Análisis comparativo de metodologías de pronóstico para múltiples series de tiempo de conteos
dc.contributor.advisor | Cabarcas Jaramillo, Daniel | |
dc.contributor.advisor | Gonzáles Alvarez, Nelfi Gertrudis | |
dc.contributor.author | Betancur Rodríguez, Daniel | |
dc.date.accessioned | 2024-04-16T15:44:15Z | |
dc.date.available | 2024-04-16T15:44:15Z | |
dc.date.issued | 2024-04-16 | |
dc.description | Ilustraciones | spa |
dc.description.abstract | El pronóstico de series de tiempo de conteos es un caso particular de interés para la asignación óptima de capacidades e inventarios acorde a la demanda esperada, entre otras aplicaciones. Para abordar el pronóstico de las series de tiempo de conteos se han propuesto modelos estadísticos como los modelos autorregresivos para series de conteo o los modelos dinámicos generalizados. Por otro lado, se han aplicado metodologías basadas en algoritmos de machine learning apalancándose en la creciente potencia computacional, como las redes neuronales recurrentes y las arquitecturas basadas en algoritmos de atención, llamadas Transformers. El presente trabajo explora el problema del pronóstico paralelo de múltiples series de conteo, aplicando metodologías propias de la estadística y el machine learning en diversos escenarios de simulación en los cuales se compara la calidad de pronóstico, el tiempo computacional demandado y el esfuerzo para adaptar las metodologías a casos reales (texto tomado de la fuente) | spa |
dc.description.abstract | Forecasting time series of counts, with support on non-negative integers, is a particular case of interest for optimal job assigment and inventory allocation according to expected demand, among other applications. To address the problem of forecasting time series of counts, statiscal models such as autorregresive models for count data or dynamic generalized models have been proposed. On the other side, methodologies based on machine learning algorithms have been applied, leveraging on the increasing computational power, such as recurrent neuronal netwroks, LSTM networks architecures and architectures based in attention algorithms called Transformers. This study explores the problem of parallel forecasting multiple time series of counts, applying statistical and machine learning methodologies to various simulation scenarios in which the forecasting performance, demanded computational time, and the effort to adapt each methodology to real cases are compared | eng |
dc.description.curriculararea | Área Curricular Estadística | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Estadística | spa |
dc.description.researcharea | Analítica | spa |
dc.description.researcharea | Procesos estocásticos | spa |
dc.format.extent | 1 recursos en línea (167 páginas) | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/85925 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Medellín, Colombia | spa |
dc.publisher.program | Medellín - Ciencias - Maestría en Ciencias - Estadística | spa |
dc.relation.indexed | LaReferencia | spa |
dc.relation.references | Aghababaei Jazi, M., & Alamatsaz, M. (2012). Two new thinning operators and their appli cations. Global Journal of Pure and Applied Mathematics, 8, 13-28 | spa |
dc.relation.references | Allende, H., Moraga, C., & Salas, R. (2002). Artificial neural networks in time series fore casting: a comparative analysis. Kybernetika, 38(6), 685-707 | spa |
dc.relation.references | Ba, J. L., Kiros, J. R., & Hinton, G. E. (2016). Layer Normalization | spa |
dc.relation.references | Bahdanau, D., Cho, K., & Bengio, Y. (2016a). Neural Machine Translation by Jointly Lear ning to Align and Translate | spa |
dc.relation.references | Bahdanau, D., Cho, K., & Bengio, Y. (2016b). Neural Machine Translation by Jointly Lear ning to Align and Translate | spa |
dc.relation.references | Bandara, K., Shi, P., Bergmeir, C., Hewamalage, H., Tran, Q., & Seaman, B. (2019). Sales Demand Forecast in E-commerce Using a Long Short-Term Memory Neural Network Methodology. En T. Gedeon, K. W. Wong & M. Lee (Eds.), Neural Information Processing (pp. 462-474). Springer International Publishing | spa |
dc.relation.references | Byrd, R. H., Schnabel, R. B., & Shultz, G. A. (1987). A Trust Region Algorithm for Non linearly Constrained Optimization. SIAM Journal on Numerical Analysis, 24(5), 1152-1170. Consultado el 7 de mayo de 2023, desde http://www.jstor.org/stable/ 2157645 | spa |
dc.relation.references | Chollet, F. (2017). Deep Learning with Python (1st). Manning Publications Co | spa |
dc.relation.references | Christou, V., & Fokianos, K. (2015). On count time series prediction. Journal of Statistical Computation and Simulation, 85(2), 357-373. https://doi.org/10.1080/00949655. 2013.823612 | spa |
dc.relation.references | Davis, R. A., Fokianos, K., Holan, S. H., Joe, H., Livsey, J., Lund, R., Pipiras, V., & Ravishanker, N. (2021). Count Time Series: A methodological Review. Journal of the American Statistical Association, 116, 1533-1547. https://doi.org/10.1080/01621459. 2021.1904957 | spa |
dc.relation.references | Dufour, J.-M. (2008). Estimation of ARMA models by maximum likelihood. https:// jeanmariedufour.github.io/ResE/Dufour 2008 C TS ARIMA Estimation.pdf | spa |
dc.relation.references | Dunsmuir, W. T. (2016). Generalized Linear Autoregressive Moving Average Models. En R. A. Davis, S. H. Holan, R. Lund & N. Ravishanker (Eds.). CRC Press | spa |
dc.relation.references | Excoffier, M., Gicquel, C., & Jouini, O. (2016). A joint chance-constrained programming approach for call center workforce scheduling under uncertain call arrival forecasts. Computers & Industrial Engineering, 96, 16-30. https://doi.org/https://doi.org/10. 1016/j.cie.2016.03.013 | spa |
dc.relation.references | Farsani, R., Pazouki, E., & Jecei, J. (2021). A Transformer Self-Attention Model for Time Series Forecasting. Journal of Electrical and Computer Engineering Innovations, 9, 1-10. https://doi.org/10.22061/JECEI.2020.7426.391 | spa |
dc.relation.references | Fearnhead, P. (2011). MCMC for State Space Models. En S. Brooks, A. Gelman, G. Jones & X.-L. Meng (Eds.). Chapman; HALL/CRC | spa |
dc.relation.references | Feng, C., Li, L., & Sadeghpour, A. (2020). A comparison of residual diagnosis tools for diagnosing regression models for count data. BMC Medical Research Methodology, 20, 1-21. https://doi.org/10.1186/s12874-020-01055-2 | spa |
dc.relation.references | Ferland, R., Latour, A., & Oraichi, D. (2006). Integer-Valued GARCH Process. Journal of Time Series Analysis, 27(6), 923-942. https://doi.org/https://doi.org/10.1111/j. 1467-9892.2006.00496.x | spa |
dc.relation.references | Fokianos, K. (2012). Count Time Series Models. Handbook of Statistics, 30, 315-347. https: //doi.org/10.1016/B978-0-444-53858-1.00012-0 | spa |
dc.relation.references | Fokianos, K., Rahbek, A., & Tjøstheim, D. (2009). Poisson Autoregression. Journal of the American Statistical Association, 104(488), 1430-1439. Consultado el 15 de marzo de 2023, desde http://www.jstor.org/stable/40592351 | spa |
dc.relation.references | Fokianos, K., & Tjøstheim, D. (2011). Log-linear Poisson autoregression. Journal of Multi variate Analysis, 102(3), 563-578. https://doi.org/https://doi.org/10.1016/j.jmva. 2010.11.002 | spa |
dc.relation.references | Gamerman, D., Abanto-Valle, C., Silva, R., & Martins, T. (2016). Dynamic Bayesian Mo dels for Discrete-Valued Time Series. En R. A. Davis, S. H. Holan, R. Lund & N. Ravishanker (Eds.). CRC Pess | spa |
dc.relation.references | Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning [http://www.deeplearningbook. org]. MIT Press | spa |
dc.relation.references | He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep Residual Learning for Image Recogni tion. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 770-778. https://doi.org/10.1109/CVPR.2016.90 | spa |
dc.relation.references | Hewamalage, H., Bergmeir, C., & Bandara, K. (2022). Global models for time series forecas ting: A Simulation study. Pattern Recognition, 124, 108441. https://doi.org/https: //doi.org/10.1016/j.patcog.2021.108441 | spa |
dc.relation.references | Hoppe, R. W. (2006). Chapter 4 Sequential Quadratic Programming. https://www.math. uh.edu/∼rohop/fall 06/Chapter4.pdf | spa |
dc.relation.references | Hyndman, R. J. Focused Workshop: Synthetic Data — Generating time series. En: 2021. https://www.youtube.com/watch?v=F3lWECtFa44&ab channel=AustralianDataScienceNetwok | spa |
dc.relation.references | Hyndman, R. J., & Athanasopoulos, G. (2021). Forecasting: Principles and Practice (3rd). OTexts. | spa |
dc.relation.references | Hyndman, R. J., Kang, Y., Montero-Manso, P., O’Hara-Wild, M., Talagala, T., Wang, E., & Yang, Y. (2023). tsfeatures: Time Series Feature Extraction [https://pkg.robjhyndman.com/tsfeatures/, https://github.com/robjhyndman/tsfeatures] | spa |
dc.relation.references | Hyndman, R. J., & Koehler, A. B. (2006). Another look at measures of forecast accuracy. International Journal of Forecasting, 22(4), 679-688. https://doi.org/https://doi. org/10.1016/j.ijforecast.2006.03.001 | spa |
dc.relation.references | Jia, Y. (2018). Some Models for Count TimeSeries (Tesis doctoral). Clemson University. 105 Sikes Hall, Clemson, SC 29634, Estados Unidos. https://tigerprints.clemson. edu/all dissertations/2213 | spa |
dc.relation.references | Kang, Y., Hyndman, R. J., & Li, F. (2020). GRATIS: GeneRAting TIme Series with diverse and controllable characteristics. Statistical Analysis and Data Mining: The ASA Data Science Journal, 13(4), 354-376. https://doi.org/10.1002/sam.11461 | spa |
dc.relation.references | Liboschik, T., Fokianos, K., & Fried, R. (2017). tscount: An R Package for Analysis of Count Time Series Following Generalized Linear Models. Journal of Statistical Software, 82(5), 1-51. https://doi.org/10.18637/jss.v082.i05 | spa |
dc.relation.references | Lund, R., & Livsey, J. (2016). Renewal-Based Count Time Series. En R. A. Davis, S. H. Holan, R. Lund & N. Ravishanker (Eds.). CRC Press | spa |
dc.relation.references | Makridakis, S. (1993). Accuracy measures: theoretical and practical concerns. International Journal of Forecasting, 9(4), 527-529. https://doi.org/https://doi.org/10.1016/0169 2070(93)90079-3 | spa |
dc.relation.references | Makridakis, S., Spiliotis, E., & Assimakopoulos, V. (2018). Statistical and Machine Learning forecasting methods: Concerns and ways forward. Plos One. https://doi.org/10.1371/ journal.pone.0194889 | spa |
dc.relation.references | Makridakis, S., Spiliotis, E., & Assimakopoulos, V. (2020). The M4 Competition: 100,000 time series and 61 forecasting methods [M4 Competition]. International Journal of Forecasting, 36(1), 54-74. https://doi.org/https://doi.org/10.1016/j.ijforecast.2019. 04.014 | spa |
dc.relation.references | Mart´ ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Jia, Y., Rafal Jozefo wicz, Lukasz Kaiser, Manjunath Kudlur, ... Xiaoqiang Zheng. (2015). TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems [Software available from tensorflow.org]. https://www.tensorflow.org/ | spa |
dc.relation.references | McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in ner vous activity. The bulletin of mathematical biophysics, 5. https://doi.org/10.1007/ BF02478259 | spa |
dc.relation.references | Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient Estimation of Word Repre sentations in Vector Space | spa |
dc.relation.references | Montero-Manso, P., & Hyndman, R. J. (2021). Principles and algorithms for forecasting groups of time series: Locality and globality. International Journal of Forecasting, 37(4), 1632-1653. https://doi.org/https://doi.org/10.1016/j.ijforecast.2021.03.004 | spa |
dc.relation.references | Nariswari, R., & Pudjihastuti, H. (2019). Bayesian Forecasting for Time Series of Count Data [The 4th International Conference on Computer Science and Computational Intelligence (ICCSCI 2019) : Enabling Collaboration to Escalate Impact of Research Results for Society]. Procedia Computer Science, 157, 427-435. https://doi.org/https: //doi.org/10.1016/j.procs.2019.08.235 | spa |
dc.relation.references | Nelder, J. A., & Wedderburn, R. W. M. (1972). Generalized Linear Models. Journal of the Royal Statistical Society. Series A (General), 135(3), 370-384. Consultado el 13 de enero de 2024, desde http://www.jstor.org/stable/2344614 | spa |
dc.relation.references | Ng, A. Y., Katanforoosh, K., & Mourri, Y. B. (2023). Neural Networks and Deep Learning [MOOC]. Coursera. https://www.coursera.org/learn/neural-networks-deep-learning | spa |
dc.relation.references | Nie, Y., Nguyen, N. H., Sinthong, P., & Kalagnanam, J. (2023). A Time Series is Worth 64 Words: Long-term Forecasting with Transformers | spa |
dc.relation.references | Nielsen, M. A. (2015). Neural Networks and Deep Learning. Determination Press. of Transportation, N. D. (2017). Bicycle Counts for East River Bridges (Historical) [Daily total of bike counts conducted monthly on the Brooklyn Bridge, Manhattan Brid ge, Williamsburg Bridge, and Queensboro Bridge. https://data.cityofnewyork.us/ Transportation/Bicycle-Counts-for-East-River-Bridges-Historical-/gua4-p9wg] | spa |
dc.relation.references | Parr, T., & Howard, J. (2018). The Matrix Calculus You Need For Deep Learning | spa |
dc.relation.references | Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, E. (2011). Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, 12, 2825-2830 | spa |
dc.relation.references | Phuong, M., & Hutter, M. (2022). Formal Algorithms for Transformers | spa |
dc.relation.references | R Core Team. (2023). R: A Language and Environment for Statistical Computing. R Foun dation for Statistical Computing. Vienna, Austria. https://www.R-project.org/ | spa |
dc.relation.references | Ruder, S. (2016). An overview of gradient descent optimization algorithms. CoRR, abs/1609.04747. http://arxiv.org/abs/1609.04747 | spa |
dc.relation.references | Rue, H., Martino, S., & Chopin, N. (2009). Approximate Bayesian Inference for Latent Gaussian models by using Integrated Nested Laplace Approximations. Journal of the Royal Statistical Society Series B: Statistical Methodology, 71(2), 319-392. https: //doi.org/10.1111/j.1467-9868.2008.00700.x | spa |
dc.relation.references | Sathish, V., Mukhopadhyay, S., & Tiwari, R. (2020). ARMA Models for Zero Inflated Count Time Series. https://doi.org/10.48550/ARXIV.2004.10732 | spa |
dc.relation.references | Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks, 61, 85-117. https://doi.org/10.1016/j.neunet.2014.09.003 | spa |
dc.relation.references | Seabold, S., & Perktold, J. (2010). statsmodels: Econometric and statistical modeling with python. 9th Python in Science Conference | spa |
dc.relation.references | Shenstone, L., & Hyndman, R. J. (2005). Stochastic models underlying Croston’s method for intermittent demand forecasting. Journal of Forecasting, 24(6), 389-402. https: //doi.org/https://doi.org/10.1002/for.963 | spa |
dc.relation.references | Shmueli, G., Bruce, P. C., Yahav, I., Patel, N. R., & Lichtendahl Jr., K. C. (2018). Data mining for business analytics. Wiley | spa |
dc.relation.references | Shmueli, G., & Lichtebdahl, K. C. (2018). Practical time series forecasting with R. Axelrod Schnall Publishers | spa |
dc.relation.references | Shrivastava, S. (2020). Cross Validation in Time Series. https://medium.com/@soumyachess1496/ cross-validation-in-time-series-566ae4981ce4 | spa |
dc.relation.references | Smith, T. G. (2017). pmdarima: ARIMA estimators for Python | spa |
dc.relation.references | Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dro pout: A Simple WaytoPrevent Neural Networks from Overfitting. Journal of Machine Learning Research, 15(56), 1929-1958. http://jmlr.org/papers/v15/srivastava14a. html | spa |
dc.relation.references | Terven, J., Cordova-Esparza, D. M., Ramirez-Pedraza, A., & Chavez-Urbiola, E. A. (2023). Loss Functions and Metrics in Deep Learning | spa |
dc.relation.references | Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., & Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems, 5998-6008. http://arxiv.org/abs/1706.03762 | spa |
dc.relation.references | Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., ... SciPy 1.0 Contributors. (2020). SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17, 261-272. https://doi.org/ 10.1038/s41592-019-0686-2 | spa |
dc.relation.references | Wen, Q., Zhou, T., Zhang, C., Chen, W., Ma, Z., Yan, J., & Sun, L. (2023). Transformers in Time Series: A Survey | spa |
dc.relation.references | Zeng, A., Chen, M.-H., Zhang, L., & Xu, Q. (2022). Are Transformers Effective for Ti me Series Forecasting? AAAI Conference on Artificial Intelligence. https://api. semanticscholar.org/CorpusID:249097444 | spa |
dc.relation.references | Zhang, A., Lipton, Z. C., Li, M., & Smola, A. J. (2021). Dive into Deep Learning. arXiv preprint arXiv:2106.11342 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.ddc | 510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas | spa |
dc.subject.lemb | Análisis de series de tiempo | |
dc.subject.lemb | Procesos de Poisson | |
dc.subject.lemb | Redes neuronales (computadores) | |
dc.subject.lemb | Aprendizaje automático (inteligencia artificial) | |
dc.subject.proposal | Modelos lineales generalizados | spa |
dc.subject.proposal | predicción | spa |
dc.subject.proposal | datos de conteos | spa |
dc.subject.proposal | regresión Poisson | spa |
dc.subject.proposal | series de tiempo | spa |
dc.subject.proposal | redes neuronales recurrentes | spa |
dc.subject.proposal | transformers | spa |
dc.subject.proposal | Generalized lineal models | ita |
dc.subject.proposal | Prediction | eng |
dc.subject.proposal | Count data | eng |
dc.subject.proposal | Poisson regression | eng |
dc.subject.proposal | Statespace models | eng |
dc.subject.proposal | Time series | eng |
dc.subject.proposal | Reuronal networks | eng |
dc.subject.proposal | Recurrent neuronal networks | eng |
dc.subject.proposal | Transformers | eng |
dc.title | Análisis comparativo de metodologías de pronóstico para múltiples series de tiempo de conteos | spa |
dc.title.translated | Comparative analysis of forecasting methodologies for multiple time series of counts | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Administradores | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1152456210.2024.pdf
- Tamaño:
- 3.23 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis Maestría en Ciencias - Estadística
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: