Diseño de un sistema de impresión electrohidrodinámico 3D para mejorar la resolución de andamios impresos para el tejido óseo

dc.contributor.advisorClavijo Grimaldo, Dianney
dc.contributor.authorOcampo Páramo, Adolfo Mario
dc.contributor.researchgroupGrupo de Investigación en Biomecánica / Universidad Nacional de Colombia Gibm-Uncbspa
dc.date.accessioned2022-08-24T13:13:13Z
dc.date.available2022-08-24T13:13:13Z
dc.date.issued2022
dc.descriptionilustraciones, fotografías, graficasspa
dc.description.abstractLa osteoporosis es una patología esquelética caracterizada por la perdida de masa ósea que, dependiendo el riesgo del paciente, requiere desde tratamientos farmacéuticos hasta intervenciones quirúrgicas. Los fármacos se encargan de compensar dicha perdida ósea, mas no previenen la ocurrencia de una fractura. Ante la eventualidad de una fractura se recurre a la cirugía donde utilizando diferentes tipos de biomateriales se fabrican andamios óseos para reemplazar el tejido perdido y/o afectado. Una de las técnicas comunes de fabricación de estos andamios es la impresión por extrusión, debido a su facilidad de implementación. Sin embargo, esta técnica cuenta con importantes limitaciones, en cuanto a resolución se trata, refiriéndose así al diámetro de las fibras y porosidad. Estas características son fundamentales para imitar las propiedad de un tejido óseo sano, lo que se desea para que el proceso curativo del paciente se de de la forma deseada. Con el fin de lograr andamios que biomimeticen el ambiente celular óseo, desde hace unos años se han estudiado diferentes técnicas de impresión de andamios, una de ellas es la impresión Electrohidrodinámica(EHDA). Con este método de impresión se pretende mejorar la resolución de los andamios que se han venido realizando por extrusión. En el presente proyecto se inicio modificando el equipo de impresión EHDA, agregando un mecanismo de movimiento en los ejes XY para movilizar la base colectora y así habilitar la impresión 3D, dé tal forma que los resultados a obtener entre los dos sistemas de impresión EHDA vs Extrusión sean comparables. Se fabricaron andamios tanto por extrusión como por Electrospinning. Por medio del microscopio electrónico de barrido se obtuvieron imágenes detalladas de cada uno. Con dichas imágenes se procedió a realizar las respectivas medidas de porosidad y diámetro de fibras para cada andamio impreso, tanto por extrusión como por EHDA, utilizando el método de análisis de imagen por medio del software ``Image J" (National Institutes of Health). Al comparar los datos se obtiene que con la técnica de Electrospinning se pueden fabricar andamios a partir de nano y micro fibras, mientras que con la técnica de Extrusión las fibras se encuentran en el orden de los micrómetros y milímetros. Los poros para los andamios se encuentran en el mismo orden del tamaño de sus fibras, esto quiere decir que los andamios fabricados por Electrospinning cuentan con un tamaño de poros considerablemente menor a los fabricados por Extrusión, que a su vez indica que para la fabricación de andamios óseos la técnica EHDA es una mejor opción, puesto que es capaz de emular con mayor fidelidad el ambiente celular óseo propicio para la proliferación y supervivencia de este tipo celular. (Texto tomado de la fuente)spa
dc.description.abstractOsteoporosis is a skeletal pathology characterized by the loss of bone mass that, depending on the patient's risk, requires from pharmaceutical treatments to surgical interventions. The drugs are responsible for compensating for this bone loss, but they do not prevent the occurrence of a fracture. In the event of a fracture, surgery is used where, using different types of biomaterials, bone scaffolds are manufactured to replace the lost and/or affected tissue. One of the common manufacturing techniques for these scaffolds is extrusion printing, due to its ease of implementation. However, this technique has important limitations, in terms of resolution, referring to the diameter of the fibers and porosity. These characteristics are essential to imitate the properties of healthy bone tissue, which is desired so that the patient's healing process occurs as desired. In order to achieve scaffolds that biomimetic the bone cell environment, different scaffold printing techniques have been studied for a few years, one of them is Electrohydrodynamic printing (EHDA). With this printing method it is intended to improve the resolution of the scaffolds that have been made by extrusion. In this project, we began by modifying the EHDA printing equipment, adding a movement mechanism in the XY axes to mobilize the collector base and thus enable 3D printing, in such a way that the results to be obtained between the two EHDA printing systems vs. Extrusion are comparable. Scaffolds were manufactured both by extrusion and Electrospinning. Detailed images of each were obtained by means of the scanning electron microscope. With these images, the respective measurements of porosity and fiber diameter were made for each printed scaffold, both by extrusion and by EHDA, using the image analysis method using the ``Image J" software (National Institutes of Health). When comparing the data, it is obtained that with the Electrospinning technique, scaffolds can be manufactured from nano and micro fibers, while with the Extrusion technique, the fibers are in the order of micrometers and millimeters. The pore size in the scaffolds are in the same order of size of their fibers, this means that the scaffolds manufactured by Electrospinning have a considerably smaller pore size than those manufactured by Extrusion, which in turn indicates that for the manufacture of bone scaffolds the EHDA technique it is a better option, since it is able to more faithfully emulate the bone cell environment propitious to the proliferation and survival of this cell type.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería Biomédicaspa
dc.description.researchareaBiomaterialesspa
dc.description.sponsorshipMinisterio de Ciencia, tecnología e innovación de Colombia, la Fundación Universidad Sanitas y la Universidad Nacional de Colombia financiaron gran parte de esta investigación a través del proyecto Código 1101744555730 (Contrato 630-2017).spa
dc.format.extentxvi, 92 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82052
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Morfologíaspa
dc.publisher.facultyFacultad de Medicinaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Medicina - Maestría en Ingeniería Biomédicaspa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAurel ARION, TG Dobrescu, and Nicoleta-Elisabeta PASCU. 3d surface modelling aspects for 3d printing. Proceedings in Manufacturing Systems, 9(4):199–204, 2014.spa
dc.relation.referencesJingwei Xie, Jiang Jiang, Pooya Davoodi, Madapusi P Srinivasan, and Chi-Hwa Wang. Electrohydrodynamic atomization: A two-decade effort to produce and process micro- /nanoparticulate materials. Chemical engineering science, 125:32–57, 2015.spa
dc.relation.referencesCem Balda Dayan, Ferdows Afghah, Burcu Saner Okan, Mehmet Yıldız, Yusuf Mence- loglu, Mustafa Culha, and Bahattin Koc. Modeling 3d melt electrospinning writing by response surface methodology. Materials & Design, 148:87–95, 2018.spa
dc.relation.referencesYuan Jin, Qing Gao, Chaoqi Xie, Guangyong Li, Jianke Du, Jianzhong Fu, and Yong He. Fabrication of heterogeneous scaffolds using melt electrospinning writing: Design and optimization. Materials & Design, 185:108274, 2020.spa
dc.relation.referencesKai Li, Dazhi Wang, Kuipeng Zhao, Kedong Song, and Junsheng Liang. Electrohy- drodynamic jet 3d printing of pcl/pvp composite scaffold for cell culture. Talanta, 211:120750, 2020.spa
dc.relation.referencesTrinath Biswal, Sushant Kumar BadJena, and Debabrata Pradhan. Sustainable bioma- terials and their applications: A short review. Materials Today: Proceedings, 2020.spa
dc.relation.referencesPatitapabana Parida, Ajit Behera, and S Chandra Mishra. Classification of biomaterials used in medicine. 2012.spa
dc.relation.referencesToktam Ghassemi, Azadeh Shahroodi, Mohammad H Ebrahimzadeh, Alireza Mousa- vian, Jebraeel Movaffagh, and Ali Moradi. Current concepts in scaffolding for bone tissue engineering. Archives of Bone and Joint Surgery, 6(2):90, 2018.spa
dc.relation.referencesMasami Okamoto and Baiju John. Synthetic biopolymer nanocomposites for tissue engineering scaffolds. Progress in Polymer Science, 38(10-11):1487–1503, 2013.spa
dc.relation.referencesAlexandros Repanas, Sofia Andriopoulou, and Birgit Glasmacher. The significance of electrospinning as a method to create fibrous scaffolds for biomedical engineering and drug delivery applications. Journal of Drug Delivery Science and Technology, 31:137– 146, 2016.spa
dc.relation.referencesGloria I Ruiz-Henao, Henry Mauricio Arenas-Quintero, Jorge M. Estrada-a ́lvarez, and Yuledy Villegas-Mun ̃oz. Trastornos de la densidad mineral ́osea en personas con vih en tratamiento antirretroviral pereira- risaralda-colombia, 2017.spa
dc.relation.referencesLuis Alonso González, Gloria María Vásquez, and José Fernando Molina. Epidemiology of osteoporosis, 2009.spa
dc.relation.referencesJonatan Miguel-Carrera, Carlos García-Porrua, Francisco Javier de Toro Santos, and Jose Antonio Picallo-Sánchez. Prevalencia de osteoporosis, estimación de la probabilidad de fractura y estudio del metabolismo óseo en pacientes con reciente diagnóstico de cáncer de próstata en el área sanitaria de lugo. Atención Primaria, 50(3):176–183, 2018.spa
dc.relation.referencesManuel Muñoz Torres, M Varsavsky, and MD Avilés Pérez. Osteoporosis. definición. epidemiología - revista de osteoporosis y metabolismo mineral - publicación oficial seiomm, 2010.spa
dc.relation.referencesFlores-Figueroa, E., Montesinos, J. J., & Mayani, H. (2006). Células troncales mesenquimales: historia, biología y aplicación clínica. Revista de investigación clínica, 58(5), 498-511.spa
dc.relation.referencesElena Fernández Burguera. Ingeniería de tejidos.spa
dc.relation.referencesVijayavenkataraman, S., Yan, W. C., Lu, W. F., Wang, C. H., & Fuh, J. Y. H. (2018). 3D bioprinting of tissues and organs for regenerative medicine. Advanced drug delivery reviews, 132, 296-332.spa
dc.relation.referencesLivia Roseti, Valentina Parisi, Mauro Petretta, Carola Cavallo, Giovanna Desando, Isa- bella Bartolotti, and Brunella Grigolo. Scaffolds for bone tissue engineering: State of the art and new perspectives. Materials Science and Engineering: C, 78:1246–1262, 2017.spa
dc.relation.referencesIbrahim T. Ozbolat and Monika Hospodiuk. Current advances and future perspectives in extrusion-based bioprinting. Biomaterials, 76:321–343, 2016.spa
dc.relation.referencesBarrero, A., Márquez, M., & Loscertales, I. G. (2005). Microchorros y nanochorros. Investigación y ciencia, (351), 44-51.spa
dc.relation.referencesJingwei Xie, Jiang Jiang, Pooya Davoodi, Madapusi P Srinivasan, and Chi-Hwa Wang. Electrohydrodynamic atomization: A two-decade effort to produce and process micro- /nanoparticulate materials. Chemical engineering science, 125:32–57, 2015.spa
dc.relation.referencesFranz Jakob, Regina Ebert, Anita Ignatius, Takashi Matsushita, Yoshinobu Watanabe, Juergen Groll, and Heike Walles. Bone tissue engineering in osteoporosis. Maturitas, 75(2):118–124, 2013.spa
dc.relation.referencesAnirudha Singh and Jennifer Elisseeff. Biomaterials for stem cell differentiation. Journal of Materials Chemistry, 20(40):8832–8847, 2010.spa
dc.relation.referencesTurnbull, G., Clarke, J., Picard, F., Riches, P., Jia, L., Han, F., ... & Shu, W. (2018). 3D bioactive composite scaffolds for bone tissue engineering. Bioactive materials, 3(3), 278-314.spa
dc.relation.referencesA. K. Salem, R. Stevens, R. G. Pearson, M. C. Davies, S. J. B. Tendler, C. J. Roberts, P. M. Williams, and K. M. Shakesheff. Interactions of 3t3 fibroblasts and endothelial cells with defined pore features. Journal of Biomedical Materials Research, 61(2):212– 217, 2002.spa
dc.relation.referencesHojjat Naderi, Maryam M Matin, and Ahmad Reza Bahrami. Critical issues in tissue engineering: biomaterials, cell sources, angiogenesis, and drug delivery systems. Journal of biomaterials applications, 26(4):383–417, 2011.spa
dc.relation.referencesNaghmeh Abbasi, Stephen Hamlet, Robert M. Love, and Nam-Trung Nguyen. Porous scaffolds for bone regeneration. Journal of Science: Advanced Materials and Devices, 5(1):1–9, 2020.spa
dc.relation.referencesXin Bai, Mingzhu Gao, Sahla Syed, Jerry Zhuang, Xiaoyang Xu, and Xue-Qing Zhang. Bioactive hydrogels for bone regeneration. Bioactive Materials, 3(4):401–417, 2018.spa
dc.relation.referencesChong Wang, Wei Huang, Yu Zhou, Libing He, Zhi He, Ziling Chen, Xiao He, Shuo Tian, Jiaming Liao, Bingheng Lu, et al. 3d printing of bone tissue engineering scaffolds. Bioactive Materials, 5(1):82–91, 2020.spa
dc.relation.referencesCarla C Winter, Kritika S Katiyar, Nicole S Hernandez, Yeri J Song, Laura A Struzy- na, James P Harris, and D Kacy Cullen. Transplantable living scaffolds comprised of micro-tissue engineered aligned astrocyte networks to facilitate central nervous system regeneration. Acta biomaterialia, 38:44–58, 2016.spa
dc.relation.referencesYuan Cheng, Yang Xu, Yun Qian, Xuan Chen, Yuanming Ouyang, and Wei-En Yuan. 3d structured self-powered pvdf/pcl scaffolds for peripheral nerve regeneration. Nano Energy, 69:104411, 2020.spa
dc.relation.referencesKarbalaei Kh. Fesharaki Mehrafarin Nasresfahani Mohammad Hossein Baharvand Hos- sein Ghasemi Mobarakeh L., Morshed Mohammad. Electrospun Poly (epsilon- caprolactone)Nanofiber Mat As Extracellular Matrix, volume 75. 2017.spa
dc.relation.referencesYoshitaka Nakanishi, Takamitsu Okada, Naohide Takeuchi, Naoya Kozono, Takahiro Senju, Koichi Nakayama, and Yasuharu Nakashima. Histological evaluation of tendon formation using a scaffold-free three-dimensional-bioprinted construct of human dermal fibroblasts under in vitro static tensile culture. Regenerative therapy, 11:47–55, 2019.spa
dc.relation.referencesMuhammad Qasim, Dong Sik Chae, and Nae Yoon Lee. Advancements and frontiers in nano-based 3d and 4d scaffolds for bone and cartilage tissue engineering. International Journal of Nanomedicine, Volume 14:4333–4351, 2019.spa
dc.relation.referencesJoshua R Porter, Timothy T Ruckh, and Ketul C Popat. Bone tissue engineering: a review in bone biomimetics and drug delivery strategies. Biotechnology progress, 25(6):1539–1560, 2009.spa
dc.relation.referencesJoshua R Porter, Timothy T Ruckh, and Ketul C Popat. Bone tissue engineering: a review in bone biomimetics and drug delivery strategies. Biotechnology progress, 25(6):1539–1560, 2009.spa
dc.relation.referencesSK Nandi, Samudra Roy, P Mukherjee, Biswanath Kundu, DK De, and Debabrata Basu. Orthopaedic applications of bone graft & graft substitutes: a review. Indian Journal of Medical Reseach, 132(1):15–30, 2010.spa
dc.relation.referencesMonika Saini, Yashpal Singh, Pooja Arora, Vipin Arora, and Krati Jain. Implant bio- materials: A comprehensive review. World Journal of Clinical Cases: WJCC, 3(1):52, 2015.spa
dc.relation.referencesKogan, G., Šoltés, L., Stern, R., & Gemeiner, P. (2007). Hyaluronic acid: a natural biopolymer with a broad range of biomedical and industrial applications. Biotechnology letters, 29(1), 17-25.spa
dc.relation.referencesSimón Pascual-Gil, Elisa Garbayo, Paula Díaz-Herráez, Felipe Prosper, and María José Blanco-Prieto. Heart regeneration after myocardial infarction using synthe- tic biomaterials. Journal of Controlled Release, 203:23–38, 2015.spa
dc.relation.referencesNupur Kohli, Vaibhav Sharma, Stuart J Brown, and Elena García-Gareta. Synthetic polymers for skin biomaterials. In Biomaterials for Skin Repair and Regeneration, pages 125–149. Elsevier, 2019.spa
dc.relation.referencesStephanie Willerth. Synthetic biomaterials for engineering neural tissue from stem cells. Engineering Neural Tissue from Stem Cells, pages 127–158, 2017.spa
dc.relation.referencesTiziana Nardo, Irene Carmagnola, Francesca Ruini, Silvia Caddeo, Stefano Calzone, Valeria Chiono, and Gianluca Ciardelli. Synthetic biomaterial for regenerative medicine applications. In Kidney Transplantation, Bioengineering and Regeneration, pages 901– 921. Elsevier, 2017.spa
dc.relation.referencesDominique P Pioletti, Hiroshi Takei, Tong Lin, Pascale Van Landuyt, Quing Jun Ma, Soon Yong Kwon, and K-L Paul Sung. The effects of calcium phosphate cement particles on osteoblast functions. Biomaterials, 21(11):1103–1114, 2000.spa
dc.relation.referencesMohammed Shehadul Islam, Aditya Aryasomayajula, and Ponnambalam Ravi Selvaga- napathy. A review on macroscale and microscale cell lysis methods. Micromachines, 8(3):83, 2017.spa
dc.relation.referencesSolon T Kao and Daniel D Scott. A review of bone substitutes. Oral and maxillofacial surgery clinics of North America, 19(4):513–521, 2007.spa
dc.relation.referencesXiaohua Liu and Peter X Ma. Polymeric scaffolds for bone tissue engineering. Annals of biomedical engineering, 32(3):477–486, 2004.spa
dc.relation.referencesJulie R Fuchs, Boris A Nasseri, and Joseph P Vacanti. Tissue engineering: a 21st century solution to surgical reconstruction. The Annals of thoracic surgery, 72(2):577–591, 2001.spa
dc.relation.referencesKurosh Rezwan, QZ Chen, J Ju Blaker, and Aldo Roberto Boccaccini. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials, 27(18):3413–3431, 2006.spa
dc.relation.referencesAlireza Shahin-Shamsabadi, Ata Hashemi, Mohammadreza Tahriri, Farshid Bastami, Majid Salehi, and Fatemeh Mashhadi Abbas. Mechanical, material, and biological study of a pcl/bioactive glass bone scaffold: Importance of viscoelasticity. Materials Science and Engineering: C, 90:280–288, 2018.spa
dc.relation.referencesKo Eun Park, Beom Su Kim, Min Hee Kim, Hyung Keun You, Jun Lee, and Won Ho Park. Basic fibroblast growth factor-encapsulated pcl nano/microfibrous composite scaffolds for bone regeneration. Polymer, 76:8–16, 2015.spa
dc.relation.referencesGianluca Ciardelli, Valeria Chiono, Giovanni Vozzi, Mariano Pracella, Arti Ahluwa- lia, Niccoletta Barbani, Caterina Cristallini, and Paolo Giusti. Blends of poly-(ε- caprolactone) and polysaccharides in tissue engineering applications. Biomacromole- cules, 6(4):1961–1976, 2005.spa
dc.relation.referencesScott Stratton, Namdev B Shelke, Kazunori Hoshino, Swetha Rudraiah, and Sanga- mesh G Kumbar. Bioactive polymeric scaffolds for tissue engineering. Bioactive mate- rials, 1(2):93–108, 2016.spa
dc.relation.referencesValdir Mano, Ribeiro e Silva, and Maria Elisa Scarpelli. Bioartificial polymeric materials based on collagen and poly (n-isopropylacrylamide). Materials Research, 10(2):165–170, 2007.spa
dc.relation.referencesAlok Kumar, Sourav Mandal, Srimanta Barui, Ramakrishna Vasireddi, Uwe Gbureck, Michael Gelinsky, and Bikramjit Basu. Low temperature additive manufacturing of three dimensional scaffolds for bone-tissue engineering applications: Processing related challenges and property assessment. Materials Science and Engineering: R: Reports, 103:1–39, 2016.spa
dc.relation.referencesMaria P Nikolova and Murthy S Chavali. Recent advances in biomaterials for 3d scaffolds: A review. Bioactive materials, 4:271–292, 2019.spa
dc.relation.referencesLiisa T. Kuhn. Introduction to biomedical engineering. Biomaterials, pages 219–271, 2012.spa
dc.relation.referencesIbrahimT.Ozbolat,KazimK.Moncal,andHemanthGudapati.Evaluationofbioprinter technologies. Additive Manufacturing, 13:179–200, 2017.spa
dc.relation.referencesQian Yan, Hanhua Dong, Jin Su, Jianhua Han, Bo Song, Qingsong Wei, and Yusheng Shi. A review of 3d printing technology for medical applications. Engineering, 4(5):729– 742, 2018.spa
dc.relation.referencesIbrahim T. Ozbolat. Laser-based bioprinting. 3D Bioprinting, pages 165–197, 2017.spa
dc.relation.referencesIan Gibson, David W Rosen, Brent Stucker, et al. Additive manufacturing technologies, volume 17. Springer, 2014.spa
dc.relation.referencesFriedrich Ba ̈hr and Engelbert Westka ̈mper. Correlations between influencing parameters and quality properties of components produced by fused deposition modeling. Procedia CIRP, 72(1):1214–1219, 2018.spa
dc.relation.referencesXianfeng Wang, Bin Ding, and Bingyun Li. Biomimetic electrospun nanofibrous struc- tures for tissue engineering. Materials today, 16(6):229–241, 2013.spa
dc.relation.referencesBin Ding, Moran Wang, Xianfeng Wang, Jianyong Yu, and Gang Sun. Electrospun nanomaterials for ultrasensitive sensors. Materials today, 13(11):16–27, 2010.spa
dc.relation.referencesHang Liu, Sanjairaj Vijayavenkataraman, Dandan Wang, Linzhi Jing, Jie Sun, and Kai He. Influence of electrohydrodynamic jetting parameters on the morphology of pcl scaffolds. Int. J. Bioprint, 3(1):72–82, 2017.spa
dc.relation.referencesJ Pelipenko, P Kocbek, and J Kristl. Critical attributes of nanofibers: Preparation, drug loading, and tissue regeneration. International journal of pharmaceutics, 484(1- 2):57–74, 2015.spa
dc.relation.referencesBogdan Cramariuc, Radu Cramariuc, Roxana Scarlet, Liliana Rozemarie Manea, Iulia- na G Lupu, and Oana Cramariuc. Fiber diameter in electrospinning process. Journal of Electrostatics, 71(3):189–198, 2013.spa
dc.relation.referencesAdnan Haider, Sajjad Haider, and Inn-Kyu Kang. A comprehensive review summari- zing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arabian Journal of Chemistry, 11(8):1165–1188, 2018.spa
dc.relation.referencesEunjoo Koh and Yong Taek Lee. Development of an embossed nanofiber hemodialysis membrane for improving capacity and efficiency via 3d printing and electrospinning technology. Separation and Purification Technology, 241:116657, 2020.spa
dc.relation.referencesDilshan Sooriyaarachchi, Jiaxin Wu, Aixin Feng, Maksud Islam, and George Z Tan. Hybrid fabrication of biomimetic meniscus scaffold by 3d printing and parallel electros- pinning. Procedia Manufacturing, 34:528–534, 2019.spa
dc.relation.referencesWeiming Chen, Yong Xu, Yaqiang Li, Litao Jia, Xiumei Mo, Gening Jiang, and Guang- dong Zhou. 3d printing electrospinning fiber-reinforced decellularized extracellular ma- trix for cartilage regeneration. Chemical Engineering Journal, 382:122986, 2020.spa
dc.relation.referencesRita Ambrus, Areen Alshweiat, Ildiko ́ Cs ́oka, George Ovari, Ammar Esmail, and Nor- bert Radacsi. 3d-printed electrospinning setup for the preparation of loratadine nanofi- bers with enhanced physicochemical properties. International journal of pharmaceutics, 567:118455, 2019.spa
dc.relation.referencesPooya Davoodi, Fang Feng, Qingxing Xu, Wei-Cheng Yan, Yen Wah Tong, MP Srini- vasan, Vijay Kumar Sharma, and Chi-Hwa Wang. Coaxial electrohydrodynamic ato- mization: microparticles for drug delivery applications. Journal of controlled release, 205:70–82, 2015.spa
dc.relation.referencesDianney Clavijo-Grimaldo, Nubia Ponce-Zapata, and Ciro Casadiego-Torrado. Control of bacterial proliferation and formation of biofilm in membranes for food packaging manufactured by electrospinning. Chemical Engineering Transactions, 75:241–246, 2019.spa
dc.relation.referencesL Ghasemi-Mobarakeh, D Semnani, and M Morshed. A novel method for porosity measurement of various surface layers of nanofibers mat using image analysis for tissue engineering applications. Journal of applied polymer science, 106(4):2536–2542, 2007.spa
dc.relation.referencesRalph E Holmes, Robert W Wardrop, and Larry M Wolford. Hydroxylapatite as a bone graft substitute in orthognathic surgery: histologic and histometric findings. Journal of oral and maxillofacial surgery, 46(8):661–671, 1988.spa
dc.relation.referencesHideki Yoshikawa, Noriyuki Tamai, Tsuyoshi Murase, and Akira Myoui. Interconnected porous hydroxyapatite ceramics for bone tissue engineering. Journal of the Royal Society Interface, 6(suppl 3):S341–S348, 2009.spa
dc.relation.referencesEe Jay Chong, Than Thang Phan, Ivor Jiun Lim, YZ Zhang, Boom Huat Bay, See- ram Ramakrishna, and Chwee Teck Lim. Evaluation of electrospun pcl/gelatin nanofi- brous scaffold for wound healing and layered dermal reconstitution. Acta biomaterialia, 3(3):321–330, 2007.spa
dc.relation.referencesMOBARAKEH L GHASEMI, Mohammad Morshed, KH KARBALAEI, Mehrafarin Fesharaki, MOHAMMAD HOSSEIN NASRESFAHANI, and Hossein Baharvand. Elec- trospun poly (epsilon-caprolactone) nanofiber mat as extracellular matrix. 2008.spa
dc.relation.referencesYun Hui Lee, Jong Hoon Lee, In-Gu An, Chan Kim, Doo Sung Lee, Young Kwan Lee, and Jae-Do Nam. Electrospun dual-porosity structure and biodegradation morphology of montmorillonite reinforced plla nanocomposite scaffolds. Biomaterials, 26(16):3165– 3172, 2005.spa
dc.relation.referencesR Baptista and M Guedes. Porosity and pore design influence on fatigue behavior of 3d printed scaffolds for trabecular bone replacement. Journal of the Mechanical Behavior of Biomedical Materials, 117:104378, 2021.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.lembTEJIDO OSEOspa
dc.subject.otherHuesoseng
dc.subject.proposalOsteoporosisspa
dc.subject.proposalAndamiospa
dc.subject.proposalExtrusiónspa
dc.subject.proposalImpresiónspa
dc.subject.proposalElectrohidrodinámicospa
dc.subject.proposalOsteoporosiseng
dc.subject.proposalScaffoldingeng
dc.subject.proposalExtrusioneng
dc.subject.proposalPrintingeng
dc.subject.proposal3D
dc.subject.proposalElectrohydrodynamiceng
dc.titleDiseño de un sistema de impresión electrohidrodinámico 3D para mejorar la resolución de andamios impresos para el tejido óseospa
dc.title.translatedDesign of an electrohydrodynamic 3D printing system to improve the resolution of printed scaffolds for bone tissueeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleCódigo 1101744555730 (Contrato 630-2017)spa
oaire.fundernameMinisterio de Ciencia, tecnología e innovación de Colombiaspa
oaire.fundernameFundación Universidad Sanitasspa
oaire.fundernameUniversidad Nacional de Colombiaspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1018484140.2022.pdf
Tamaño:
97.9 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería Biomédica

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: