Ecología de gradientes en paisajes fragmentados andinos

dc.contributor.advisorZamora-Abrego, Joan Gastón
dc.contributor.authorOrtiz Yusty, Carlos Eduardo
dc.contributor.orcidORTIZ-YUSTY, CARLOS [0000-0002-8119-5270]spa
dc.contributor.orcidZamora-Abrego, Joan Gastón [0000-0003-2904-4077]spa
dc.contributor.researchgatehttps://www.researchgate.net/profile/Carlos-Ortiz-Yustyspa
dc.contributor.researchgroupEcología y Conservación de Fauna Silvestrespa
dc.coverage.countryÁrea Andina, Colombia
dc.date.accessioned2023-04-26T20:30:50Z
dc.date.available2023-04-26T20:30:50Z
dc.date.issued2020
dc.descriptionilustraciones, diagramas, mapasspa
dc.description.abstractLa crisis de pérdida de biodiversidad ha generado numerosos estudios para evaluar los efectos de las actividades humanas sobre la biodiversidad, especialmente en términos de pérdida y fragmentación de hábitats. La conceptualización y delimitación de los hábitats en los estudios de pérdida y fragmentación de hábitat a menudo se simplifica bajo el modelo de parche-corredor-mosaico (M-PCM), lo que puede limitar la efectividad de las acciones de conservación. La simplificación de los hábitats y la relación de los organismos con estos en el modelo M-PCM puede ser una de las causas de los resultados conflictivos obtenidos en los análisis de comunidades biológicas. En este trabajo se propone que analizar los hábitats y la respuesta de los organismos a estos con un enfoque de gradientes (M-G), que represente de manera más realista el ambiente y sea consistente con la teoría de nicho ecológico, puede conducir a obtener conclusiones más precisas al evaluar los efectos del cambio ambiental sobre la distribución de las especies. Se destaca la importancia de investigar diferentes formas de cuantificar el cambio ambiental y caracterizar la respuesta de la biodiversidad a estos cambios a diferentes escalas espaciales y ecológicas. (Texto tomado de la fuente)spa
dc.description.abstractThe biodiversity loss crisis has generated numerous studies to assess the effects of human activities on biodiversity, especially in terms of habitat loss and fragmentation. The conceptualization and delimitation of habitats in habitat loss and fragmentation studies is often simplified under the patch-corridor-mosaic model (M-PCM), which can limit the effectiveness of conservation actions. The simplification of habitats and the relationship of organisms to habitats in the M-PCM model may be one of the causes of conflicting results obtained in biological community analyses. This work proposes that analyzing habitats and the response of organisms to them with a gradient approach (M-G), which more realistically represents the environment and is consistent with ecological niche theory, can lead to more accurate conclusions when assessing the effects of environmental change on species distributions. It highlights the importance of investigating different ways of quantifying environmental change and characterizing the response of biodiversity to these changes at different spatial and ecological scales.eng
dc.description.curricularareaÁrea Curricular en Bosques y Conservación Ambientalspa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ecologíaspa
dc.description.researchareaEcología de comunidades y ecosistemasspa
dc.description.sponsorshipEste trabajo fue apoyado por el Ministerio de Ciencia, Tecnología e Innovación de Colombia (Minciencias) a través del Programa Nacional de Fomento a la Formación de Investigadores [Beca número 647]. El trabajo de campo fue financiado por ISAGEN S.A. y la Universidad de Antioquia (UdeA) en el marco del proyecto interinstitucional 47/146.spa
dc.format.extentx, 114 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83795
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Ciencias Agrariasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Ciencias Agrarias - Doctorado en Ecologíaspa
dc.relation.indexedAgrosaviaspa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.indexedAgrovocspa
dc.relation.referencesAbbot, E. J., & Firestone, F. A. (1933). Specifying surface quality. Mechanical Engineering, 55(9), 569–572.spa
dc.relation.referencesAbdel Moniem, H. E. M., & Holland, J. D. (2013). Habitat connectivity for pollinator beetles using surface metrics. Landscape Ecology, 28(7), 1251–1267. https://doi.org/10.1007/s10980-013-9886-9spa
dc.relation.referencesAbouheif, E. (1999). A method for testing the assumption of phylogenetic independence in comparative data. Evolutionary Ecology Research, 1(8), 895–909.spa
dc.relation.referencesAlgar, A. C., Kerr, J. T., & Currie, D. J. (2009). Evolutionary constraints on regional faunas: Whom, but not how many. Ecology Letters, 12(1), 57–65. https://doi.org/10.1111/j.1461-0248.2008.01260.xspa
dc.relation.referencesAlvarado, F., Andrade, E. R., Santos, B. A., Prescott, G., Souza, G., & Escobar, F. (2018). Forest cover is more important than farmland heterogeneity and livestock intensification for the retention of dung beetle phylogenetic diversity. Ecological Indicators, 93(May), 524–532. https://doi.org/10.1016/j.ecolind.2018.05.041spa
dc.relation.referencesAnderson, D., & Burnham, K. (2002). Model selection and multi-model inference: A practical information-theoretic approach (Second Edi). Springer-Verlag New York Inc.spa
dc.relation.referencesAndrade, E. R., Jardim, J. G., Santos, B. A., Melo, F. P. L., Talora, D. C., Faria, D., & Cazetta, E. (2015). Effects of habitat loss on taxonomic and phylogenetic diversity of understory Rubiaceae in Atlantic forest landscapes. Forest Ecology and Management, 349, 73–84. https://doi.org/10.1016/j.foreco.2015.03.049spa
dc.relation.referencesAndren, H. (1999). Effects of habitat fragmentation on birds and mammals in landscapes with different proportions of suitable habitat: A review. NCASI Technical Bulletin, 71(781 I), 12–13. https://doi.org/10.2307/3545823spa
dc.relation.referencesArroyo-Rodríguez, V., Cavender-Bares, J., Escobar, F., Melo, F. P. L., Tabarelli, M., & Santos, B. A. (2012). Maintenance of tree phylogenetic diversity in a highly fragmented rain forest. Journal of Ecology, 100(3), 702–711. https://doi.org/10.1111/j.1365-2745.2011.01952.xspa
dc.relation.referencesBarbosa, A. M. (2015). fuzzySim: Applying fuzzy logic to binary similarity indices in ecology. Methods in Ecology and Evolution, 6(7), 853–858. https://doi.org/10.1111/2041-210X.12372spa
dc.relation.referencesBarker, G. M. (2002). Phylogenetic diversity: A quantitative framework for measurement of priority and achievement in biodiversity conservation. Biological Journal of the Linnean Society, 76(2), 165–194. https://doi.org/10.1046/j.1095-8312.2002.00055.xspa
dc.relation.referencesBarlow, J., Mestre, L. A. M., Gardner, T. A., & Peres, C. A. (2007a). The value of primary, secondary and plantation forests for Amazonian birds. Biological Conservation, 136(2), 212–231. https://doi.org/10.1016/j.biocon.2006.11.021spa
dc.relation.referencesBélisle, M., Desbochers, A., & Fortin, M. J. (2001). Influence of forest cover on the movements of forest birds: A homing experiment. Ecology, 82(7), 1893–1904. https://doi.org/10.1890/0012-9658(2001)082[1893:IOFCOT]2.0.CO;2spa
dc.relation.referencesBello, F., Fibich, P., Zelený, D., Kopecký, M., Mudrák, O., Chytrý, M., Pyšek, P., Wild, J., Michalcová, D., Sádlo, J., Šmilauer, P., Lepš, J., & Pärtel, M. (2016). Measuring size and composition of species pools: A comparison of dark diversity estimates. Ecology and Evolution, 6(12), 4088–4101. https://doi.org/10.1002/ece3.2169spa
dc.relation.referencesBeninde, J., Feldmeier, S., Werner, M., Peroverde, D., Schulte, U., Hochkirch, A., & Veith, M. (2016). Cityscape genetics: Structural vs. Functional connectivity of an urban lizard population. Molecular Ecology, 25(20), 4984–5000. https://doi.org/10.1111/mec.13810spa
dc.relation.referencesBennett, D. J., Choimes, A., Collen, B., Day, J., Palma, A. De, Dı, S., Edgar, M. J., Feldman, A., Garon, M., Harrison, M. L. K., Alhusseini, T., Echeverria-london, S., Ingram, D. J., Itescu, Y., Kattge, J., Kemp, V., Kirkpatrick, L., Kleyer, M., Laginha, D., … Mace, G. M. (2015). Global effects of land use on local terrestrial biodiversity. https://doi.org/10.1038/nature14324spa
dc.relation.referencesBiz, M., Cornelius, C., & Metzger, J. P. W. (2017). Matrix type affects movement behavior of a Neotropical understory forest bird. Perspectives in Ecology and Conservation, 15(1), 10–17. https://doi.org/10.1016/j.pecon.2017.03.001spa
dc.relation.referencesBregman, T. P., Sekercioglu, C. H., & Tobias, J. A. (2014). Global patterns and predictors of bird species responses to forest fragmentation: Implications for ecosystem function and conservation. Biological Conservation, 169, 372–383. https://doi.org/10.1016/j.biocon.2013.11.024spa
dc.relation.referencesBruton, M. J., Maron, M., Levin, N., & McAlpine, C. A. (2015). Testing the relevance of binary, mosaic and continuous landscape conceptualisations to reptiles in regenerating dryland landscapes. Landscape Ecology, 30(4), 715–728. https://doi.org/10.1007/s10980-015-0157-9spa
dc.relation.referencesCadotte, M. W., Carscadden, K., & Mirotchnick, N. (2011). Beyond species: Functional diversity and the maintenance of ecological processes and services. Journal of Applied Ecology, 48(5), 1079–1087. https://doi.org/10.1111/j.1365-2664.2011.02048.xspa
dc.relation.referencesCardoso, P., Rigal, F., Borges, P. A. V., & Carvalho, J. C. (2014). A new frontier in biodiversity inventory: A proposal for estimators of phylogenetic and functional diversity. Methods in Ecology and Evolution, 5(5), 452–461. https://doi.org/10.1111/2041-210X.12173spa
dc.relation.referencesCarrara, E., Arroyo-Rodríguez, V., Vega-Rivera, J. H., Schondube, J. E., de Freitas, S. M., & Fahrig, L. (2015a). Impact of landscape composition and configuration on forest specialist and generalist bird species in the fragmented Lacandona rainforest, Mexico. Biological Conservation, 184, 117–126. https://doi.org/10.1016/j.biocon.2015.01.014spa
dc.relation.referencesChazdon, R. L., Chao, A., Colwell, R. K., Lin, S. Y., Norden, N., Letcher, S. G., Clark, D. B., Finegan, B., & Arroyo, J. P. (2011). A novel statistical method for classifying habitat generalists and specialists. Ecology, 92(6), 1332–1343. https://doi.org/10.1890/10-1345.1spa
dc.relation.referencesCisneros, L. M. M., Fagan, M. E. E., & Willig, M. R. R. (2015). Effects of human-modified landscapes on taxonomic, functional and phylogenetic dimensions of bat biodiversity. Diversity and Distributions, 21(5), 523–533. https://doi.org/10.1111/ddi.12277spa
dc.relation.referencesClements, F. E. (1936). Nature and Structure of the Climax. The Journal of Ecology, 24(1), 252. https://doi.org/10.2307/2256278spa
dc.relation.referencesColace, M., Lavorel, S., Grigulis, K., Garden, D., Girel, J., Pellet, G., Douzet, R., Fourier, J., & Cedex, G. (2011). Using plant functional traits to understand the landscape distribution of multiple ecosystem services. 135–147. https://doi.org/10.1111/j.1365-2745.2010.01753.xspa
dc.relation.referencesCongedo, L. (2016). Semi-Automatic Classification Plugin Documentation. Release 6.0.1.1. https://doi.org/10.13140/RG.2.2.29474.02242/1spa
dc.relation.referencesCorrea Ayram, C. A., Etter, A., Díaz-Timoté, J., Rodríguez Buriticá, S., Ramírez, W., & Corzo, G. (2020). Spatiotemporal evaluation of the human footprint in Colombia: Four decades of anthropic impact in highly biodiverse ecosystems. Ecological Indicators, 117(April), 106630. https://doi.org/10.1016/j.ecolind.2020.106630spa
dc.relation.referencesCushman, S. A., Gutzweiler, K., Evans, J. S., & McGarigal, K. (2010). The gradient paradigm: A conceptual and analytical framework for landscape ecology. In Spatial complexity, informatics, and wildlife conservation (pp. 83–108). Springer.spa
dc.relation.referencesCushman, S. A., McKelvey, K. S., Flather, C. H., & McGarigal, K. (2008). Do forest community types provide a sufficient basis to evaluate biological diversity? Frontiers in Ecology and the Environment, 6(1), 13–17. https://doi.org/10.1890/070039spa
dc.relation.referencesDe Bello, F., Lavergne, S., Meynard, C. N., Lepš, J., & Thuiller, W. (2010). The partitioning of diversity: Showing Theseus a way out of the labyrinth. Journal of Vegetation Science, 21(5), 992–1000. https://doi.org/10.1111/j.1654-1103.2010.01195.xspa
dc.relation.referencesDe Camargo, R. X., Boucher-Lalonde, V., & Currie, D. J. (2018). At the landscape level, birds respond strongly to habitat amount but weakly to fragmentation. Diversity and Distributions, 24(5), 629–639. https://doi.org/10.1111/ddi.12706spa
dc.relation.referencesDevictor, V., Mouillot, D., Meynard, C., Jiguet, F., Thuiller, W., & Mouquet, N. (2010). Spatial mismatch and congruence between taxonomic, phylogenetic and functional diversity: The need for integrative conservation strategies in a changing world. Ecology Letters, 13(8), 1030–1040. https://doi.org/10.1111/j.1461-0248.2010.01493.xspa
dc.relation.referencesDorazio, R. M. (2014). Accounting for imperfect detection and survey bias in statistical analysis of presence-only data. 1472–1484. https://doi.org/10.1111/geb.12216spa
dc.relation.referencesDorazio, R. M., Royle, J. A., Söderström, B., & Glimskär, A. (2006). Estimating species richness and accumulation by modeling species occurrence and detectability. Ecology, 87(4), 842–854. https://doi.org/10.1890/0012-9658(2006)87[842:ESRAAB]2.0.CO;2spa
dc.relation.referencesDreiss, L. M., Burgio, K. R., Cisneros, L. M., Klingbeil, B. T., Patterson, B. D., Presley, S. J., & Willig, M. R. (2015). Taxonomic, functional, and phylogenetic dimensions of rodent biodiversity along an extensive tropical elevational gradient. Ecography, 38(9), 876–888. https://doi.org/10.1111/ecog.00971spa
dc.relation.referencesDutilleul, P., Clifford, P., Richardson, S., & Hemon, D. (1993). Modifying the t Test for Assessing the Correlation Between Two Spatial Processes. Biometrics, 49(1), 305. https://doi.org/10.2307/2532625spa
dc.relation.referencesEcheverría-Londoño, S., Newbold, T., Hudson, L. N., Contu, S., Hill, S. L. L., Lysenko, I., Arbel�ez-Cort�s, E., Armbrecht, I., Boekhout, T., Cabra-Garc�a, J., Dominguez-Haydar, Y., Nates-Parra, G., Guti�rrez-Lamus, D. L., Higuera, D., Isaacs-Cubides, P. J., L�pez-Quintero, C. A., Martinez, E., Miranda-Esquivel, D. R., Navarro-Iriarte, L. E., … Purvis, A. (2016). Modelling and projecting the response of local assemblage composition to land use change across Colombia. Diversity and Distributions, 22(11), 1099–1111. https://doi.org/10.1111/ddi.12478spa
dc.relation.referencesErnst, R., Linsenmair, K. E., & Rödel, M. O. (2006). Diversity erosion beyond the species level: Dramatic loss of functional diversity after selective logging in two tropical amphibian communities. Biological Conservation, 133(2), 143–155. https://doi.org/10.1016/j.biocon.2006.05.028spa
dc.relation.referencesEspinal, L. Sigifredo. (1985). Geografía Ecológica del Departamento de Antioquia (Zonas de Vida (Formaciones Vegetales) del Departamento de Antioquia). Revista Facultad Nacional de Agronomía, 38(1), 5–106.spa
dc.relation.referencesEstrada, A., Real, R., & Vargas, J. M. (2011). Assessing coincidence between priority conservation areas for vertebrate groups in a Mediterranean hotspot. Biological Conservation, 144(3), 1120–1129. https://doi.org/10.1016/j.biocon.2010.12.031spa
dc.relation.referencesF. Dormann, C., M. McPherson, J., B. Araújo, M., Bivand, R., Bolliger, J., Carl, G., G. Davies, R., Hirzel, A., Jetz, W., Daniel Kissling, W., Kühn, I., Ohlemüller, R., R. Peres-Neto, P., Reineking, B., Schröder, B., M. Schurr, F., & Wilson, R. (2007). Methods to account for spatial autocorrelation in the analysis of species distributional data: A review. Ecography, 30(5), 609–628. https://doi.org/10.1111/j.2007.0906-7590.05171.xspa
dc.relation.referencesFahrig, L. (1997). Relative Effects of Habitat Loss and Fragmentation on Population Extinction. The Journal of Wildlife Management, 61(3), 603. https://doi.org/10.2307/3802168spa
dc.relation.referencesFahrig, L. (2003). Effects of Habitat Fragmentation on Biodiversity. Annual Review of Ecology, Evolution, and Systematics, 34(1), 487–515. https://doi.org/10.1146/annurev.ecolsys.34.011802.132419spa
dc.relation.referencesFahrig, L. (2013). Rethinking patch size and isolation effects: The habitat amount hypothesis. Journal of Biogeography, 40(9), 1649–1663. https://doi.org/10.1111/jbi.12130spa
dc.relation.referencesFahrig, L. (2019). Habitat fragmentation: A long and tangled tale. Global Ecology and Biogeography, 28(1), 33–41. https://doi.org/10.1111/geb.12839spa
dc.relation.referencesFahrig, L. (2020). Why do several small patches hold more species than few large patches? Global Ecology and Biogeography, August 2019, 1–14. https://doi.org/10.1111/geb.13059spa
dc.relation.referencesFahrig, L., Arroyo-Rodríguez, V., Bennett, J. R., Boucher-Lalonde, V., Cazetta, E., Currie, D. J., Eigenbrod, F., Ford, A. T., Harrison, S. P., Jaeger, J. A. G., Koper, N., Martin, A. E., Martin, J. L., Metzger, J. P., Morrison, P., Rhodes, J. R., Saunders, D. A., Simberloff, D., Smith, A. C., … Watling, J. I. (2019). Is habitat fragmentation bad for biodiversity? Biological Conservation, 230(October 2018), 179–186. https://doi.org/10.1016/j.biocon.2018.12.026spa
dc.relation.referencesFaith, D. P. (1992). Conservation evaluation and phylogentic diversity. Biological Conservation, 61, 1–10. https://doi.org/10.1890/0012-9658(2006)87[1465:ATTFHF]2.0.CO;2spa
dc.relation.referencesFaith, D. P., Reid, C. A. M., & Hunter, J. (2004). Integrating Phylogenetic Diversity, Complementarity, and Endemism for Conservation Assessment. Conservation Biology, 18(1), 255–261. https://doi.org/10.1111/j.1523-1739.2004.00330.xspa
dc.relation.referencesFardila, D., Kelly, L. T., Moore, J. L., & McCarthy, M. A. (2017). A systematic review reveals changes in where and how we have studied habitat loss and fragmentation over 20 years. Biological Conservation, 212(March), 130–138. https://doi.org/10.1016/j.biocon.2017.04.031spa
dc.relation.referencesFerrier, S., Manion, G., Elith, J., & Richardson, K. (2007). Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment. Diversity and Distributions, 13(3), 252–264. https://doi.org/10.1111/j.1472-4642.2007.00341.xspa
dc.relation.referencesFiske, I. J., & Chandler, R. B. (2011). Unmarked: An R package for fitting hierarchical models of wildlife occurrence and abundance. Journal of Statistical Software, 43(10), 1–23. https://doi.org/10.18637/jss.v043.i10spa
dc.relation.referencesFletcher, R. J., Didham, R. K., Banks-Leite, C., Barlow, J., Ewers, R. M., Rosindell, J., Holt, R. D., Gonzalez, A., Pardini, R., Damschen, E. I., Melo, F. P. L., Ries, L., Prevedello, J. A., Tscharntke, T., Laurance, W. F., Lovejoy, T., & Haddad, N. M. (2018). Is habitat fragmentation good for biodiversity? Biological Conservation, 226(July), 9–15. https://doi.org/10.1016/j.biocon.2018.07.022spa
dc.relation.referencesFlynn, D. F. B., Gogol-Prokurat, M., Nogeire, T., Molinari, N., Richers, B. T., Lin, B. B., Simpson, N., Mayfield, M. M., & DeClerck, F. (2009). Loss of functional diversity under land use intensification across multiple taxa. Ecology Letters, 12(1), 22–33. https://doi.org/10.1111/j.1461-0248.2008.01255.xspa
dc.relation.referencesFrazier, A. E., & Kedron, P. (2017). Landscape Metrics: Past Progress and Future Directions. Current Landscape Ecology Reports, 2(3), 63–72. https://doi.org/10.1007/s40823-017-0026-0spa
dc.relation.referencesFrishkoff, L. O., Karp, D. S., M’Gonigle, L. K., Mendenhall, C. D., Zook, J., Kremen, C., Hadly, E. A., & Daily, G. C. (2014). Loss of avian phylogenetic diversity in neotropical agricultural systems. Science, 345(6202), 1343–1346. https://doi.org/10.1126/science.1254610spa
dc.relation.referencesGardiner, R., Bain, G., Hamer, R., Jones, M. E., & Johnson, C. N. (2018). Habitat amount and quality, not patch size, determine persistence of a woodland-dependent mammal in an agricultural landscape. Landscape Ecology, 33(11), 1837–1849. https://doi.org/10.1007/s10980-018-0722-0spa
dc.relation.referencesGeoffroy, C., Fiola, M. L., Bélisle, M., & Villard, M. A. (2019a). Functional connectivity in forest birds: Evidence for species-specificity and anisotropy. Landscape Ecology, 34(6), 1363–1377. https://doi.org/10.1007/s10980-019-00849-0spa
dc.relation.referencesGittleman, J. L., & Kot, M. (1990). Adaptation: Statistics and a null model for estimating phylogenetic effects. Systematic Zoology, 39(3), 227–241.spa
dc.relation.referencesGodron, M. (1981). Patches and Structural Components for a Landscape Ecology. BioScience, 31(10), 733–740. https://doi.org/10.2307/1308780spa
dc.relation.referencesGomez, C., Tenorio, E. A., & Cadena, D. (2020). 100+ years of bird survey data reveal changes in functional fingerprints indexing ecosystem health of a tropical montane forest through time. BioRxiv.spa
dc.relation.referencesGonzález, J. J., Etter, A. A., Sarmiento, A. H., Orrego, S. A., Ramírez, C., Cabrera, E., Vargas, D., Galindo, G., García, M. C., & Ordoñez, M. F. (2011). Análisis de tendencias y patrones espaciales de deforestación en Colombia. In Ideam.spa
dc.relation.referencesGotelli, N. J. (2000). Null Model Analysis of Species Co-Occurrence Patterns. Ecology, 81(9), 2606. https://doi.org/10.2307/177478spa
dc.relation.referencesGustafson, E. J. (2019). How has the state-of-the-art for quantification of landscape pattern advanced in the twenty-first century? Landscape Ecology, 34(9), 2065–2072. https://doi.org/10.1007/s10980-018-0709-xspa
dc.relation.referencesHaddad, N. M., Brudvig, L. A., Clobert, J., Davies, K. F., Gonzalez, A., Holt, R. D., Lovejoy, T. E., Sexton, J. O., Austin, M. P., Collins, C. D., Cook, W. M., Damschen, E. I., Ewers, R. M., Foster, B. L., Jenkins, C. N., King, A. J., Laurance, W. F., Levey, D. J., Margules, C. R., … Townshend, J. R. (2015). Habitat fragmentation and its lasting impact on Earth ’ s ecosystems. Applied Ecology, March, 1–9. https://doi.org/10.1126/sciadv.1500052spa
dc.relation.referencesHaddad, N. M., Gonzalez, A., Brudvig, L. A., Burt, M. A., Levey, D. J., & Damschen, E. I. (2017). Experimental evidence does not support the Habitat Amount Hypothesis. Ecography, 40(1), 48–55. https://doi.org/10.1111/ecog.02535spa
dc.relation.referencesHalstead, K. E., Alexander, J. D., Hadley, A. S., Stephens, J. L., Yang, Z., & Betts, M. G. (2019). Using a species-centered approach to predict bird community responses to habitat fragmentation. Landscape Ecology, 34(8), 1919–1935. https://doi.org/10.1007/s10980-019-00860-5spa
dc.relation.referencesHansbauer, M. M., Storch, I., Pimentel, R. G., & Metzger, J. P. (2008). Comparative range use by three Atlantic Forest understorey bird species in relation to forest fragmentation. Journal of Tropical Ecology, 24(3), 291–299. https://doi.org/10.1017/S0266467408005002spa
dc.relation.referencesHansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., Thau, D., Stehman, S. V., Goetz, S. J., Loveland, T. R., Kommareddy, A., Egorov, A., Chini, L., Justice, C. O., & Townshend, J. R. G. (2013). High-Resolution Global Maps of 21st-Century Forest Cover Change. Science, 342(6160), 850–853. https://doi.org/10.1126/science.1244693spa
dc.relation.referencesHardy, O. J. (2008). Testing the spatial phylogenetic structure of local communities: Statistical performances of different null models and test statistics on a locally neutral community. Journal of Ecology, 96(5), 914–926. https://doi.org/10.1111/j.1365-2745.2008.01421.xspa
dc.relation.referencesHe, F., & Legendre, P. (2002). Species Diversity Patterns Derived from Species-Area Models. Ecology, 83(5), 1185. https://doi.org/10.2307/3071933spa
dc.relation.referencesHelmus, M. R., Bland, T. J., Williams, C. K., & Ives, A. R. (2007). Phylogenetic Measures of Biodiversity. The American Naturalist, 169(3), E68–E83. https://doi.org/10.1086/511334spa
dc.relation.referencesHelmus, M. R., & Ives, A. R. (2012). Phylogenetic diversity–area curves. Ecology, 93(sp8), S31–S43. https://doi.org/10.1890/11-0435.1spa
dc.relation.referencesHesselbarth, M. H. K., Sciaini, M., With, K. A., Wiegand, K., & Nowosad, J. (2019). Landscapemetrics: An open‐source R tool to calculate landscape metrics. Ecography, 1–10. https://doi.org/10.1111/ecog.04617spa
dc.relation.referencesHilleRisLambers, J., Adler, P. B., Harpole, W. S., Levine, J. M., & Mayfield, M. M. (2012). Rethinking Community Assembly through the Lens of Coexistence Theory. Annual Review of Ecology, Evolution, and Systematics, 43(1), 227–248. https://doi.org/10.1146/annurev-ecolsys-110411-160411spa
dc.relation.referencesIDEAM, I., IAVH, S., & IIAP, I. (2017). Mapa Ecosistemas Continentales, Costeros y Marinos de Colombia. IDEAM Bogotá DC, Colombia.spa
dc.relation.referencesIknayan, K. J., Tingley, M. W., Furnas, B. J., & Beissinger, S. R. (2014). Detecting diversity: Emerging methods to estimate species diversity. In Trends in Ecology and Evolution (Vol. 29, Issue 2, pp. 97–106). Elsevier Ltd. https://doi.org/10.1016/j.tree.2013.10.012spa
dc.relation.referencesDetecting the Multiple Facets of Biodiversity, 31 Trends in Ecology and Evolution 527 (2016). https://doi.org/10.1016/j.tree.2016.04.002spa
dc.relation.referencesJetz, W., Thomas, G. H., Joy, J. B., Redding, D. W., Hartmann, K., & Mooers, A. O. (2014). Global Distribution and Conservation of Evolutionary Distinctness in Birds. Current Biology, 24(9), 919–930. https://doi.org/10.1016/j.cub.2014.03.011spa
dc.relation.referencesK. McGarigal. (2002). Landscape pattern metrics. Encyclopedia of Environmetrics, 21(3), 1. https://doi.org/10.1002/9780470057339.val006.pub2spa
dc.relation.referencesKattan, G. H., & Franco, P. (2004). Bird diversity along elevational gradients in the Andes of Colombia: Area and mass effects. Global Ecology and Biogeography, 13(5), 451–458. https://doi.org/10.1111/j.1466-822X.2004.00117.xspa
dc.relation.referencesKedron, P. J., Frazier, A. E., Ovando-Montejo, G. A., & Wang, J. (2018). Surface metrics for landscape ecology: A comparison of landscape models across ecoregions and scales. Landscape Ecology, 33(9), 1489–1504. https://doi.org/10.1007/s10980-018-0685-1spa
dc.relation.referencesKeinath, D. A., Doak, D. F., Hodges, K. E., Prugh, L. R., Fagan, W., Sekercioglu, C. H., Buchart, S. H. M., & Kauffman, M. (2017). A global analysis of traits predicting species sensitivity to habitat fragmentation. Global Ecology and Biogeography, 26(1), 115–127. https://doi.org/10.1111/geb.12509spa
dc.relation.referencesKennedy, C. M., Marra, P. P., Fagan, W. F., & Neel, M. C. (2010a). Landscape matrix and species traits mediate responses of Neotropical resident birds to forest fragmentation in Jamaica. Ecological Monographs, 80(4), 651–669. https://doi.org/10.1890/09-0904.1spa
dc.relation.referencesKerr, J. T., & Currie, D. J. (1999). The relative importance of evolutionary and environmental controls on broad-scale patterns of species richness in North America. Ecoscience, 6(3), 329–337. https://doi.org/10.1080/11956860.1999.11682546spa
dc.relation.referencesKraft, N. J. B., Adler, P. B., Godoy, O., James, E. C., Fuller, S., & Levine, J. M. (2015). Community assembly, coexistence and the environmental filtering metaphor. Functional Ecology, 29(5), 592–599. https://doi.org/10.1111/1365-2435.12345spa
dc.relation.referencesKupfer, J. A. (2012). Landscape ecology and biogeography: Rethinking landscape metrics in a post-FRAGSTATS landscape. Progress in Physical Geography: Earth and Environment, 36(3), 400–420. https://doi.org/10.1177/0309133312439594spa
dc.relation.referencesLausch, A., Blaschke, T., Haase, D., Herzog, F., Syrbe, R. U., Tischendorf, L., & Walz, U. (2015). Understanding and quantifying landscape structure—A review on relevant process characteristics, data models and landscape metrics. Ecological Modelling, 295(January), 31–41. https://doi.org/10.1016/j.ecolmodel.2014.08.018spa
dc.relation.referencesLavorel, S., Storkey, J., Bardgett, R. D., Bello, F. De, Berg, M. P., Roux, X. Le, Moretti, M., Mulder, C., Pakeman, R. J., & Sandra, D. (2013). SPECIAL FEATURE : FUNCTIONAL DIVERSITY A novel framework for linking functional diversity of plants with other trophic levels for the quantification of ecosystem services. 24, 942–948. https://doi.org/10.1111/jvs.12083spa
dc.relation.referencesLi, S., & Yang, B. (2015). Introducing a new method for assessing spatially explicit processes of landscape fragmentation. Ecological Indicators, 56, 116–124. https://doi.org/10.1016/j.ecolind.2015.03.031spa
dc.relation.referencesLindenmayer, D. B., Fischer, J., & Hobbs, R. (2007). The need for pluralism in landscape models: A reply to Dunn and Majer. Oikos, 116(8), 1419–1421. https://doi.org/10.1111/j.2007.0030-1299.16133.xspa
dc.relation.referencesLoiselle, B. A., Graham, C. H., Goerck, J. M., & Ribeiro, M. C. (2010). Assessing the impact of deforestation and climate change on the range size and environmental niche of bird species in the Atlantic forests, Brazil. Journal of Biogeography, 37(7), 1288–1301. https://doi.org/10.1111/j.1365-2699.2010.02285.xspa
dc.relation.referencesLouis, J., Debaecker, V., Pflug, B., Main-Knorn, M., Bieniarz, J., Mueller-Wilm, U., Cadau, E., & Gascon, F. (2016). Sentinel-2 SEN2COR: L2A processor for users. Proceedings of the Living Planet Symposium, Prague, Czech Republic, 9–13.spa
dc.relation.referencesLuck, G. W., Carter, A., & Smallbone, L. (2013). Changes in Bird Functional Diversity across Multiple Land Uses: Interpretations of Functional Redundancy Depend on Functional Group Identity. PLoS ONE, 8(5). https://doi.org/10.1371/journal.pone.0063671spa
dc.relation.referencesMacArthur, R. H., & Wilson, E. O. (1967). The theory of island biogeography. Monographs in Population Biology I. Princeton University Press. Princeton, New Jersey.spa
dc.relation.referencesMacKenzie, D. I., Nichols, J. D., Hines, J. E., Knutson, M. G., & Franklin, A. B. (2003). Estimating site occupancy, colonization, and local extinction when a species is detected imperfectly. Ecology, 84(8), 2200–2207. https://doi.org/10.1890/02-3090spa
dc.relation.referencesMacKenzie, D. I., Nichols, J. D., Royle, J. A., Pollock, K. H., Bailey, L., & Hines, J. E. (2017). Occupancy estimation and modeling: Inferring patterns and dynamics of species occurrence. Elsevier.spa
dc.relation.referencesMacKenzie, D. I., Nichols, J. D., Royle, J. A., Pollock, K. H., Bailey, L. L., & Hines, J. E. (2018). Chapter 4—Basic Presence/Absence Situation (D. I. MacKenzie, J. D. Nichols, J. A. Royle, K. H. Pollock, L. L. Bailey, & J. E. B. T.-O. E. and M. (Second E. Hines, Eds.; pp. 115–215). Academic Press. https://doi.org/g/10.1016/B978-0-12-407197-1.00006-5spa
dc.relation.referencesMain-Knorn, M., Pflug, B., Louis, J., Debaecker, V., Müller-Wilm, U., & Gascon, F. (2017). Sen2Cor for Sentinel-2. Image and Signal Processing for Remote Sensing XXIII, 10427, 1042704.spa
dc.relation.referencesMangiafico, S. (2019). Rcompanion: Functions to support extension education program evaluation. R package version 2.0.spa
dc.relation.referencesMartin, C. A. (2018). An early synthesis of the habitat amount hypothesis. Landscape Ecology, 33(11), 1831–1835. https://doi.org/10.1007/s10980-018-0716-yspa
dc.relation.referencesMason, N. W. H., & De Bello, F. (2013). Functional diversity: A tool for answering challenging ecological questions. Journal of Vegetation Science, 24(5), 777–780. https://doi.org/10.1111/jvs.12097spa
dc.relation.referencesMason, N. W. H. H. W. H., De Bello, F., Mouillot, D., Pavoine, S., Dray, S., Bello, F. De, Mouillot, D., Pavoine, S., De Bello, F., Mouillot, D., Pavoine, S., & Dray, S. (2013). A guide for using functional diversity indices to reveal changes in assembly processes along ecological gradients. Journal of Vegetation Science, 24(5), 794–806. https://doi.org/10.1111/jvs.12013spa
dc.relation.referencesMatos, F. A. R., Magnago, L. F. S., Gastauer, M., Carreiras, J. M. B., Simonelli, M., Meira-Neto, J. A. A., & Edwards, D. P. (2017). Effects of landscape configuration and composition on phylogenetic diversity of trees in a highly fragmented tropical forest. Journal of Ecology, 105(1), 265–276. https://doi.org/10.1111/1365-2745.12661spa
dc.relation.referencesMcGarigal, K., & Cushman, S. A. (2005). The gradient concept of landscape structure. In Issues and Perspectives in Landscape Ecology (pp. 112–119). Cambridge University Press. https://doi.org/10.1017/CBO9780511614415.013spa
dc.relation.referencesMcGarigal, K., & Marks, B. J. (1995). FRAGSTATS: spatial pattern analysis program for quantifying landscape structure. General Technical Report - US Department of Agriculture, Forest Service, PNW-GTR-351, 122.spa
dc.relation.referencesMcGarigal, K., Tagil, S., & Cushman, S. A. (2009). Surface metrics: An alternative to patch metrics for the quantification of landscape structure. Landscape Ecology, 24(3), 433–450. https://doi.org/10.1007/s10980-009-9327-yspa
dc.relation.referencesMcMullan, M., Donegan, T. M., & Quevedo, A. (2011). Guia de Campo de las Aves de Colombia. ProAves.spa
dc.relation.referencesMedeiros, H. R., Bochio, G. M., Ribeiro, M. C., Torezan, J. M., & dos Anjos, L. (2015). Combining plant and bird data increases the accuracy of an Index of Biotic Integrity to assess conservation levels of tropical forest fragments. Journal for Nature Conservation, 25, 1–7. https://doi.org/10.1016/j.jnc.2015.01.008spa
dc.relation.referencesMerckx, T., Dantas de Miranda, M., & Pereira, H. M. (2019). Habitat amount, not patch size and isolation, drives species richness of macro-moth communities in countryside landscapes. Journal of Biogeography, 46(5), 956–967. https://doi.org/10.1111/jbi.13544spa
dc.relation.referencesMiguet, P., Fahrig, L., & Lavigne, C. (2017). How to quantify a distance-dependent landscape effect on a biological response. Methods in Ecology and Evolution, 8(12), 1717–1724. https://doi.org/10.1111/2041-210X.12830spa
dc.relation.referencesMihaljevic, J. R., Maxwell, J. B., & Johnson, P. T. J. (2015). Using multispecies occupancy models to improve the characterization and understanding of metacommunity structure. Ecology, 96(7), 1783–1792. https://doi.org/10.1890/07-1861.1spa
dc.relation.referencesMiller, E. T., Zanne, A. E., & Ricklefs, R. E. (2013). Niche conservatism constrains Australian honeyeater assemblages in stressful environments. Ecology Letters, 16(9), 1186–1194. https://doi.org/10.1111/ele.12156spa
dc.relation.referencesMoffiet, T., Armston, J. D., & Mengersen, K. (2010a). Motivation, development and validation of a new spectral greenness index: A spectral dimension related to foliage projective cover. ISPRS Journal of Photogrammetry and Remote Sensing, 65(1), 26–41. https://doi.org/10.1016/j.isprsjprs.2009.08.002spa
dc.relation.referencesMoffiet, T., Armston, J. D., & Mengersen, K. (2010b). Motivation, development and validation of a new spectral greenness index: A spectral dimension related to foliage projective cover. ISPRS Journal of Photogrammetry and Remote Sensing, 65(1), 26–41. https://doi.org/10.1016/j.isprsjprs.2009.08.002spa
dc.relation.referencesMontoya-Arango, S., Acevedo-Quintero, J. F., & Parra, J. L. (2019). Abundance and size of birds determine the position of the species in plantfrugivore interaction networks in fragmented forests. Community Ecology, 20(1), 75–82. https://doi.org/10.1556/168.2019.20.1.8spa
dc.relation.referencesMorante-Filho, J. C., Arroyo-Rodríguez, V., de Andrade, E. R., Santos, B. A., Cazetta, E., & Faria, D. (2018). Compensatory dynamics maintain bird phylogenetic diversity in fragmented tropical landscapes. Journal of Applied Ecology, 55(1), 256–266. https://doi.org/10.1111/1365-2664.12962spa
dc.relation.referencesMorrison, M. L., & Hall, S. L. (2002). Standard terminology: Toward a common language to advance ecological understanding and application. In Predicting species occurrences. Issues of accuracy and scale (pp. 43–52). Island Press.spa
dc.relation.referencesMortelliti, A., Fagiani, S., Battisti, C., Capizzi, D., & Boitani, L. (2010). Independent effects of habitat loss, habitat fragmentation and structural connectivity on forest-dependent birds. Diversity and Distributions, 16(6), 941–951. https://doi.org/10.1111/j.1472-4642.2010.00701.xspa
dc.relation.referencesMühlner, S., Kormann, U., Schmidt-Entling, M., Herzog, F., & Bailey, D. (2010). Structural Versus Functional Habitat Connectivity Measures to Explain Bird Diversity in Fragmented Orchards. Journal of Landscape Ecology, 3(1), 52–64. https://doi.org/10.2478/v10285-012-0023-2spa
dc.relation.referencesMunguía-Rosas, M. A., Jurado-Dzib, S. G., Mezeta-Cob, C. R., Montiel, S., Rojas, A., & Pech-Canché, J. M. (2014). Continuous forest has greater taxonomic, functional and phylogenetic plant diversity than an adjacent naturally fragmented forest. Journal of Tropical Ecology, 30(4), 323–333. https://doi.org/10.1017/S0266467414000194spa
dc.relation.referencesNagelkerke, N. J. D. (1991). A note on a general definition of the coefficient of determination. Biometrika, 78(3), 691–692. https://doi.org/10.1093/biomet/78.3.691spa
dc.relation.referencesNeuschulz, E. L., Brown, M., & Farwig, N. (2013a). Frequent bird movements across a highly fragmented landscape: The role of species traits and forest matrix. Animal Conservation, 16(2), 170–179. https://doi.org/10.1111/j.1469-1795.2012.00582.xspa
dc.relation.referencesNeuschulz, E. L., Brown, M., & Farwig, N. (2013b). Frequent bird movements across a highly fragmented landscape: The role of species traits and forest matrix. Animal Conservation, 16(2), 170–179. https://doi.org/10.1111/j.1469-1795.2012.00582.xspa
dc.relation.referencesNicolson, M. (2013). Community concepts in plant ecology: From Humboldtian plant geography to the superorganism and beyond. Web Ecology, 13(April), 95–102. https://doi.org/10.5194/we-13-95-2013spa
dc.relation.referencesPagel, M. (1999). Inferring the historical patterns of biological evolution. Nature, 401(6756), 877–884.spa
dc.relation.referencesPetchey, O. L., & Gaston, K. J. (2002). Functional diversity ( FD ), species richness and community composition. Ecology Letters, 5, 402–411.spa
dc.relation.referencesPetchey, O. L., & Gaston, K. J. (2006). Functional diversity: Back to basics and looking forward. Ecology Letters, 9(6), 741–758. https://doi.org/10.1111/j.1461-0248.2006.00924.xspa
dc.relation.referencesPetchey, O. L., Hector, A., & Gaston, K. J. (2004). How do different measeures of functional diversity perform. Ecology, 85(3), 847–857. https://doi.org/10.1890/03-0226spa
dc.relation.referencesPfeifer, M., Lefebvre, V., Gardner, T. A., Arroyo-Rodriguez, V., Baeten, L., Banks-Leite, C., Barlow, J., Betts, M. G., Brunet, J., Cerezo, A., Cisneros, L. M., Collard, S., D’Cruze, N., da Silva Motta, C., Duguay, S., Eggermont, H., Eigenbrod, F., Hadley, A. S., Hanson, T. R., … Ewers, R. M. (2014). BIOFRAG - a new database for analyzing BIOdiversity responses to forest FRAGmentation. Ecology and Evolution, 4(9), 1524–1537. https://doi.org/10.1002/ece3.1036spa
dc.relation.referencesPolasky, S., Csuti, B., Vossler, C. A., & Meyers, S. M. (2001). A comparison of taxonomic distinctness versus richness as criteria for setting conservation priorities for North American birds. Biological Conservation, 97(1), 99–105. https://doi.org/10.1016/S0006-3207(00)00103-8spa
dc.relation.referencesPosadas, P., Miranda Esquivel, D. R., & Crisci, J. V. (2001). Using phylogenetic diversity measures to set priorities in conservation: An example from southern South America. Conservation Biology, 15(5), 1325–1334. https://doi.org/10.1046/j.1523-1739.2001.99404.xspa
dc.relation.referencesPrescott, G. W., Gilroy, J. J., Haugaasen, T., Medina Uribe, C. A., Foster, W. A., & Edwards, D. P. (2016). Managing Neotropical oil palm expansion to retain phylogenetic diversity. Journal of Applied Ecology, 53(1), 150–158. https://doi.org/10.1111/1365-2664.12571spa
dc.relation.referencesPrice, B., McAlpine, C. A., Kutt, A. S., Phinn, S. R., Pullar, D. V., & Ludwig, J. A. (2009). Continuum or discrete patch landscape models for savanna birds? Towards a pluralistic approach. Ecography, 32(5), 745–756. https://doi.org/10.1111/j.1600-0587.2009.05670.xspa
dc.relation.referencesR Core Team. (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing.spa
dc.relation.referencesRamdani, F., Rahman, S., & Giri, C. (2019). Principal polar spectral indices for mapping mangroves forest in South East Asia: Study case Indonesia. International Journal of Digital Earth, 12(10), 1103–1117. https://doi.org/10.1080/17538947.2018.1454516spa
dc.relation.referencesRao, C. R. (1982). Diversity and dissimilarity coefficients: A unified approach. Theoretical Population Biology, 21(1), 24–43.spa
dc.relation.referencesRapacciuolo, G., Graham, C. H., Marin, J., Behm, J. E., Costa, G. C., Hedges, S. B., Helmus, M. R., Radeloff, V. C., Young, B. E., & Brooks, T. M. (2019). Species diversity as a surrogate for conservation of phylogenetic and functional diversity in terrestrial vertebrates across the Americas. Nature Ecology and Evolution, 3(1), 53–61. https://doi.org/10.1038/s41559-018-0744-7spa
dc.relation.referencesReal, R., Barbosa, A. M., & Vargas, J. M. (2006). Obtaining environmental favourability functions from logistic regression. Environmental and Ecological Statistics, 13(2), 237–245. https://doi.org/10.1007/s10651-005-0003-3spa
dc.relation.referencesReal, R., Márcia Barbosa, A., & Bull, J. W. (2017). Species distributions, quantum theory, and the enhancement of biodiversity measures. Systematic Biology, 66(3), 453–462. https://doi.org/10.1093/sysbio/syw072spa
dc.relation.referencesRedding, D. W., & Mooers, A. O. (2006). Incorporating evolutionary measures into conservation prioritization. Conservation Biology, 20(6), 1670–1678. https://doi.org/10.1111/j.1523-1739.2006.00555.xspa
dc.relation.referencesRevell, L. J. (2012). phytools: An R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution, 3(2), 217–223. https://doi.org/10.1111/j.2041-210X.2011.00169.xspa
dc.relation.referencesRicotta, C., de Bello, F., Moretti, M., Caccianiga, M., Cerabolini, B. E. L., & Pavoine, S. (2016). Measuring the functional redundancy of biological communities: A quantitative guide. Methods in Ecology and Evolution, 7(11), 1386–1395. https://doi.org/10.1111/2041-210X.12604spa
dc.relation.referencesRodríguez, R. A., Herrera, A. M., Riera, R., Santander, J., Miranda, J. V., Quirós, Á., Fernández-Rodríguez, M. J., Fernández-Palacios, J. M., Otto, R., Escudero, C. G., Jiménez-Rodríguez, A., Navarro-Cerrillo, R. M., Perdomo, M. E., & Delgado, J. D. (2015). Distribution of species diversity values: A link between classical and quantum mechanics in ecology. Ecological Modelling, 313, 162–180. https://doi.org/10.1016/j.ecolmodel.2015.06.021spa
dc.relation.referencesSalgueiro, P. A., Mira, A., Rabaça, J. E., Silva, C., Eufrázio, S., Medinas, D., Manghi, G., Silva, B., & Santos, S. M. (2018). Thinking outside the patch: A multi-species comparison of conceptual models from real-world landscapes. Landscape Ecology, 33(3), 353–370. https://doi.org/10.1007/s10980-017-0603-yspa
dc.relation.referencesScrucca, L., Fop, M., Murphy, T. B., & Raftery, A. E. (2016). mclust 5: Clustering, Classification and Density Estimation Using Gaussian Finite Mixture Models. The R Journal, 8(1), 289–317. https://doi.org/10.1016/j.physbeh.2017.03.040spa
dc.relation.referencesShafer, C. L. (1990). Nature reserves: Island theory and conservation practice. Smithsonian Institution Press.spa
dc.relation.referencesSmith, A. C., Fahrig, L., & Francis, C. M. (2011). Landscape size affects the relative importance of habitat amount, habitat fragmentation, and matrix quality on forest birds. Ecography, 34(1), 103–113. https://doi.org/10.1111/j.1600-0587.2010.06201.xspa
dc.relation.referencesSmith, M. A., Hallwachs, W., & Janzen, D. H. (2014). Diversity and phylogenetic community structure of ants along a Costa Rican elevational gradient. Ecography, 37(8), 720–731. https://doi.org/10.1111/j.1600-0587.2013.00631.xspa
dc.relation.referencesStein, A., Gerstner, K., & Kreft, H. (2014). Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecology Letters, 17(7), 866–880. https://doi.org/10.1111/ele.12277spa
dc.relation.referencesStevens, R. D., & Gavilanez, M. M. (2015). Dimensionality of community structure: Phylogenetic, morphological and functional perspectives along biodiversity and environmental gradients. Ecography, 38(9), 861–875. https://doi.org/10.1111/ecog.00847spa
dc.relation.referencesTerraube, J., Archaux, F., Deconchat, M., van Halder, I., Jactel, H., & Barbaro, L. (2016). Forest edges have high conservation value for bird communities in mosaic landscapes. Ecology and Evolution, 6(15), 5178–5189. https://doi.org/10.1002/ece3.2273spa
dc.relation.referencesTscharntke, T., Tylianakis, J. M., Rand, T. A., Didham, R. K., Fahrig, L., Batáry, P., Bengtsson, J., Clough, Y., Crist, T. O., Dormann, C. F., Ewers, R. M., Fründ, J., Holt, R. D., Holzschuh, A., Klein, A. M., Kleijn, D., Kremen, C., Landis, D. A., Laurance, W., … Westphal, C. (2012). Landscape moderation of biodiversity patterns and processes—Eight hypotheses. In Biological Reviews (Vol. 87, Issue 3, pp. 661–685). https://doi.org/10.1111/j.1469-185X.2011.00216.xspa
dc.relation.referencesTurner, M. G. (2005). Landscape Ecology: What Is the State of the Science? Annual Review of Ecology, Evolution, and Systematics, 36(1), 319–344. https://doi.org/10.1146/annurev.ecolsys.36.102003.152614spa
dc.relation.referencesValente, J. J., & Betts, M. G. (2019). Response to fragmentation by avian communities is mediated by species traits. Diversity and Distributions, 25(1), 48–60. https://doi.org/10.1111/ddi.12837spa
dc.relation.referencesEmerging patterns in the comparative analysis of phylogenetic community structure, 18 Molecular Ecology 572 (2009). https://doi.org/10.1111/j.1365-294X.2008.04001.xspa
dc.relation.referencesVenables, W. N., & Ripley, B. D. (2013). Modern applied statistics with S-PLUS. Springer Science & Business Media.spa
dc.relation.referencesVillard, M. A., Kurtis Trzcinski, M., & Merriam, G. (1999). Fragmentation effects on forest birds: Relative influence of woodland cover and configuration on landscape occupancy. Conservation Biology, 13(4), 774–783. https://doi.org/10.1046/j.1523-1739.1999.98059.xspa
dc.relation.referencesVogt, P., Ferrari, J. R., Lookingbill, T. R., Gardner, R. H., Riitters, K. H., & Ostapowicz, K. (2009). Mapping functional connectivity. Ecological Indicators, 9(1), 64–71. https://doi.org/10.1016/j.ecolind.2008.01.011spa
dc.relation.referencesWalter, S. T., Browne, L., Freile, J., Olivo, J., González, M., & Karubian, J. (2017a). Landscape-level tree cover predicts species richness of large-bodied frugivorous birds in forest fragments. Biotropica, 49(6), 838–847. https://doi.org/10.1111/btp.12469spa
dc.relation.referencesWalter, S. T., Browne, L., Freile, J., Olivo, J., González, M., & Karubian, J. (2017b). Landscape-level tree cover predicts species richness of large-bodied frugivorous birds in forest fragments. Biotropica, 49(6), 838–847. https://doi.org/10.1111/btp.12469spa
dc.relation.referencesWang, X., Swenson, N. G., Wiegand, T., Wolf, A., Howe, R., Lin, F., Ye, J., Yuan, Z., Shi, S., Bai, X., Xing, D., & Hao, Z. (2013). Phylogenetic and functional diversity area relationships in two temperate forests. Ecography, 36(8), 883–893. https://doi.org/10.1111/j.1600-0587.2012.00011.xspa
dc.relation.referencesWatling, J. I., Arroyo‐Rodríguez, V., Pfeifer, M., Baeten, L., Banks‐Leite, C., Cisneros, L. M., Fang, Re., Hamel‐Leigue, A. C., Lachat, T., Leal, I. R., Lens, L., Possingham, H. P., Raheem, D. C., Ribeiro, D. B., Slade, E. M., Urbina‐Cardona, J. N., Wood, E. M., & Fahrig, L. (2020). Support for the habitat amount hypothesis from a global synthesis of species density studies. Ecology Letters, ele.13471. https://doi.org/10.1111/ele.13471spa
dc.relation.referencesWebb, C. O., Ackerly, D. D., Mcpeek, M. A., & Donoghue, M. J. (2002). Phylogenies and Community Ecology. Annu. Rev. Ecol. Syst, 33(2002), 475–505. https://doi.org/10.1146/annurev.ecolsys.33.010802.150448spa
dc.relation.referencesWiens, J. J. (2011). The niche, biogeography and species interactions. In Philosophical Transactions of the Royal Society B: Biological Sciences (Vol. 366, Issue 1576, pp. 2336–2350). https://doi.org/10.1098/rstb.2011.0059spa
dc.relation.referencesWiens, J. J., Ackerly, D. D., Allen, A. P., Anacker, B. L., Buckley, L. B., Cornell, H. V., Damschen, E. I., Jonathan Davies, T., Grytnes, J. A., Harrison, S. P., Hawkins, B. A., Holt, R. D., McCain, C. M., & Stephens, P. R. (2010). Niche conservatism as an emerging principle in ecology and conservation biology. In Ecology Letters (Vol. 13, Issue 10, pp. 1310–1324). https://doi.org/10.1111/j.1461-0248.2010.01515.xspa
dc.relation.referencesWilman, H., Belmaker, J., Simpson, J., de la Rosa, C., Rivadeneira, M. M., & Jetz, W. (2014). EltonTraits 1.0: Species-level foraging attributes of the world’s birds and mammals. Ecology, 95(7), 2027–2027. https://doi.org/10.1890/13-1917.1spa
dc.relation.referencesWilson, M. C., Chen, X.-Y., Corlett, R. T., Didham, R. K., Ding, P., Holt, R. D., Holyoak, M., Hu, G., Hughes, A. C., Jiang, L., Laurance, W. F., Liu, J., Pimm, S. L., Robinson, S. K., Russo, S. E., Si, X., Wilcove, D. S., Wu, J., & Yu, M. (2016). Habitat fragmentation and biodiversity conservation: Key findings and future challenges. Landscape Ecology, 31(2), 219–227. https://doi.org/10.1007/s10980-015-0312-3spa
dc.relation.referencesZeller, K. A., McGarigal, K., & Whiteley, A. R. (2012). Estimating landscape resistance to movement: A review. Landscape Ecology, 27(6), 777–797. https://doi.org/10.1007/s10980-012-9737-0spa
dc.relation.referencesZipkin, E. F., Andrew Royle, J., Dawson, D. K., & Bates, S. (2010). Multi-species occurrence models to evaluate the effects of conservation and management actions. Biological Conservation, 143(2), 479–484. https://doi.org/10.1016/j.biocon.2009.11.016spa
dc.relation.referencesZupan, L., Cabeza, M., Maiorano, L., Roquet, C., Devictor, V., Lavergne, S., Mouillot, D., Mouquet, N., Renaud, J., & Thuiller, W. (2014). Spatial mismatch of phylogenetic diversity across three vertebrate groups and protected areas in Europe. Diversity and Distributions, 20(6), 674–685. https://doi.org/10.1111/ddi.12186spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc570 - Biología::577 - Ecologíaspa
dc.subject.ddc590 - Animales::598 - Pájarosspa
dc.subject.lembEcología humana
dc.subject.lembHuman ecology
dc.subject.lembHabitat (Ecología)
dc.subject.lembHabitat (Ecology)
dc.subject.lembAves - Habitat
dc.subject.lembBirds - Habitat
dc.subject.proposalEcología de Paisajespa
dc.subject.proposalSensores Remotosspa
dc.subject.proposalOcupaciónspa
dc.subject.proposalModelo de Paisajespa
dc.subject.proposalLandscape ecologyeng
dc.subject.proposalOccupancyeng
dc.subject.proposalLandscape modeleng
dc.subject.proposalRemote sensingeng
dc.titleEcología de gradientes en paisajes fragmentados andinosspa
dc.title.translatedGradient ecology in fragmented Andean landscapeseng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameISAGENspa
oaire.fundernameUniversidad de Antioquiaspa
oaire.fundernameMinisterio de Ciencia, Tecnología e Innovación de Colombia (Minciencias)spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
TesisDoctorado_CarlosOrtizY_Final2023.pdf
Tamaño:
8.69 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ecología - Carlos Ortiz Yusty

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: