Morphisms between semi-graded rings and polynomial applications

dc.contributor.advisorReyes Villamil, Milton Armandospa
dc.contributor.authorRamírez Cubillos, María Camilaspa
dc.date.accessioned2024-10-31T16:38:45Z
dc.date.available2024-10-31T16:38:45Z
dc.date.issued2023
dc.descriptionilustracionesspa
dc.description.abstractIn this thesis, we study several kinds of morphisms between families of semi-graded rings with their corresponding polynomial applications. First, we present some ring-theoretical notions of these objects that are necessary throughout the thesis. With the aim of showing the generality of these rings in areas such as ring theory and noncommutative geometry, we include a non-exhaustive list of noncommutative algebras that are particular examples of these rings. Second, we develop a theory of cv-polynomials for iterated Ore extensions over arbitrary rings extending some results in the literature. We characterize these polynomials by using inner derivations of the coefficient ring, and also consider the problem of isomorphisms between these extensions. We illustrate our treatment with several noncommutative algebras. Third, for double Ore extensions introduced by Zhang and Zhang in the problem of classification of Artin-Schelter regular algebras of dimension four, we propose a theory of homomorphisms between them by introducing an adequate notion of cv-polynomial, and show that the computation of homomorphisms corresponding to these polynomials is non-trivial. Since there are no inclusions between the classes of all double Ore extensions of an algebra and of all length two iterated Ore extensions of the same algebra, we also present a comparison between theories of cv-polynomials between both families of algebras. We illustrate our results with Nakayama automorphisms of trimmed double Ore extensions. Finally, motivated by the research on maps between noncommutative projective spaces over $\mathbb{N}$-graded rings in the sense of Rosenberg and Van den Bergh, and the notion of schematicness introduced by Van Oystaeyen and Willaert to $\mathbb{N}$-graded rings with the aim of formulating a noncommutative scheme theory \`a la Grothendieck, we investigate maps in the setting of noncommutative projective spaces over schematic semi-graded rings, and extend different results from the category of schematic $\mathbb{N}$-graded rings to the category of schematic semi-graded rings.eng
dc.description.abstractEn esta tesis, estudiamos diversas clases de morfismos entre familias de anillos semigraduados con sus correspondientes aplicaciones polinomiales. En primer lugar, presentamos algunas nociones de la teoría de anillos de estos objetos que son necesarios a lo largo de la tesis. Con el propósito de mostrar la generalidad de estos anillos en áreas como la teoría de anillos y la geometría no conmutativa, incluimos una lista no exhaustiva de álgebras no conmutativas que son ejemplos particulares de estos anillos. En segundo lugar, desarrollamos una teoría de cv-polinomios para extensiones de Ore iteradas sobre anillos arbitrarios extendiendo algunos resultados en la literatura. Caracterizamos estos polinomios utilizando derivaciones internas, y también consideramos el problema de isomorfismos entre estas extensiones. Ilustramos nuestro tratamiento con diversas álgebras no conmutativas. Tercero, para las extensiones dobles de Ore introducidas por Zhang y Zhang en el problema de clasificación de álgebras regulares de ArtinSchelter de dimensión cuatro, proponemos una teoría entre estas introduciendo una noción adecuada de cv-polinomio, y mostramos que el cálculo de homomorfismos correspondientes a estos polinomios es no trivial. Teniendo en cuenta que no hay inclusiones entre las clases de extensiones dobles de Ore de un álgebra y extensiones de Ore iteradas de longitud dos sobre la misma álgebra, también presentamos una comparación entre las teorías de cv-polinomios entre ambas familias de álgebras. Ilustramos nuestros resultados con automofismos de Nakayama de extensiones dobles de Ore cortadas. Finalmente, motivados por la investigación sobre morfismos entre espacios proyectivos no connmutativos sobre anillos N-graduados en el sentido de Rosenberg and Van den Bergh, y la noción de esquematicidad introducida por Van Oystaeyen y Willaert para anillos N-graduados con el propósito de formular una teoría de esquemas no conmutativa a la Grothendieck, investigamos morfismos en contexto de espacios proyectivos no conmutativos sobre anillos semi-graduados esquemáticos, y extendemos diversos resultados de la categoría de anillos N-graduados esquemáticos a la categoría de anillos semi-graduados esquemáticos (Texto tomado de la fuente).spa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctora en Ciencias - Matemáticasspa
dc.format.extent141 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87126
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Matemáticasspa
dc.relation.referencesJ. Alev and F. Dumas. Sur le corps des fractions de certaines algèbres quantiques. J. Algebra, 170(1):229–265, 1994spa
dc.relation.referencesJ. Alev and F. Dumas. Invariants du corps de Weyl sous l’action de groupes finis. Comm. Algebra, 25(5):1655–1672, 1997.spa
dc.relation.referencesE. P. Armendariz, H. K. Koo, and J. K. Park. Isomorphic Ore extensions. Comm. Algebra, 15(12):2633–2652, 1987.spa
dc.relation.referencesJ. Apel. Gröbnerbasen in Nichtkommutativen Algebren und ihre Anwendung. PhD thesis, Universität Leipzig, 1988.spa
dc.relation.referencesM. Artin. Geometry of QuantumPlanes. In D. Haile and J. Osterburg, editors, Azumaya Algebras, Actions andModules, volume 124 of Proceedings of a Conference in Honor of Goro Azumaya’s Seventieth Birthday, May 23–27, 1990, pages 1–15. ContemporaryMathematics. AmericanMathematical Society, 1992spa
dc.relation.referencesV. A. Artamonov. Derivations of Skew PBW-Extensions. Commun. Math. Stat., 3(4):449–457, 2015.spa
dc.relation.referencesM. Artin and W. F. Schelter. Graded algebras of global dimension 3. Adv. Math., 66(2):171–216, 1987spa
dc.relation.referencesM. Abdi and Y. Talebi. On the diameter of the zero-divisor graph over skew PBW extensions. J. Algebra Appl., 23(05):2450089, 2024spa
dc.relation.referencesM. Artin, J. Tate, and M. Van den Bergh. Some Algebras Associated to Automorphisms of Elliptic Curves. In P. Cartier, L. Illusie, N. M. Katz, G. Laumon, Yu. I.Manin, and K. A. Ribet, editors, The Grothendieck Festschrift. A Collection of ArticlesWritten in Honor of the 60th Birthday of Alexander Grothendieck. Vol. I, volume 86 of Modern Birkhäuser Classics, pages 33–85. Progr.Math., Birkhäuser Boston, Boston, MA, 1990.spa
dc.relation.referencesM. Artin and J. J. Zhang. Noncommutative Projective Schemes. Adv. Math., 109(2):228–287, 1994.spa
dc.relation.referencesV. V. Bavula. Generalized Weyl algebras and their representations. St. Petersburg Math. J., 4(1):75–97, 1992spa
dc.relation.referencesV. V. Bavula. Description of bi-quadratic algebras on 3 generators with PBW basis. J. Algebra, 631:695–730, 2023spa
dc.relation.referencesG. Benkart. Down-up algebras and Witten’s deformation of the universal enveloping algebra of sl2. In S. Geun Hahn, H. Chul Myung, and E. Zelmanov, editors, Recent Progress in Algebra. An International Conference on Recent Progress in Algebra, August 11–15, KAIST, Taejon, South Korea, volume 224 of ContemporaryMathematics, pages 29–45. AmericanMathematical Society, Providence, Rhode Island, 1999.spa
dc.relation.referencesR. Berger. The Quantum Poincaré-Birkhoff-Witt Theorem. Comm. Math. Phys., 143(2):215–234, 1992spa
dc.relation.referencesJ. Bergen. X-Inner Automorphisms, Automorphisms, and Isomorphisms of Skew Polynomial Rings. Comm. Algebra, 31(2):1007–1029, 2003.spa
dc.relation.referencesA. Bell and K. Goodearl. UniformRank Over Differential Operator Rings and Poincaré-Birkhoff-Witt Extensions. Pacific J.Math., 131(1):13–37, 1988.spa
dc.relation.referencesK. Brown and K. R. Goodearl. Lectures on Algebraic Quantum Groups, volume 1 of Advanced Courses inMathematics - CRM Barcelona. Birkäuser-Verlag, 2002spa
dc.relation.referencesJ. Bueso, J. Gómez-Torrecillas, and A. Verschoren. Algorithmic Methods in Non-Commutative Algebra: Applications to QuantumGroups. MathematicalModelling: Theory and Applications, Springer Dordrecht, 2003.spa
dc.relation.referencesA. Belov-Kanel andM. Kontsevich. The Jacobian conjecture is stably equivalent to the Dixmier conjecture. Mosc.Math. J., 7(2):209–218, 2007spa
dc.relation.referencesG. Benkart, S. A. Lopes, and M. Ondrus. A parametric family of subalgebras of the Weyl algebra I. Structure and automorphisms. Trans. Amer.Math. Soc., 367(3):1993–2021, 2015spa
dc.relation.referencesG. Benkart and T. Roby. Down-Up Algebras. J. Algebra, 209(1):305–344, 1998spa
dc.relation.referencesL. Le Bruyn. Two remarks on Witten’s quantum enveloping algebra. Comm. Algebra, 22(3):865–876, 1994spa
dc.relation.referencesL. Le Bruyn. Central singularities of quantum spaces. J. Algebra, 177(1):142–153, 1995spa
dc.relation.referencesA. D. Bell and S. P. Smith. Some 3-dimensional skew polynomial rings. University of Wisconsin,Milwaukee, preprint, 1990spa
dc.relation.referencesJ. Bergen and M. C.Wilson. X-Inner Automorphisms of Semi-Commutative Quantum Algebras. J. Algebra, 220:152–173, 1999spa
dc.relation.referencesJ. Bell and J. J. Zhang. An Isomorphism Lemma for Graded Rings. Proc. Amer.Math. Soc., 145(3):989–994, 2017spa
dc.relation.referencesD. B. Coleman and E. E. Enochs. Isomorphic polynomial rings. Proc. Amer. Math. Soc., 27(2):247–252, 1971spa
dc.relation.referencesA. Chacón. On the Noncommutative Geometry of Semi-graded Rings. PhD thesis, Universidad Nacional de Colombia, Bogotá, D. C., Colombia, 2022.spa
dc.relation.referencesJ. H. Chun. Isomorphic Ore Extensions of Monomorphism Type. Commun. Korean Math. Soc., 8(3):361–371, 1993spa
dc.relation.referencesC. L. Chuang. Automorphisms of Ore extensions. Israel J. Math., 197(1):437–452, 2013spa
dc.relation.referencesP. A. A. B. Carvalho and S. A. Lopes. Automorphisms of Generalized Down-up Algebras. Comm. Algebra, 37(5):1622–1646, 2009spa
dc.relation.referencesP. A. A. B. Carvalho, S. A. Lopes, and J. Matczuk. Double Ore Extensions Versus Iterated Ore Extensions. Comm. Algebra., 39(8):2838–2848, 2011spa
dc.relation.referencesP.M. Cohn. Quadratic extensions of skew fields. Proc. LondonMath. Soc., 11(3):531–556, 1961spa
dc.relation.referencesP. M. Cohn. Free Rings and Their Relations. Second Edition. Academic Press, London, 1985spa
dc.relation.referencesS. C. Coutinho. A Primer of Algebraic D-modules. CambridgeUniversity Press. London Mathematical Society, Student Texts 33, 1995spa
dc.relation.referencesF. Calderón and A. Reyes. Some interactions between Hopf Galois extensions and noncommutative rings. Univ. Sci., 27(2):58–161, 2022spa
dc.relation.referencesA. Chacón and A. Reyes. Noncommutative scheme theory and the Serre-Artin-Zhang-Verevkin theorem for semi-graded rings. https://arxiv.org/abs/2301.07815, 2023spa
dc.relation.referencesA. Chacón and A. Reyes. On the schematicness of some Ore polynomials of higher order generated by homogeneous quadratic relations. J. Algebra Appl., https://www.worldscientific.com/doi/abs/10.1142/S021949882550207X, 2024spa
dc.relation.referencesT. Cassidy and B. Shelton. Generalizing the notion of Koszul algebra. Math.Z., 260(1):93–14, 2008spa
dc.relation.referencesJ. Dixmier. Sur les algebres deWeyl. Bull. Soc.Math. France, 96:209–242, 1968spa
dc.relation.referencesR. Díaz and E. Pariguan. On the q-meromorphicWeyl algebra. São Paulo J.Math. Sci., 3(2):283–298, 2009spa
dc.relation.referencesF. Dumas. Sous-corps de fractions rationnelles des corps gauches de series de Laurent. Topics in Invariant Theory, Lecture Notes inMath. Vol. 1478, 1991spa
dc.relation.referencesW. Fajardo. Extended modules over skew PBW extensions. PhD thesis, Universidad Nacional de Colombia, Bogotá, D. C., 2018spa
dc.relation.referencesW. Fajardo, C. Gallego, O. Lezama, A. Reyes, H. Suárez, and H. Venegas. Skew PBW Extensions. Ring and Module-theoretic Properties, Matrix and GröbnerMethods, and Applications. Algebra and Applications. Springer, Cham, 2020spa
dc.relation.referencesM. Ferrero and K. Kishimoto. On automorphisms of skew polynomial rings of derivation type. Math. J. Okayama Univ., 22:21–26, 1980spa
dc.relation.referencesW. Fajardo, O. Lezama, C. Payares, A. Reyes, and C. Rodríguez. Introduction to Algebraic Analysis on Ore Extensions. In A. Martsinkovsky, editor, Functor Categories, Model Theory, Algebraic Analysis and ConstructiveMethods FCMTCCT2 2022, Almería, Spain, July 11-15, Invited and Selected Contributions, volume 450 of Springer Proceedings inMathematics & Statistics, pages 45–116. Springer, Cham, 2024spa
dc.relation.referencesP. Gabriel. Des catégories abéliennes. Bull. Soc.Math. France, 90:328–448, 1962spa
dc.relation.referencesJ. Gaddis. Isomorphisms of Some Quantum Spaces. In D. Van Huynh, S. K. Jain, S. R. López-Permouth, S. Tariq Rizvi, and C. S. Roman, editors, Ring Theory and Its Applications, Ring Theory Session in Honor of T. Y. Lam on his 70th Birthday 31st Ohio State-DenisonMathematics ConferenceMay 25–27, 2012, The Ohio State University, Columbus, OH, volume 609 of ContemporaryMathematics, pages 107–116. American Mathematical Society, 2014spa
dc.relation.referencesC. Gallego. Matrixmethods for projective modules over σ-PBWextensions. PhD thesis, Universidad Nacional de Colombia, Bogotá, D. C., Colombia, 2015spa
dc.relation.referencesA. Grothendieck and J.Dieudonné. Éléments de Géométrie Algébrique ii. Inst.Hautes Etudes Sci. Publ.Math. 8, 1961spa
dc.relation.referencesRobertW. Gilmer. R-automorphisms of R[x]. Proc. LondonMath. Soc., s3-18(2):328–336, 1968spa
dc.relation.referencesK. R. Goodearl and R. B. Warfield Jr. An Introduction to Noncommutative Noetherian Rings, volume 61 of London Mathematical Society Student Texts. Cambridge University Press, 2004spa
dc.relation.referencesK. R. Goodearl and E. S. Letzter. Prime Ideals in Skew and q-Skew Polynomial Rings, volume 109 ofMemories of the AmericanMathematical Society 521. American Mathematical Society, 1994spa
dc.relation.referencesC. Gallego and O. Lezama. Gröbner Bases for Ideals of σ-PBW Extensions. Comm. Algebra, 39(1):50–75, 2011spa
dc.relation.referencesC. Gallego and O. Lezama. Projective modules and Gröbner bases for skew PBW extensions. DissertationesMath, 521:1–50, 2017spa
dc.relation.referencesO.W. Greenberg and A.M. L.Messiah. Selection Rules for Parafields and the Absence of Para Particles in Nature. Phys. Rev., 138(5B):B1155–B1167, 1965spa
dc.relation.referencesA. V. Golovashkin and V. M. Maksimov. Skew Ore polynomials of higher orders generated by homogeneous quadratic relations. RussianMath. Surveys, 53(2):384–386, 1998spa
dc.relation.referencesA. V. Golovashkin and V. M.Maksimov. On algebras of skew polynomials generated by quadratic homogeneous relations. J.Math. Sci., 129(2):3757–3771, 2005spa
dc.relation.referencesJ. Goldman. Rings and Modules of Quotients. J. Algebra, 13(1):10–47, 1969spa
dc.relation.referencesH. S. Green. A generalized method of field quantization. Phys. Rev., 90(2):270, 1953spa
dc.relation.referencesJ. Y. Gómez and H. Suárez. Double Ore extensions versus graded skew PBW extensions. Comm. Algebra, 48(1):185–197, 2020spa
dc.relation.referencesA. Giaquinto and J. J. Zhang. Quantum Weyl Algebras. J. Algebra, 176(3):861–881, 1995spa
dc.relation.referencesR. Hartshorne. Algebraic Geometry. Graduate Texts in Mathematics 52, Springer-Verlag, New York, Heidelberg, Berlin, 1977spa
dc.relation.referencesT. Hayashi. q-analogues of Clifford and Weyl algebras-Spinor and oscillator representations of quantum enveloping algebras. Comm. Math. Phys., 127(1):129–144, 1990spa
dc.relation.referencesH.Haynal. PI degree parity in q-skew polynomial rings. J. Algebra, 319(10):4199–4221, 2008spa
dc.relation.referencesM. Hamidizadeh, E. Hashemi, and A. Reyes. A classification of ring elements in skew PBW extensions over compatible rings. Int. Electron. J. Algebra, 28(1):75–97, 2020spa
dc.relation.referencesO. Hinchcliffe. Diffusion algebras. PhD thesis, University of Sheffield, 2005spa
dc.relation.referencesE. Hashemi, K. Khalilnezhad, and A. Alhevaz. (Σ,Δ)-compatible skew PBW extension ring. KyungpookMath. J., 57(3):401–417, 2017spa
dc.relation.referencesM. Havlíˇcek, A. U. Klimyk, and S. Pošta. Central elements of the algebrasU′(som) andU(isom). Czech. J. Phys., 50(1):79–84, 2000spa
dc.relation.referencesJ. Hernández and A. Reyes. A Survey on Some Algebraic Characterizations of Hilbert’s Nullstellensatz for Non-commutative Rings of Polynomial Type. Ingeniería y Ciencia, 16(31):27–52, 2020spa
dc.relation.referencesS. Higuera and A. Reyes. A survey on the fusible property for skew PBWextensions. J. Algebr. Syst., 10(1):1–29, 2022spa
dc.relation.referencesS. Higuera and A. Reyes. On weak annihilators and nilpotent associated primes of skew PBW extensions. Comm. Algebra, 51(11):4839–4861, 2023spa
dc.relation.referencesA. P. Isaev, P. N. Pyatov, and V. Rittenberg. Diffusion algebras. J. Phys. A., 34(29):5815–5834, 2001spa
dc.relation.referencesA. Jannussis, G. Brodimas, and D. Sourlas. Remarks on the q-quantization. Lett. Nuovo Cimento, 30:123–127, 1981spa
dc.relation.referencesA. Jannussis, A. Leodaris, and R. Mignani. Non-Hermitian Realization of a Liedeformed Heisenberg algebra. Phys. Lett. A, 197(3):187–191, 1995spa
dc.relation.referencesX.Wang J. Lü and G. Zhuang. Universal enveloping algebras of Poisson Ore extensions. Proc. Amer.Math. Soc., 143(11):4633–4645, 2015spa
dc.relation.referencesD. A. Jordan. Finite-dimensional simple modules over certain iterated skew polynomial rings. J. Pure Appl. Algebra, 98(1):45–55, 1995spa
dc.relation.referencesD. A. Jordan. Down-Up Algebras and Ambiskew Polynomial Rings. J. Algebra, 228(1):311–346, 2000spa
dc.relation.referencesD. Jordan. The Graded Algebra Generated by Two Eulerian Derivatives. Algebr. Represent. Theory, 4(3):249–275, 2001spa
dc.relation.referencesD. A. Jordan and I. E.Wells. Invariants for automorphisms of certain iterated skew polynomial rings. Proc. Edinb.Math. Soc., 39(3):461–472, 1996spa
dc.relation.referencesK. Kanakoglou and C. Daskaloyannis. Bosonisation and Parastatistics. In: S. Silvestrov and E. Paal and V. Abramov and A. Stolin (eds). Generalized Lie Theory in Mathematics, Physics and Beyond. Springer, Berlin, Heidelberg, pp. 207–218, 2009spa
dc.relation.referencesO. H. Keller. Ganze Cremona-Transformationen. Monatsh. Math., 47(1):299–306, 1939spa
dc.relation.referencesI. Kikumasa. Automorphisms of a Certain Skew Polynomial Ring of Derivation Type. Canad. J.Math., 42(6):949–958, 1990spa
dc.relation.referencesA. P. Kitchin and S. Launois. Endomorphisms of Quantum GeneralizedWeyl Algebras. Lett.Math. Phys., 104:837–848, 2014spa
dc.relation.referencesA. P. Kitchin and S. Launois. On the automorphisms of quantum Weyl algebras. J. Pure Appl. Algebra, 223(4):1514–1530, 2019spa
dc.relation.referencesE. Kirkman, I. M. Musson, and D. Passman. Noetherian Down-Up Algebras. Proc. Amer.Math. Soc., 127(11):3161–3167, 1999spa
dc.relation.referencesK. Krebs and S. Sandow. Matrix product eigenstates for one-dimensional stochastic models and quantum spin chains. J. Phys. A:Math. Gen., 30(9):3165–3173, 1997spa
dc.relation.referencesR. S. Kulkarni. Irreducible Representations of Witten’s deformations of U(sl2). J. Algebra, 214(1):64–91, 1999spa
dc.relation.referencesM. V. Kuryshkin. Opérateurs quantiques généralisés de création et d’annihilation. Ann. Fond. L. de Broglie, 5:111–125, 1980spa
dc.relation.referencesE. Landau. Ein Satz über die Zerlegung Homogener linear Differentialansdrüche in Irreduzible Faktoren. J. Reine Angew.Math., 124:115–120, 1902spa
dc.relation.referencesO. Lezama, J. P. Acosta, and A. Reyes. Prime ideals of skew PBW extensions. Rev. Un. Mat. Argentina, 56(2):39–55, 2015spa
dc.relation.referencesA. Leroy. Pseudo linear transformations and evaluation in Ore extensions. Bull. Belg. Math. Soc., 2(3):321–347, 1995spa
dc.relation.referencesA. Leroy. Noncommutative polynomialmaps. J. Algebra Appl., 11(04):1250076, 2012spa
dc.relation.referencesV. Levandovskyy. Non-Commutative Computer Algebra for Polynomial Algebras: Gröbner Bases, Applications and Implementation. PhD thesis, Universität Kaiserslautern, 2005spa
dc.relation.referencesO. Lezama. Computation of point modules of finitely semi-graded rings. Comm. Algebra, 48(2):866–878, 2020spa
dc.relation.referencesO. Lezama. Some Open Problems in the Context of Skew PBW Extensions and Semi-graded Rings. Commun.Math. Stat., 9(3):347–378, 2021spa
dc.relation.referencesO. Lezama and J. Gómez. Koszulity and PointModules of Finitely Semi-graded Rings and Algebras. Symmetry, 11(7):1–22, 2019spa
dc.relation.referencesH. Li. Noncommutative Gröbner Bases and Filtered-Graded Transfer. Lecture Notes in Mathematics. Springer Berlin, Heidelberg, 2002spa
dc.relation.referencesQ. Li. Double Ore extensions of anti-angle type for Hopf algebras. AIMS Math., 7(7):12566–12586, 2022spa
dc.relation.referencesT. Y. Lam and A. Leroy. Vandermonde andWronskianmatrices over division rings. J. Algebra, 119(2):308–336, 1988spa
dc.relation.referencesT.Y. Lam and A Leroy. Algebraic conjugacy classes and skew polynomial rings. In: Perspectives in Ring Theory, Springer, 1988, pp. 153–203, 1988spa
dc.relation.referencesT. Y. Lam and A. Leroy. Homomorphisms Between Ore Extensions. In D. Haile and J. Osterburg, editors, Azumaya Algebras, Actions and Modules, volume 124 of Proceedings of a Conference in Honor of Goro Azumaya’s Seventieth Birthday, May 23–27, 1990, pages 83–110. Contemporary Mathematics. American Mathematical Society, 1992spa
dc.relation.referencesT. Y. Lam and A. Leroy. Hilbert 90 Theorems over Division Rings. Trans. Amer.Math. Soc., 345(2):595–622, 1994spa
dc.relation.referencesE. Latorre. and O. Lezama. Non-commutative algebraic geometry of semi-graded rings. Internat. J. Algebra Comput, 27(4):361–389, 2017spa
dc.relation.referencesT. Y. Lam, A. Leroy, and A. Ozturk. Wedderburn Polynomials over Division Rings, II. In S. K. Jain and S. Parvathi, editors, Noncommutative Rings, Group Rings, Diagram Algebras and Their Applications. International Conference December 18–22, 2006, University of Madras, Chennai, India, volume 456 of Contemporary Mathematics, pages 73–98. AmericanMathematical Society, 2008spa
dc.relation.referencesA. Leroy and J.Matczuk. The Extended Centroid and X-Inner Automorphisms of Ore Extensions. J. Algebra, 145:143–177, 1992spa
dc.relation.referencesS. Lopes. Noncommutative Algebra and Representation Theory: Symmetry, Structure & Invariants. Commun.Math., 32(3):63–117, 2024spa
dc.relation.referencesQ. Lou, S.-Q. Oh, and S. Wang. Poisson double extensions. Sci. China Math., 63(4):701–720, 2020spa
dc.relation.referencesJ. Lü, S.-Q. Oh, X. Wang, and X. Yu. Enveloping algebras of double Poisson-Ore extensions. Comm. Algebra, 46(11):4891–4904, 2018spa
dc.relation.referencesO. Lezama and A. Reyes. Some Homological Properties of Skew PBW Extensions. Comm. Algebra, 42(3):1200–1230, 2014spa
dc.relation.referencesM. Louzari and A. Reyes. Generalized RigidModules and Their Polynomial Extensions. InM. SilesMolina, L. El Kaoutit, M. Louzari, L. Ben Yakoub, andM. Benslimane, editors, Associative and Non-Associative Algebras and Applications.MAMAA 2018, volume 311 of Springer Proceedings inMathematics Statistics, pages 147–158. Springer, Cham, 2020spa
dc.relation.referencesS. A. Lopes and F. Razavinia. Structure and isomorphisms of quantum generalized Heisenberg algebras. J. Algebra Appl., 21(10):2250204, 2022spa
dc.relation.referencesO. Lezama, A. Reyes, and H. Suárez. Calabi-Yau property for graded skew PBW extensions. Rev. ColombianaMat, 51(2):221–239, 2017spa
dc.relation.referencesH. Li and F. van Oystaeyen. Zariskian filtrations. K-Monographs in Mathematics, Vol. 2, Springer Science, 1996spa
dc.relation.referencesV.M.Maksimov. On a generalization of the ring of skew Ore polynomials. Russian Math. Surveys, 55:817–818, 2000spa
dc.relation.referencesV. M. Maksimov. Canonical forms of skew polynomial rings. J. Math. Sci. (N.Y.), 126(2):1064–1076, 2005spa
dc.relation.referencesY. I.Manin. Topics in Noncommutative Geometry. M. B. Porter Lectures, Rice University, Princeton University Press, New Jersey, 1991spa
dc.relation.referencesJ. C. McConnell. Quantum groups, filtered rings and Gelfand-Kirillov dimension. In S. K. Jain and S. R. López-Permouth, editors, Non-Commutative Ring Theory (Athens, Ohio, 1989), volume 1448 of Lecture Notes inMathematics, pages 139–147. Springer-Verlag, Berlin, Heidelberg, 1990spa
dc.relation.referencesS.Montgomery. X-Inner automorphisms of filtered algebras. Proc. Amer.Math. Soc., 83(2):263–268, 1981spa
dc.relation.referencesS. Montgomery. X-Inner automorphisms of filtered algebras II. Proc. Amer. Math. Soc., 87(4):569–575, 1983spa
dc.relation.referencesJ. C.McConnell and J. C. Robson. Noncommutative Noetherian Rings, volume 30 of Graduate Studies inMathematics. AmericanMathematical Society, 2001spa
dc.relation.referencesI.Musson. Ring Theoretic Properties of the Coordinate Rings of QuantumSymplectic and Euclidean Space. In S. K. Jain and S. T. Rizvi, editors, Ring Theory. Proceedings of the 1992 Biennial Ohio State-Denison Conference, Denison University, 14–16May 1992, pages 248–258.World Scientific, 1993spa
dc.relation.referencesA. Niño, M. C. Ramírez, and A. Reyes. Associated prime ideals over skew PBW extensions. Comm. Algebra, 48(12):5038–5055, 2020spa
dc.relation.referencesE. Noether andW. Schmeidler. Moduln in nichtkommutativen bereichen, insbesondere aus differential - und differenzenausdrücken. Math. Zeitschrift, 8:1–35, 1920spa
dc.relation.referencesJ. Osterburg and D. S. Passman. X-Inner automorphisms of enveloping rings. J. Algebra, 130(2):412–434, 1990spa
dc.relation.referencesO. Ore. Linear Equations in Non-commutative Fields. Ann. ofMath. (2), 32(3):463–477, 1931spa
dc.relation.referencesO. Ore. Theory of non-commutative polynomials. Ann. ofMath. (2), 34(3):480–508, 1933spa
dc.relation.referencesV. L. Ostrovskii and Yu. S. Samoilenko. Representation of ∗-algebras with two generators and polynomial relations. J.Math. Sci., 59(5):1107–1113, 1992spa
dc.relation.referencesM. Parmenter. Automorphisms of twisted polynomial ringsspa
dc.relation.referencesD. S. Passman. Prime ideals in enveloping rings. Trans. Amer.Math. Soc., 302:535–560, 1987spa
dc.relation.referencesC. Phan. The Yoneda Algebra of a Graded Ore Extension. Comm. Algebra, 40(3):834–844, 2012spa
dc.relation.referencesP. N. Pyatov and R. Twarock. Construction of diffusion algebras. J. Math. Phys., 43(6):3268–3279, 2002spa
dc.relation.referencesI. T. Redman. The Non-Commutative Algebraic Geometry of some Skew Polynomial Algebras. PhD thesis, University ofWisconsin -Milwaukee, 1996spa
dc.relation.referencesI. T. Redman. The homogenization of the three dimensional skew polynomial algebras of type I. Comm. Algebra, 27(11):5587–5602, 1999spa
dc.relation.referencesA. Reyes. Ring and Module Theoretical Properties of Skew PBW Extensions. PhD thesis, Universidad Nacional de Colombia, Bogotá, D. C., Colombia, 2013spa
dc.relation.referencesA. Reyes. Armendariz modules over skew PBW extensions. Comm. Algebra, 47(3):1248–1270, 2019spa
dc.relation.referencesM. Rimmer. Isomorphisms between skew polynomial rings. J. Austral.Math. Soc., 25(3):314–321, 1978spa
dc.relation.referencesD. Rogalski. Artin-Schelter regular algebras. In K. A. Brown, T. J. Hodges, M. Vancliff, and J. J. Zhang, editors, Recent Advances in Noncommutative Algebra and Geometry, volume 801 of Conference in Honor of S. Paul Smith on the Occasion of His 65th Birthday Recent Advances and New Directions in the Interplay of Noncommutative Algebra and Geometry June 20–24, 2022, University ofWashington, Seattle,WA, pages 195–242. ContemporaryMathematics. AmericanMathematical Society, 2024spa
dc.relation.referencesA. Rosenberg. Non-commutative Algebraic Geometry and Representations of Quantized Algebras. Math. Appl. (Soviet Ser.), 330 Kluwer Academic Publishers, 1995spa
dc.relation.referencesA. Rosenberg. Noncommutative schemes. Compos.Math., 112(1):93–125, 1998spa
dc.relation.referencesM. P. Rosen and J. D. Rosen. Automorphisms and derivations of skew polynomial rings. Canad.Math. Bull., 35(1):126–132, 1992spa
dc.relation.referencesA. Reyes and C. Rodríguez. The McCoy condition on Skew Poincaré-Birkhoff-Witt Extensions. Commun.Math. Stat., 9(1), 2021spa
dc.relation.referencesL. Richard and A. Solotar. Isomorphisms between quantumgeneralizedWeyl algebras. J. Algebra Appl., 5(3):271–285, 2006spa
dc.relation.referencesA. Reyes and H. Suárez. A note on zip and reversible skew PBWextensions. Bol.Mat., 23(1):71–79, 2016spa
dc.relation.referencesA. Reyes and H. Suárez. Skew Poincaré-Birkhoff-Witt extensions over weak zip rings. Beitr Algebra Geom., 60(2):197–216, 2019spa
dc.relation.referencesA. Reyes and H. Suárez. Skew Poincaré-Birkhoff-Witt extensions over weak compatible rings. J. Algebra Appl., 19(12):2050225(1)–2050225(21), 2020spa
dc.relation.referencesA. Reyes and C. Sarmiento. On the differential smoothness of 3-dimensional skew polynomial algebras and diffusion algebras. Internat. J. Algebra Comput., 32(03):529–559, 2022spa
dc.relation.referencesV. Rittenberg and D.Wyler. Generalized superalgebras. Nucl. Phys. B, 139(3):189–202, 1978spa
dc.relation.referencesH. Suárez, F. Anaya, and A. Reyes. Propiedad χ en extensiones PBW torcidas graduadas. Ciencia en Desarrollo, 12(1):33–41, 2021spa
dc.relation.referencesM. Suárez-Alvarez and Q. Vivas. Automorphisms and isomorphisms of quantum generalized Weyl algebras. J. Algebra, 424:540–552, 2015spa
dc.relation.referencesH. Suárez, D. Cáceres, and A. Reyes. Some special types of determinants in graded skew PBW extensions. Rev. Integr. TemasMat., 391(1):91–107, 2021spa
dc.relation.referencesH. Suárez, A. Chacón, and A. Reyes. On NI and NJ skew PBW extensions. Comm. Algebra, 50(8):3261–3275, 2022spa
dc.relation.referencesW. M. Seiler. Involution. The Formal Theory of Differential Equations and its Applications in Computer Algebra, volume 24. Algorithms and Computation inMathematics (AACIM). Springer Berlin, Heidelberg, 2010spa
dc.relation.referencesP. Serre. Faisceaux Algébriques Cohérents. Ann. ofMath., 61(2):197–278, 1955spa
dc.relation.referencesE. N. Shirikov. Two-generated graded algebras. Algebra DiscreteMath., 4(3):60–84, 2005spa
dc.relation.referencesH. Suárez, O. Lezama, and A. Reyes. Calabi-Yau property for graded skew PBW extensions. Rev. ColombianaMat., 51(2):221–239, 2017spa
dc.relation.referencesT. H.M. Smits. Skew polynomial rings. Indag.Math., 71(1):209–224, 1968spa
dc.relation.referencesS. P. Smith. A Class of Algebras Similar to the Enveloping of sl(2). Comm. Algebra, 322(1):285–314, 1991spa
dc.relation.referencesS. P. Smith. Integral Non-commutative Spaces. J. Algebra, 246(2):793–810, 2001spa
dc.relation.referencesS. P. Smith. Subspaces of non-commutative spaces. Trans. Amer. Math. Soc., 354(6):2131–2171, 2002spa
dc.relation.referencesS. P. Smith. Maps between non-commutative spaces. Trans. Amer. Math. Soc., 356(7):2927–2944, 2003spa
dc.relation.referencesS. P. Smith. Corrigendum to “Maps between non-commutative spaces”. Trans. Amer. Math. Soc., 368(11):8295–8302, 2016spa
dc.relation.referencesH. Suárez and A. Reyes. A generalized Koszul property for skew PBW extensions. Far East J.Math. Sci., 101(2):301–320, 2017spa
dc.relation.referencesH. Suárez and A. Reyes. Nakayama Automorphism of Some Skew PBW Extensions. Ingeniería y Ciencia, 15(29):157–177, 2019spa
dc.relation.referencesH. Suárez, A. Reyes, and Y. Suárez. Homogenized skew PBW extensions. Arab. J.Math. (Springer), 12(1):247–263, 2023spa
dc.relation.referencesB. Stenström. Rings ofQuotients. An Introduction to Methods of Ring Theory. Springer-Verlag, 1975spa
dc.relation.referencesH. Suarez. N-Koszul algebras, Calabi-Yau algebras and skew PBWextensions. PhD thesis, Universidad Nacional de Colombia, Bogotá, D. C., 2017spa
dc.relation.referencesH. Suárez. Koszulity for graded skew PBW extensions. Comm. Algebra, 45(10):4569–4580, 2017spa
dc.relation.referencesA. B. Tumwesigye, J. Richter, and S. Silvestrov. Centralizers in PBW extensions. In S. Silvestrov, A. Malyarenko, and M. Ranˇci´c, editors, Algebraic Structures and Applications. SPAS 2017, volume 317 of Springer Proc. Math. Stat., pages 469–490. Springer, Cham, 2020spa
dc.relation.referencesY. Tsuchimoto. Preliminaries on Dixmier conjecture. Mem. Fac. Sci. Kochi Univ. Ser. AMath., 24:43–59, 2003spa
dc.relation.referencesR. Twarok. Representations for selected types of diffusion systems. In E. Kapuscik and A. Horzela, editors, Quantum Theory and Symmetries. Proceedings of the Second International Symposium, Held 18–21, July 2001 in Kraków, Poland, pages 615–620. World Scientific Publishing Co. Pte. Ltd., 2002spa
dc.relation.referencesV. A. Ufnarovskii. Combinatorial and asymptotic methods in algebra. Algebra – 6, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl.Mat. Fund. Napr, 57:5–177, 1990spa
dc.relation.referencesM. Van den Bergh. Blowing Up of Non-commutative Smooth Surfaces. Mem. Amer. Math. Soc. 154 (734), 2001spa
dc.relation.referencesH. Venegas. Zariski cancellation problem for skew PBW extensions. PhD thesis, Universidad Nacional de Colombia, Bogotá, D. C., Colombia, 2020spa
dc.relation.referencesA. B. Verevkin. On a noncommutative analogue of the category of coherent sheaves on a projective scheme. Amer.Math. Soc. Transl. (2), 151, 1992spa
dc.relation.referencesA. B. Verevkin. Serre injective sheaves. Math. Zametki, 52(4):35–41, 1992spa
dc.relation.referencesN. Ja. Vilenkin and A. U. Klimyk. Representation of Lie Groups and Special Functions. Kluwer Academic Publishers, 1995spa
dc.relation.referencesF. van Oystaeyen. On graded rings and modules of quotients. Comm. Algebra, 6(18):1923–1959, 1978spa
dc.relation.referencesF. van Oystaeyen. Algebraic Geometry for Associative Algebras. Pure and Applied Mathematics, CRC Press Taylor & Francis Group, 2000spa
dc.relation.referencesF. van Oystaeyen and L. A.Willaert. Grothendieck topology, coherent sheaves and Serre’s theorem for schematic algebras. J. Pure Appl. Algebra, 104(1):109–122, 1995spa
dc.relation.referencesF. van Oystaeyen and L. A.Willaert. Cohomology of Schematic Algebras. J. Algebra, 185(1):74–84, 1996spa
dc.relation.referencesF. van Oystaeyen and L. A.Willaert. The Quantum Site of a Schematic Algebra. Comm. Algebra, 24(1):209–122, 1996spa
dc.relation.referencesF. van Oystaeyen and L. A.Willaert. Examples and quantum sections of schematic algebras. J. Pure Appl. Algebra, 120(2):195–211, 1997spa
dc.relation.referencesL. A. Willaert. A new dimension for schematic algebras. In: S. Caenepeel and A. Verschoren (eds). Rings, Hopf algebras, and Brauer Groups, Lecture Notes in Pure and Applied Mathematics, pp. 325–332, 1998spa
dc.relation.referencesE. Witten. Gauge theories, vertex models, and quantum groups. Nuclear Phys. B, 330(2-3):285–346, 1990spa
dc.relation.referencesE.Witten. Quantization of Chern-Simons Gauge Theory with Complex Gauge Group. Comm.Math. Phys., 137(1):29–66, 1991spa
dc.relation.referencesS. L.Woronowicz. Twisted SU(2)-Group. An Example of a Non-commutative Differential Calculus. Publ. Res. Inst.Math. Sci., 23:117–181, 1987spa
dc.relation.referencesJ.Wess and B. Zumino. Covariant differential calculus on the quantum hyperplane. Nuclear Phys. B Proc. Suppl., 18(1):302–312, 1990.spa
dc.relation.referencesH. Yamane. A Poincaré-Birkhoff-Witt Theorem for Quantized Universal Enveloping Algebras of Type AN. Publ. RIMS Kyoto Univ., 25(3):503–520, 1989spa
dc.relation.referencesB. Zambrano. Poisson brackets on some skew PBW extensions. Algebra Discrete Math., 29(2):277–302, 2020spa
dc.relation.referencesA. S. Zhedanov. “Hidden symmetry” of Askey–Wilson polynomials. Theoret. and Math. Phys., 89(2):1146–1157, 1991spa
dc.relation.referencesC. Zhu, F. van Oystaeyen, and Y. Zhang. Nakayama automorphisms of double Ore extensions of koszul regular algebras. Manuscripta Math., 152(3–4):555–584, 2017spa
dc.relation.referencesJ.J. Zhang and J. Zhang. Double Ore extensions. J. Pure Appl. Algebra, 212(12):2668–2690, 2008spa
dc.relation.referencesJ. J. Zhang and J. Zhang. Double extension regular algebras of type (14641). J. Algebra, 322(2):373–409, 2009spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc510 - Matemáticas::512 - Álgebraspa
dc.subject.lembANILLOS POLINOMIALESspa
dc.subject.lembPolynomial ringseng
dc.subject.lembALGEBRAS TOPOLOGICASspa
dc.subject.lembTopological algebraseng
dc.subject.lembPOLINOMIOSspa
dc.subject.lembPolynomialseng
dc.subject.proposalSemi-graded ringeng
dc.subject.proposalQuantum algebraeng
dc.subject.proposalOre extensioneng
dc.subject.proposalDouble Ore extensioneng
dc.subject.proposalSchematic ringeng
dc.subject.proposalCv-polynomialeng
dc.subject.proposalInner derivationeng
dc.subject.proposalNakayama automorphismeng
dc.subject.proposalClosed immersioneng
dc.subject.proposalNoncommutative projective geometryeng
dc.subject.proposalAnillo semi-graduadospa
dc.subject.proposalÁlgebra cuánticaspa
dc.subject.proposalExtensión de Orespa
dc.subject.proposalExtensión doble de Orespa
dc.subject.proposalAnillo esquemáticospa
dc.subject.proposalCV-polinomiospa
dc.subject.proposalDerivación internaspa
dc.subject.proposalAutomorfismo de Nakayamaspa
dc.subject.proposalInmersión cerradaspa
dc.subject.proposalGeometría proyectiva no conmutativaspa
dc.titleMorphisms between semi-graded rings and polynomial applicationseng
dc.title.translatedMorfismos entre anillos semi-graduados y aplicaciones polinomialesspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis_Doctoral_María_Camila_Ramírez.pdf
Tamaño:
1.1 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Matemáticas

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: