objetos que son necesarios a lo largo de la tesis. Con el propósito de mostrar la generalidad de estos anillos en áreas como la teoría de anillos y la geometría no conmutativa, incluimos una lista no exhaustiva de álgebras no conmutativas que son ejemplos particulares de estos anillos. En segundo lugar, desarrollamos una teoría de cv-polinomios para extensiones de Ore iteradas sobre anillos arbitrarios extendiendo algunos resultados en la literatura. Caracterizamos estos polinomios utilizando derivaciones internas, y también consideramos el problema de isomorfismos entre estas extensiones. Ilustramos nuestro tratamiento con diversas álgebras no conmutativas. Tercero, para las extensiones dobles de Ore introducidas por Zhang y Zhang en el problema de clasificación de álgebras regulares de ArtinSchelter de dimensión cuatro, proponemos una teoría entre estas introduciendo una noción adecuada de cv-polinomio, y mostramos que el cálculo de homomorfismos correspondientes a estos polinomios es no trivial. Teniendo en cuenta que no hay inclusiones entre las clases de extensiones dobles de Ore de un álgebra y extensiones de Ore iteradas de longitud dos sobre la misma álgebra, también presentamos una comparación entre las teorías de cv-polinomios entre ambas familias de álgebras. Ilustramos nuestros resultados con automofismos de Nakayama de extensiones dobles de Ore cortadas. Finalmente, motivados por la investigación sobre morfismos entre espacios proyectivos no connmutativos sobre anillos N-graduados en el sentido de Rosenberg and Van den Bergh, y la noción de esquematicidad introducida por Van Oystaeyen y Willaert para anillos N-graduados con el propósito de formular una teoría de esquemas no conmutativa a la Grothendieck, investigamos morfismos en contexto de espacios proyectivos no conmutativos sobre anillos semi-graduados esquemáticos, y extendemos diversos resultados de la categoría de anillos N-graduados esquemáticos a la categoría de anillos semi-graduados esquemáticos (Texto tomado de la fuente). | spa |
dc.description.degreelevel | Doctorado | spa |
dc.description.degreename | Doctora en Ciencias - Matemáticas | spa |
dc.format.extent | 141 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87126 | |
dc.language.iso | eng | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias - Doctorado en Ciencias - Matemáticas | spa |
dc.relation.references | J. Alev and F. Dumas. Sur le corps des fractions de certaines algèbres quantiques. J. Algebra, 170(1):229–265, 1994 | spa |
dc.relation.references | J. Alev and F. Dumas. Invariants du corps de Weyl sous l’action de groupes finis. Comm. Algebra, 25(5):1655–1672, 1997. | spa |
dc.relation.references | E. P. Armendariz, H. K. Koo, and J. K. Park. Isomorphic Ore extensions. Comm. Algebra, 15(12):2633–2652, 1987. | spa |
dc.relation.references | J. Apel. Gröbnerbasen in Nichtkommutativen Algebren und ihre Anwendung. PhD thesis, Universität Leipzig, 1988. | spa |
dc.relation.references | M. Artin. Geometry of QuantumPlanes. In D. Haile and J. Osterburg, editors, Azumaya Algebras, Actions andModules, volume 124 of Proceedings of a Conference in Honor of Goro Azumaya’s Seventieth Birthday, May 23–27, 1990, pages 1–15. ContemporaryMathematics. AmericanMathematical Society, 1992 | spa |
dc.relation.references | V. A. Artamonov. Derivations of Skew PBW-Extensions. Commun. Math. Stat., 3(4):449–457, 2015. | spa |
dc.relation.references | M. Artin and W. F. Schelter. Graded algebras of global dimension 3. Adv. Math., 66(2):171–216, 1987 | spa |
dc.relation.references | M. Abdi and Y. Talebi. On the diameter of the zero-divisor graph over skew PBW extensions. J. Algebra Appl., 23(05):2450089, 2024 | spa |
dc.relation.references | M. Artin, J. Tate, and M. Van den Bergh. Some Algebras Associated to Automorphisms of Elliptic Curves. In P. Cartier, L. Illusie, N. M. Katz, G. Laumon, Yu. I.Manin, and K. A. Ribet, editors, The Grothendieck Festschrift. A Collection of ArticlesWritten in Honor of the 60th Birthday of Alexander Grothendieck. Vol. I, volume 86 of Modern Birkhäuser Classics, pages 33–85. Progr.Math., Birkhäuser Boston, Boston, MA, 1990. | spa |
dc.relation.references | M. Artin and J. J. Zhang. Noncommutative Projective Schemes. Adv. Math., 109(2):228–287, 1994. | spa |
dc.relation.references | V. V. Bavula. Generalized Weyl algebras and their representations. St. Petersburg Math. J., 4(1):75–97, 1992 | spa |
dc.relation.references | V. V. Bavula. Description of bi-quadratic algebras on 3 generators with PBW basis. J. Algebra, 631:695–730, 2023 | spa |
dc.relation.references | G. Benkart. Down-up algebras and Witten’s deformation of the universal enveloping algebra of sl2. In S. Geun Hahn, H. Chul Myung, and E. Zelmanov, editors, Recent Progress in Algebra. An International Conference on Recent Progress in Algebra, August 11–15, KAIST, Taejon, South Korea, volume 224 of ContemporaryMathematics, pages 29–45. AmericanMathematical Society, Providence, Rhode Island, 1999. | spa |
dc.relation.references | R. Berger. The Quantum Poincaré-Birkhoff-Witt Theorem. Comm. Math. Phys., 143(2):215–234, 1992 | spa |
dc.relation.references | J. Bergen. X-Inner Automorphisms, Automorphisms, and Isomorphisms of Skew Polynomial Rings. Comm. Algebra, 31(2):1007–1029, 2003. | spa |
dc.relation.references | A. Bell and K. Goodearl. UniformRank Over Differential Operator Rings and Poincaré-Birkhoff-Witt Extensions. Pacific J.Math., 131(1):13–37, 1988. | spa |
dc.relation.references | K. Brown and K. R. Goodearl. Lectures on Algebraic Quantum Groups, volume 1 of Advanced Courses inMathematics - CRM Barcelona. Birkäuser-Verlag, 2002 | spa |
dc.relation.references | J. Bueso, J. Gómez-Torrecillas, and A. Verschoren. Algorithmic Methods in Non-Commutative Algebra: Applications to QuantumGroups. MathematicalModelling: Theory and Applications, Springer Dordrecht, 2003. | spa |
dc.relation.references | A. Belov-Kanel andM. Kontsevich. The Jacobian conjecture is stably equivalent to the Dixmier conjecture. Mosc.Math. J., 7(2):209–218, 2007 | spa |
dc.relation.references | G. Benkart, S. A. Lopes, and M. Ondrus. A parametric family of subalgebras of the Weyl algebra I. Structure and automorphisms. Trans. Amer.Math. Soc., 367(3):1993–2021, 2015 | spa |
dc.relation.references | G. Benkart and T. Roby. Down-Up Algebras. J. Algebra, 209(1):305–344, 1998 | spa |
dc.relation.references | L. Le Bruyn. Two remarks on Witten’s quantum enveloping algebra. Comm. Algebra, 22(3):865–876, 1994 | spa |
dc.relation.references | L. Le Bruyn. Central singularities of quantum spaces. J. Algebra, 177(1):142–153, 1995 | spa |
dc.relation.references | A. D. Bell and S. P. Smith. Some 3-dimensional skew polynomial rings. University of Wisconsin,Milwaukee, preprint, 1990 | spa |
dc.relation.references | J. Bergen and M. C.Wilson. X-Inner Automorphisms of Semi-Commutative Quantum Algebras. J. Algebra, 220:152–173, 1999 | spa |
dc.relation.references | J. Bell and J. J. Zhang. An Isomorphism Lemma for Graded Rings. Proc. Amer.Math. Soc., 145(3):989–994, 2017 | spa |
dc.relation.references | D. B. Coleman and E. E. Enochs. Isomorphic polynomial rings. Proc. Amer. Math. Soc., 27(2):247–252, 1971 | spa |
dc.relation.references | A. Chacón. On the Noncommutative Geometry of Semi-graded Rings. PhD thesis, Universidad Nacional de Colombia, Bogotá, D. C., Colombia, 2022. | spa |
dc.relation.references | J. H. Chun. Isomorphic Ore Extensions of Monomorphism Type. Commun. Korean Math. Soc., 8(3):361–371, 1993 | spa |
dc.relation.references | C. L. Chuang. Automorphisms of Ore extensions. Israel J. Math., 197(1):437–452, 2013 | spa |
dc.relation.references | P. A. A. B. Carvalho and S. A. Lopes. Automorphisms of Generalized Down-up Algebras. Comm. Algebra, 37(5):1622–1646, 2009 | spa |
dc.relation.references | P. A. A. B. Carvalho, S. A. Lopes, and J. Matczuk. Double Ore Extensions Versus Iterated Ore Extensions. Comm. Algebra., 39(8):2838–2848, 2011 | spa |
dc.relation.references | P.M. Cohn. Quadratic extensions of skew fields. Proc. LondonMath. Soc., 11(3):531–556, 1961 | spa |
dc.relation.references | P. M. Cohn. Free Rings and Their Relations. Second Edition. Academic Press, London, 1985 | spa |
dc.relation.references | S. C. Coutinho. A Primer of Algebraic D-modules. CambridgeUniversity Press. London Mathematical Society, Student Texts 33, 1995 | spa |
dc.relation.references | F. Calderón and A. Reyes. Some interactions between Hopf Galois extensions and noncommutative rings. Univ. Sci., 27(2):58–161, 2022 | spa |
dc.relation.references | A. Chacón and A. Reyes. Noncommutative scheme theory and the Serre-Artin-Zhang-Verevkin theorem for semi-graded rings. https://arxiv.org/abs/2301.07815, 2023 | spa |
dc.relation.references | A. Chacón and A. Reyes. On the schematicness of some Ore polynomials of higher order generated by homogeneous quadratic relations. J. Algebra Appl., https://www.worldscientific.com/doi/abs/10.1142/S021949882550207X, 2024 | spa |
dc.relation.references | T. Cassidy and B. Shelton. Generalizing the notion of Koszul algebra. Math.Z., 260(1):93–14, 2008 | spa |
dc.relation.references | J. Dixmier. Sur les algebres deWeyl. Bull. Soc.Math. France, 96:209–242, 1968 | spa |
dc.relation.references | R. Díaz and E. Pariguan. On the q-meromorphicWeyl algebra. São Paulo J.Math. Sci., 3(2):283–298, 2009 | spa |
dc.relation.references | F. Dumas. Sous-corps de fractions rationnelles des corps gauches de series de Laurent. Topics in Invariant Theory, Lecture Notes inMath. Vol. 1478, 1991 | spa |
dc.relation.references | W. Fajardo. Extended modules over skew PBW extensions. PhD thesis, Universidad Nacional de Colombia, Bogotá, D. C., 2018 | spa |
dc.relation.references | W. Fajardo, C. Gallego, O. Lezama, A. Reyes, H. Suárez, and H. Venegas. Skew PBW Extensions. Ring and Module-theoretic Properties, Matrix and GröbnerMethods, and Applications. Algebra and Applications. Springer, Cham, 2020 | spa |
dc.relation.references | M. Ferrero and K. Kishimoto. On automorphisms of skew polynomial rings of derivation type. Math. J. Okayama Univ., 22:21–26, 1980 | spa |
dc.relation.references | W. Fajardo, O. Lezama, C. Payares, A. Reyes, and C. Rodríguez. Introduction to Algebraic Analysis on Ore Extensions. In A. Martsinkovsky, editor, Functor Categories, Model Theory, Algebraic Analysis and ConstructiveMethods FCMTCCT2 2022, Almería, Spain, July 11-15, Invited and Selected Contributions, volume 450 of Springer Proceedings inMathematics & Statistics, pages 45–116. Springer, Cham, 2024 | spa |
dc.relation.references | P. Gabriel. Des catégories abéliennes. Bull. Soc.Math. France, 90:328–448, 1962 | spa |
dc.relation.references | J. Gaddis. Isomorphisms of Some Quantum Spaces. In D. Van Huynh, S. K. Jain, S. R. López-Permouth, S. Tariq Rizvi, and C. S. Roman, editors, Ring Theory and Its Applications, Ring Theory Session in Honor of T. Y. Lam on his 70th Birthday 31st Ohio State-DenisonMathematics ConferenceMay 25–27, 2012, The Ohio State University, Columbus, OH, volume 609 of ContemporaryMathematics, pages 107–116. American Mathematical Society, 2014 | spa |
dc.relation.references | C. Gallego. Matrixmethods for projective modules over σ-PBWextensions. PhD thesis, Universidad Nacional de Colombia, Bogotá, D. C., Colombia, 2015 | spa |
dc.relation.references | A. Grothendieck and J.Dieudonné. Éléments de Géométrie Algébrique ii. Inst.Hautes Etudes Sci. Publ.Math. 8, 1961 | spa |
dc.relation.references | RobertW. Gilmer. R-automorphisms of R[x]. Proc. LondonMath. Soc., s3-18(2):328–336, 1968 | spa |
dc.relation.references | K. R. Goodearl and R. B. Warfield Jr. An Introduction to Noncommutative Noetherian Rings, volume 61 of London Mathematical Society Student Texts. Cambridge University Press, 2004 | spa |
dc.relation.references | K. R. Goodearl and E. S. Letzter. Prime Ideals in Skew and q-Skew Polynomial Rings, volume 109 ofMemories of the AmericanMathematical Society 521. American Mathematical Society, 1994 | spa |
dc.relation.references | C. Gallego and O. Lezama. Gröbner Bases for Ideals of σ-PBW Extensions. Comm. Algebra, 39(1):50–75, 2011 | spa |
dc.relation.references | C. Gallego and O. Lezama. Projective modules and Gröbner bases for skew PBW extensions. DissertationesMath, 521:1–50, 2017 | spa |
dc.relation.references | O.W. Greenberg and A.M. L.Messiah. Selection Rules for Parafields and the Absence of Para Particles in Nature. Phys. Rev., 138(5B):B1155–B1167, 1965 | spa |
dc.relation.references | A. V. Golovashkin and V. M. Maksimov. Skew Ore polynomials of higher orders generated by homogeneous quadratic relations. RussianMath. Surveys, 53(2):384–386, 1998 | spa |
dc.relation.references | A. V. Golovashkin and V. M.Maksimov. On algebras of skew polynomials generated by quadratic homogeneous relations. J.Math. Sci., 129(2):3757–3771, 2005 | spa |
dc.relation.references | J. Goldman. Rings and Modules of Quotients. J. Algebra, 13(1):10–47, 1969 | spa |
dc.relation.references | H. S. Green. A generalized method of field quantization. Phys. Rev., 90(2):270, 1953 | spa |
dc.relation.references | J. Y. Gómez and H. Suárez. Double Ore extensions versus graded skew PBW extensions. Comm. Algebra, 48(1):185–197, 2020 | spa |
dc.relation.references | A. Giaquinto and J. J. Zhang. Quantum Weyl Algebras. J. Algebra, 176(3):861–881, 1995 | spa |
dc.relation.references | R. Hartshorne. Algebraic Geometry. Graduate Texts in Mathematics 52, Springer-Verlag, New York, Heidelberg, Berlin, 1977 | spa |
dc.relation.references | T. Hayashi. q-analogues of Clifford and Weyl algebras-Spinor and oscillator representations of quantum enveloping algebras. Comm. Math. Phys., 127(1):129–144, 1990 | spa |
dc.relation.references | H.Haynal. PI degree parity in q-skew polynomial rings. J. Algebra, 319(10):4199–4221, 2008 | spa |
dc.relation.references | M. Hamidizadeh, E. Hashemi, and A. Reyes. A classification of ring elements in skew PBW extensions over compatible rings. Int. Electron. J. Algebra, 28(1):75–97, 2020 | spa |
dc.relation.references | O. Hinchcliffe. Diffusion algebras. PhD thesis, University of Sheffield, 2005 | spa |
dc.relation.references | E. Hashemi, K. Khalilnezhad, and A. Alhevaz. (Σ,Δ)-compatible skew PBW extension ring. KyungpookMath. J., 57(3):401–417, 2017 | spa |
dc.relation.references | M. Havlíˇcek, A. U. Klimyk, and S. Pošta. Central elements of the algebrasU′(som) andU(isom). Czech. J. Phys., 50(1):79–84, 2000 | spa |
dc.relation.references | J. Hernández and A. Reyes. A Survey on Some Algebraic Characterizations of Hilbert’s Nullstellensatz for Non-commutative Rings of Polynomial Type. Ingeniería y Ciencia, 16(31):27–52, 2020 | spa |
dc.relation.references | S. Higuera and A. Reyes. A survey on the fusible property for skew PBWextensions. J. Algebr. Syst., 10(1):1–29, 2022 | spa |
dc.relation.references | S. Higuera and A. Reyes. On weak annihilators and nilpotent associated primes of skew PBW extensions. Comm. Algebra, 51(11):4839–4861, 2023 | spa |
dc.relation.references | A. P. Isaev, P. N. Pyatov, and V. Rittenberg. Diffusion algebras. J. Phys. A., 34(29):5815–5834, 2001 | spa |
dc.relation.references | A. Jannussis, G. Brodimas, and D. Sourlas. Remarks on the q-quantization. Lett. Nuovo Cimento, 30:123–127, 1981 | spa |
dc.relation.references | A. Jannussis, A. Leodaris, and R. Mignani. Non-Hermitian Realization of a Liedeformed Heisenberg algebra. Phys. Lett. A, 197(3):187–191, 1995 | spa |
dc.relation.references | X.Wang J. Lü and G. Zhuang. Universal enveloping algebras of Poisson Ore extensions. Proc. Amer.Math. Soc., 143(11):4633–4645, 2015 | spa |
dc.relation.references | D. A. Jordan. Finite-dimensional simple modules over certain iterated skew polynomial rings. J. Pure Appl. Algebra, 98(1):45–55, 1995 | spa |
dc.relation.references | D. A. Jordan. Down-Up Algebras and Ambiskew Polynomial Rings. J. Algebra, 228(1):311–346, 2000 | spa |
dc.relation.references | D. Jordan. The Graded Algebra Generated by Two Eulerian Derivatives. Algebr. Represent. Theory, 4(3):249–275, 2001 | spa |
dc.relation.references | D. A. Jordan and I. E.Wells. Invariants for automorphisms of certain iterated skew polynomial rings. Proc. Edinb.Math. Soc., 39(3):461–472, 1996 | spa |
dc.relation.references | K. Kanakoglou and C. Daskaloyannis. Bosonisation and Parastatistics. In: S. Silvestrov and E. Paal and V. Abramov and A. Stolin (eds). Generalized Lie Theory in Mathematics, Physics and Beyond. Springer, Berlin, Heidelberg, pp. 207–218, 2009 | spa |
dc.relation.references | O. H. Keller. Ganze Cremona-Transformationen. Monatsh. Math., 47(1):299–306, 1939 | spa |
dc.relation.references | I. Kikumasa. Automorphisms of a Certain Skew Polynomial Ring of Derivation Type. Canad. J.Math., 42(6):949–958, 1990 | spa |
dc.relation.references | A. P. Kitchin and S. Launois. Endomorphisms of Quantum GeneralizedWeyl Algebras. Lett.Math. Phys., 104:837–848, 2014 | spa |
dc.relation.references | A. P. Kitchin and S. Launois. On the automorphisms of quantum Weyl algebras. J. Pure Appl. Algebra, 223(4):1514–1530, 2019 | spa |
dc.relation.references | E. Kirkman, I. M. Musson, and D. Passman. Noetherian Down-Up Algebras. Proc. Amer.Math. Soc., 127(11):3161–3167, 1999 | spa |
dc.relation.references | K. Krebs and S. Sandow. Matrix product eigenstates for one-dimensional stochastic models and quantum spin chains. J. Phys. A:Math. Gen., 30(9):3165–3173, 1997 | spa |
dc.relation.references | R. S. Kulkarni. Irreducible Representations of Witten’s deformations of U(sl2). J. Algebra, 214(1):64–91, 1999 | spa |
dc.relation.references | M. V. Kuryshkin. Opérateurs quantiques généralisés de création et d’annihilation. Ann. Fond. L. de Broglie, 5:111–125, 1980 | spa |
dc.relation.references | E. Landau. Ein Satz über die Zerlegung Homogener linear Differentialansdrüche in Irreduzible Faktoren. J. Reine Angew.Math., 124:115–120, 1902 | spa |
dc.relation.references | O. Lezama, J. P. Acosta, and A. Reyes. Prime ideals of skew PBW extensions. Rev. Un. Mat. Argentina, 56(2):39–55, 2015 | spa |
dc.relation.references | A. Leroy. Pseudo linear transformations and evaluation in Ore extensions. Bull. Belg. Math. Soc., 2(3):321–347, 1995 | spa |
dc.relation.references | A. Leroy. Noncommutative polynomialmaps. J. Algebra Appl., 11(04):1250076, 2012 | spa |
dc.relation.references | V. Levandovskyy. Non-Commutative Computer Algebra for Polynomial Algebras: Gröbner Bases, Applications and Implementation. PhD thesis, Universität Kaiserslautern, 2005 | spa |
dc.relation.references | O. Lezama. Computation of point modules of finitely semi-graded rings. Comm. Algebra, 48(2):866–878, 2020 | spa |
dc.relation.references | O. Lezama. Some Open Problems in the Context of Skew PBW Extensions and Semi-graded Rings. Commun.Math. Stat., 9(3):347–378, 2021 | spa |
dc.relation.references | O. Lezama and J. Gómez. Koszulity and PointModules of Finitely Semi-graded Rings and Algebras. Symmetry, 11(7):1–22, 2019 | spa |
dc.relation.references | H. Li. Noncommutative Gröbner Bases and Filtered-Graded Transfer. Lecture Notes in Mathematics. Springer Berlin, Heidelberg, 2002 | spa |
dc.relation.references | Q. Li. Double Ore extensions of anti-angle type for Hopf algebras. AIMS Math., 7(7):12566–12586, 2022 | spa |
dc.relation.references | T. Y. Lam and A. Leroy. Vandermonde andWronskianmatrices over division rings. J. Algebra, 119(2):308–336, 1988 | spa |
dc.relation.references | T.Y. Lam and A Leroy. Algebraic conjugacy classes and skew polynomial rings. In: Perspectives in Ring Theory, Springer, 1988, pp. 153–203, 1988 | spa |
dc.relation.references | T. Y. Lam and A. Leroy. Homomorphisms Between Ore Extensions. In D. Haile and J. Osterburg, editors, Azumaya Algebras, Actions and Modules, volume 124 of Proceedings of a Conference in Honor of Goro Azumaya’s Seventieth Birthday, May 23–27, 1990, pages 83–110. Contemporary Mathematics. American Mathematical Society, 1992 | spa |
dc.relation.references | T. Y. Lam and A. Leroy. Hilbert 90 Theorems over Division Rings. Trans. Amer.Math. Soc., 345(2):595–622, 1994 | spa |
dc.relation.references | E. Latorre. and O. Lezama. Non-commutative algebraic geometry of semi-graded rings. Internat. J. Algebra Comput, 27(4):361–389, 2017 | spa |
dc.relation.references | T. Y. Lam, A. Leroy, and A. Ozturk. Wedderburn Polynomials over Division Rings, II. In S. K. Jain and S. Parvathi, editors, Noncommutative Rings, Group Rings, Diagram Algebras and Their Applications. International Conference December 18–22, 2006, University of Madras, Chennai, India, volume 456 of Contemporary Mathematics, pages 73–98. AmericanMathematical Society, 2008 | spa |
dc.relation.references | A. Leroy and J.Matczuk. The Extended Centroid and X-Inner Automorphisms of Ore Extensions. J. Algebra, 145:143–177, 1992 | spa |
dc.relation.references | S. Lopes. Noncommutative Algebra and Representation Theory: Symmetry, Structure & Invariants. Commun.Math., 32(3):63–117, 2024 | spa |
dc.relation.references | Q. Lou, S.-Q. Oh, and S. Wang. Poisson double extensions. Sci. China Math., 63(4):701–720, 2020 | spa |
dc.relation.references | J. Lü, S.-Q. Oh, X. Wang, and X. Yu. Enveloping algebras of double Poisson-Ore extensions. Comm. Algebra, 46(11):4891–4904, 2018 | spa |
dc.relation.references | O. Lezama and A. Reyes. Some Homological Properties of Skew PBW Extensions. Comm. Algebra, 42(3):1200–1230, 2014 | spa |
dc.relation.references | M. Louzari and A. Reyes. Generalized RigidModules and Their Polynomial Extensions. InM. SilesMolina, L. El Kaoutit, M. Louzari, L. Ben Yakoub, andM. Benslimane, editors, Associative and Non-Associative Algebras and Applications.MAMAA 2018, volume 311 of Springer Proceedings inMathematics Statistics, pages 147–158. Springer, Cham, 2020 | spa |
dc.relation.references | S. A. Lopes and F. Razavinia. Structure and isomorphisms of quantum generalized Heisenberg algebras. J. Algebra Appl., 21(10):2250204, 2022 | spa |
dc.relation.references | O. Lezama, A. Reyes, and H. Suárez. Calabi-Yau property for graded skew PBW extensions. Rev. ColombianaMat, 51(2):221–239, 2017 | spa |
dc.relation.references | H. Li and F. van Oystaeyen. Zariskian filtrations. K-Monographs in Mathematics, Vol. 2, Springer Science, 1996 | spa |
dc.relation.references | V.M.Maksimov. On a generalization of the ring of skew Ore polynomials. Russian Math. Surveys, 55:817–818, 2000 | spa |
dc.relation.references | V. M. Maksimov. Canonical forms of skew polynomial rings. J. Math. Sci. (N.Y.), 126(2):1064–1076, 2005 | spa |
dc.relation.references | Y. I.Manin. Topics in Noncommutative Geometry. M. B. Porter Lectures, Rice University, Princeton University Press, New Jersey, 1991 | spa |
dc.relation.references | J. C. McConnell. Quantum groups, filtered rings and Gelfand-Kirillov dimension. In S. K. Jain and S. R. López-Permouth, editors, Non-Commutative Ring Theory (Athens, Ohio, 1989), volume 1448 of Lecture Notes inMathematics, pages 139–147. Springer-Verlag, Berlin, Heidelberg, 1990 | spa |
dc.relation.references | S.Montgomery. X-Inner automorphisms of filtered algebras. Proc. Amer.Math. Soc., 83(2):263–268, 1981 | spa |
dc.relation.references | S. Montgomery. X-Inner automorphisms of filtered algebras II. Proc. Amer. Math. Soc., 87(4):569–575, 1983 | spa |
dc.relation.references | J. C.McConnell and J. C. Robson. Noncommutative Noetherian Rings, volume 30 of Graduate Studies inMathematics. AmericanMathematical Society, 2001 | spa |
dc.relation.references | I.Musson. Ring Theoretic Properties of the Coordinate Rings of QuantumSymplectic and Euclidean Space. In S. K. Jain and S. T. Rizvi, editors, Ring Theory. Proceedings of the 1992 Biennial Ohio State-Denison Conference, Denison University, 14–16May 1992, pages 248–258.World Scientific, 1993 | spa |
dc.relation.references | A. Niño, M. C. Ramírez, and A. Reyes. Associated prime ideals over skew PBW extensions. Comm. Algebra, 48(12):5038–5055, 2020 | spa |
dc.relation.references | E. Noether andW. Schmeidler. Moduln in nichtkommutativen bereichen, insbesondere aus differential - und differenzenausdrücken. Math. Zeitschrift, 8:1–35, 1920 | spa |
dc.relation.references | J. Osterburg and D. S. Passman. X-Inner automorphisms of enveloping rings. J. Algebra, 130(2):412–434, 1990 | spa |
dc.relation.references | O. Ore. Linear Equations in Non-commutative Fields. Ann. ofMath. (2), 32(3):463–477, 1931 | spa |
dc.relation.references | O. Ore. Theory of non-commutative polynomials. Ann. ofMath. (2), 34(3):480–508, 1933 | spa |
dc.relation.references | V. L. Ostrovskii and Yu. S. Samoilenko. Representation of ∗-algebras with two generators and polynomial relations. J.Math. Sci., 59(5):1107–1113, 1992 | spa |
dc.relation.references | M. Parmenter. Automorphisms of twisted polynomial rings | spa |
dc.relation.references | D. S. Passman. Prime ideals in enveloping rings. Trans. Amer.Math. Soc., 302:535–560, 1987 | spa |
dc.relation.references | C. Phan. The Yoneda Algebra of a Graded Ore Extension. Comm. Algebra, 40(3):834–844, 2012 | spa |
dc.relation.references | P. N. Pyatov and R. Twarock. Construction of diffusion algebras. J. Math. Phys., 43(6):3268–3279, 2002 | spa |
dc.relation.references | I. T. Redman. The Non-Commutative Algebraic Geometry of some Skew Polynomial Algebras. PhD thesis, University ofWisconsin -Milwaukee, 1996 | spa |
dc.relation.references | I. T. Redman. The homogenization of the three dimensional skew polynomial algebras of type I. Comm. Algebra, 27(11):5587–5602, 1999 | spa |
dc.relation.references | A. Reyes. Ring and Module Theoretical Properties of Skew PBW Extensions. PhD thesis, Universidad Nacional de Colombia, Bogotá, D. C., Colombia, 2013 | spa |
dc.relation.references | A. Reyes. Armendariz modules over skew PBW extensions. Comm. Algebra, 47(3):1248–1270, 2019 | spa |
dc.relation.references | M. Rimmer. Isomorphisms between skew polynomial rings. J. Austral.Math. Soc., 25(3):314–321, 1978 | spa |
dc.relation.references | D. Rogalski. Artin-Schelter regular algebras. In K. A. Brown, T. J. Hodges, M. Vancliff, and J. J. Zhang, editors, Recent Advances in Noncommutative Algebra and Geometry, volume 801 of Conference in Honor of S. Paul Smith on the Occasion of His 65th Birthday Recent Advances and New Directions in the Interplay of Noncommutative Algebra and Geometry June 20–24, 2022, University ofWashington, Seattle,WA, pages 195–242. ContemporaryMathematics. AmericanMathematical Society, 2024 | spa |
dc.relation.references | A. Rosenberg. Non-commutative Algebraic Geometry and Representations of Quantized Algebras. Math. Appl. (Soviet Ser.), 330 Kluwer Academic Publishers, 1995 | spa |
dc.relation.references | A. Rosenberg. Noncommutative schemes. Compos.Math., 112(1):93–125, 1998 | spa |
dc.relation.references | M. P. Rosen and J. D. Rosen. Automorphisms and derivations of skew polynomial rings. Canad.Math. Bull., 35(1):126–132, 1992 | spa |
dc.relation.references | A. Reyes and C. Rodríguez. The McCoy condition on Skew Poincaré-Birkhoff-Witt Extensions. Commun.Math. Stat., 9(1), 2021 | spa |
dc.relation.references | L. Richard and A. Solotar. Isomorphisms between quantumgeneralizedWeyl algebras. J. Algebra Appl., 5(3):271–285, 2006 | spa |
dc.relation.references | A. Reyes and H. Suárez. A note on zip and reversible skew PBWextensions. Bol.Mat., 23(1):71–79, 2016 | spa |
dc.relation.references | A. Reyes and H. Suárez. Skew Poincaré-Birkhoff-Witt extensions over weak zip rings. Beitr Algebra Geom., 60(2):197–216, 2019 | spa |
dc.relation.references | A. Reyes and H. Suárez. Skew Poincaré-Birkhoff-Witt extensions over weak compatible rings. J. Algebra Appl., 19(12):2050225(1)–2050225(21), 2020 | spa |
dc.relation.references | A. Reyes and C. Sarmiento. On the differential smoothness of 3-dimensional skew polynomial algebras and diffusion algebras. Internat. J. Algebra Comput., 32(03):529–559, 2022 | spa |
dc.relation.references | V. Rittenberg and D.Wyler. Generalized superalgebras. Nucl. Phys. B, 139(3):189–202, 1978 | spa |
dc.relation.references | H. Suárez, F. Anaya, and A. Reyes. Propiedad χ en extensiones PBW torcidas graduadas. Ciencia en Desarrollo, 12(1):33–41, 2021 | spa |
dc.relation.references | M. Suárez-Alvarez and Q. Vivas. Automorphisms and isomorphisms of quantum generalized Weyl algebras. J. Algebra, 424:540–552, 2015 | spa |
dc.relation.references | H. Suárez, D. Cáceres, and A. Reyes. Some special types of determinants in graded skew PBW extensions. Rev. Integr. TemasMat., 391(1):91–107, 2021 | spa |
dc.relation.references | H. Suárez, A. Chacón, and A. Reyes. On NI and NJ skew PBW extensions. Comm. Algebra, 50(8):3261–3275, 2022 | spa |
dc.relation.references | W. M. Seiler. Involution. The Formal Theory of Differential Equations and its Applications in Computer Algebra, volume 24. Algorithms and Computation inMathematics (AACIM). Springer Berlin, Heidelberg, 2010 | spa |
dc.relation.references | P. Serre. Faisceaux Algébriques Cohérents. Ann. ofMath., 61(2):197–278, 1955 | spa |
dc.relation.references | E. N. Shirikov. Two-generated graded algebras. Algebra DiscreteMath., 4(3):60–84, 2005 | spa |
dc.relation.references | H. Suárez, O. Lezama, and A. Reyes. Calabi-Yau property for graded skew PBW extensions. Rev. ColombianaMat., 51(2):221–239, 2017 | spa |
dc.relation.references | T. H.M. Smits. Skew polynomial rings. Indag.Math., 71(1):209–224, 1968 | spa |
dc.relation.references | S. P. Smith. A Class of Algebras Similar to the Enveloping of sl(2). Comm. Algebra, 322(1):285–314, 1991 | spa |
dc.relation.references | S. P. Smith. Integral Non-commutative Spaces. J. Algebra, 246(2):793–810, 2001 | spa |
dc.relation.references | S. P. Smith. Subspaces of non-commutative spaces. Trans. Amer. Math. Soc., 354(6):2131–2171, 2002 | spa |
dc.relation.references | S. P. Smith. Maps between non-commutative spaces. Trans. Amer. Math. Soc., 356(7):2927–2944, 2003 | spa |
dc.relation.references | S. P. Smith. Corrigendum to “Maps between non-commutative spaces”. Trans. Amer. Math. Soc., 368(11):8295–8302, 2016 | spa |
dc.relation.references | H. Suárez and A. Reyes. A generalized Koszul property for skew PBW extensions. Far East J.Math. Sci., 101(2):301–320, 2017 | spa |
dc.relation.references | H. Suárez and A. Reyes. Nakayama Automorphism of Some Skew PBW Extensions. Ingeniería y Ciencia, 15(29):157–177, 2019 | spa |
dc.relation.references | H. Suárez, A. Reyes, and Y. Suárez. Homogenized skew PBW extensions. Arab. J.Math. (Springer), 12(1):247–263, 2023 | spa |
dc.relation.references | B. Stenström. Rings ofQuotients. An Introduction to Methods of Ring Theory. Springer-Verlag, 1975 | spa |
dc.relation.references | H. Suarez. N-Koszul algebras, Calabi-Yau algebras and skew PBWextensions. PhD thesis, Universidad Nacional de Colombia, Bogotá, D. C., 2017 | spa |
dc.relation.references | H. Suárez. Koszulity for graded skew PBW extensions. Comm. Algebra, 45(10):4569–4580, 2017 | spa |
dc.relation.references | A. B. Tumwesigye, J. Richter, and S. Silvestrov. Centralizers in PBW extensions. In S. Silvestrov, A. Malyarenko, and M. Ranˇci´c, editors, Algebraic Structures and Applications. SPAS 2017, volume 317 of Springer Proc. Math. Stat., pages 469–490. Springer, Cham, 2020 | spa |
dc.relation.references | Y. Tsuchimoto. Preliminaries on Dixmier conjecture. Mem. Fac. Sci. Kochi Univ. Ser. AMath., 24:43–59, 2003 | spa |
dc.relation.references | R. Twarok. Representations for selected types of diffusion systems. In E. Kapuscik and A. Horzela, editors, Quantum Theory and Symmetries. Proceedings of the Second International Symposium, Held 18–21, July 2001 in Kraków, Poland, pages 615–620. World Scientific Publishing Co. Pte. Ltd., 2002 | spa |
dc.relation.references | V. A. Ufnarovskii. Combinatorial and asymptotic methods in algebra. Algebra – 6, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl.Mat. Fund. Napr, 57:5–177, 1990 | spa |
dc.relation.references | M. Van den Bergh. Blowing Up of Non-commutative Smooth Surfaces. Mem. Amer. Math. Soc. 154 (734), 2001 | spa |
dc.relation.references | H. Venegas. Zariski cancellation problem for skew PBW extensions. PhD thesis, Universidad Nacional de Colombia, Bogotá, D. C., Colombia, 2020 | spa |
dc.relation.references | A. B. Verevkin. On a noncommutative analogue of the category of coherent sheaves on a projective scheme. Amer.Math. Soc. Transl. (2), 151, 1992 | spa |
dc.relation.references | A. B. Verevkin. Serre injective sheaves. Math. Zametki, 52(4):35–41, 1992 | spa |
dc.relation.references | N. Ja. Vilenkin and A. U. Klimyk. Representation of Lie Groups and Special Functions. Kluwer Academic Publishers, 1995 | spa |
dc.relation.references | F. van Oystaeyen. On graded rings and modules of quotients. Comm. Algebra, 6(18):1923–1959, 1978 | spa |
dc.relation.references | F. van Oystaeyen. Algebraic Geometry for Associative Algebras. Pure and Applied Mathematics, CRC Press Taylor & Francis Group, 2000 | spa |
dc.relation.references | F. van Oystaeyen and L. A.Willaert. Grothendieck topology, coherent sheaves and Serre’s theorem for schematic algebras. J. Pure Appl. Algebra, 104(1):109–122, 1995 | spa |
dc.relation.references | F. van Oystaeyen and L. A.Willaert. Cohomology of Schematic Algebras. J. Algebra, 185(1):74–84, 1996 | spa |
dc.relation.references | F. van Oystaeyen and L. A.Willaert. The Quantum Site of a Schematic Algebra. Comm. Algebra, 24(1):209–122, 1996 | spa |
dc.relation.references | F. van Oystaeyen and L. A.Willaert. Examples and quantum sections of schematic algebras. J. Pure Appl. Algebra, 120(2):195–211, 1997 | spa |
dc.relation.references | L. A. Willaert. A new dimension for schematic algebras. In: S. Caenepeel and A. Verschoren (eds). Rings, Hopf algebras, and Brauer Groups, Lecture Notes in Pure and Applied Mathematics, pp. 325–332, 1998 | spa |
dc.relation.references | E. Witten. Gauge theories, vertex models, and quantum groups. Nuclear Phys. B, 330(2-3):285–346, 1990 | spa |
dc.relation.references | E.Witten. Quantization of Chern-Simons Gauge Theory with Complex Gauge Group. Comm.Math. Phys., 137(1):29–66, 1991 | spa |
dc.relation.references | S. L.Woronowicz. Twisted SU(2)-Group. An Example of a Non-commutative Differential Calculus. Publ. Res. Inst.Math. Sci., 23:117–181, 1987 | spa |
dc.relation.references | J.Wess and B. Zumino. Covariant differential calculus on the quantum hyperplane. Nuclear Phys. B Proc. Suppl., 18(1):302–312, 1990. | spa |
dc.relation.references | H. Yamane. A Poincaré-Birkhoff-Witt Theorem for Quantized Universal Enveloping Algebras of Type AN. Publ. RIMS Kyoto Univ., 25(3):503–520, 1989 | spa |
dc.relation.references | B. Zambrano. Poisson brackets on some skew PBW extensions. Algebra Discrete Math., 29(2):277–302, 2020 | spa |
dc.relation.references | A. S. Zhedanov. “Hidden symmetry” of Askey–Wilson polynomials. Theoret. and Math. Phys., 89(2):1146–1157, 1991 | spa |
dc.relation.references | C. Zhu, F. van Oystaeyen, and Y. Zhang. Nakayama automorphisms of double Ore extensions of koszul regular algebras. Manuscripta Math., 152(3–4):555–584, 2017 | spa |
dc.relation.references | J.J. Zhang and J. Zhang. Double Ore extensions. J. Pure Appl. Algebra, 212(12):2668–2690, 2008 | spa |
dc.relation.references | J. J. Zhang and J. Zhang. Double extension regular algebras of type (14641). J. Algebra, 322(2):373–409, 2009 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Reconocimiento 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | spa |
dc.subject.ddc | 510 - Matemáticas::512 - Álgebra | spa |
dc.subject.lemb | ANILLOS POLINOMIALES | spa |
dc.subject.lemb | Polynomial rings | eng |
dc.subject.lemb | ALGEBRAS TOPOLOGICAS | spa |
dc.subject.lemb | Topological algebras | eng |
dc.subject.lemb | POLINOMIOS | spa |
dc.subject.lemb | Polynomials | eng |
dc.subject.proposal | Semi-graded ring | eng |
dc.subject.proposal | Quantum algebra | eng |
dc.subject.proposal | Ore extension | eng |
dc.subject.proposal | Double Ore extension | eng |
dc.subject.proposal | Schematic ring | eng |
dc.subject.proposal | Cv-polynomial | eng |
dc.subject.proposal | Inner derivation | eng |
dc.subject.proposal | Nakayama automorphism | eng |
dc.subject.proposal | Closed immersion | eng |
dc.subject.proposal | Noncommutative projective geometry | eng |
dc.subject.proposal | Anillo semi-graduado | spa |
dc.subject.proposal | Álgebra cuántica | spa |
dc.subject.proposal | Extensión de Ore | spa |
dc.subject.proposal | Extensión doble de Ore | spa |
dc.subject.proposal | Anillo esquemático | spa |
dc.subject.proposal | CV-polinomio | spa |
dc.subject.proposal | Derivación interna | spa |
dc.subject.proposal | Automorfismo de Nakayama | spa |
dc.subject.proposal | Inmersión cerrada | spa |
dc.subject.proposal | Geometría proyectiva no conmutativa | spa |
dc.title | Morphisms between semi-graded rings and polynomial applications | eng |
dc.title.translated | Morfismos entre anillos semi-graduados y aplicaciones polinomiales | spa |
dc.type | Trabajo de grado - Doctorado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_db06 | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/doctoralThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TD | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Tesis_Doctoral_María_Camila_Ramírez.pdf
- Tamaño:
- 1.1 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Doctorado en Matemáticas
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: