Dendrímeros péptido-resorcinareno: (i) obtención mediante reacción de cicloadición azida/alquino y (ii) evaluación de su potencial antibacteriano

dc.contributor.advisorMaldona Villamil, Mauricio
dc.contributor.advisorRivera Monroy, Zuly Jenny
dc.contributor.authorPineda Castañeda, Héctor Manuel
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000073189spa
dc.contributor.googlescholarhttps://scholar.google.com/citations?user=Wu60Xw0AAAAJ&hl=es&authuser=3spa
dc.contributor.orcid0000-0002-9081-0546spa
dc.contributor.researchgatehttps://www.researchgate.net/profile/Hector-Pineda-Castanedaspa
dc.contributor.researchgroupSíntesis y Aplicación de Moléculas Peptídicasspa
dc.contributor.researchgroupAplicaciones Analíticas de Compuestos Orgánicos (Aaco)spa
dc.contributor.scopushttps://www.scopus.com/authid/detail.uri?authorId=57208139842spa
dc.date.accessioned2024-02-07T13:53:46Z
dc.date.available2024-02-07T13:53:46Z
dc.date.issued2023
dc.description.abstractLa resistencia a los antimicrobianos (RAM) es una de las diez principales amenazas para la salud pública reportadas por la Organización Mundial de la Salud (OMS). Una de las causas del creciente problema de la RAM es la falta de nuevas terapias y/o agentes de tratamiento; en consecuencia, muchas enfermedades infecciosas podrían volverse incontrolables. La necesidad de descubrir nuevos agentes antimicrobianos, que sean alternativos a los existentes, y que permitan mitigar este problema, se ha incrementado debido a la rápida y global expansión de la RAM. En este contexto, se han propuesto como alternativas para combatir la RAM tanto los péptidos antimicrobianos (PAMs) como los dendrímeros que presentan múltiples copias de compuestos antibacterianos en su estructura. Los dendrímeros han exhibido propiedades antifúngicas y antibacterianas y también se han utilizado en terapias antiinflamatorias, antineoplásicas y cardiovasculares y son útiles en sistemas de administración de fármacos y genes. En este trabajo se propuso obtener dendrímeros que presenten cuatro copias de secuencias de PAMs. Específicamente, (i) se exploró la síntesis, purificación y caracterización de dendrímeros de péptido-resorcinareno derivados de las secuencias LfcinB (20-25): RRWQWR y BF (32-35): RLLR, y (ii) la actividad antimicrobiana y citotóxica de estos dendrímeros. Se establecieron las rutas de síntesis que permitieron obtener: a) alquino-resorcinarenos y b) péptidos funcionalizados con el grupo azida; los cuales se usaron para generar c) dendrímeros de péptido-resorcinareno mediante química click de cicloadición de azida-alquino CuAAC. Finalmente, se evaluó la actividad antimicrobiana y citotóxica de los dendrímeros obtenidos frente a cepas de referencia y aislados clínicos. Estos resultados permitieron la identificación de moléculas antimicrobianas prometedoras que pueden conducir a avances en el desarrollo de nuevos agentes terapéuticos. (Texto tomado de la fuente)spa
dc.description.abstractAntimicrobial resistance (AMR) is one of the top ten threats to public health reported by the World Health Organization (WHO). One of the causes of the growing AMR problem is the lack of new therapies and/or treatment agents; consequently, many infectious diseases could become uncontrollable. The need to discover new antimicrobial agents, which are alternatives to the existing ones, and which allow mitigating this problem, has increased due to the rapid and global expansion of AMR. In this context, both antimicrobial peptides (AMPs) and dendrimers that present multiple copies of antibacterial compounds in their structure have been proposed as alternatives to combat AMR. Dendrimers have exhibited antifungal and antibacterial properties and have also been used in anti-inflammatory, antineoplastic and cardiovascular therapies and are useful in drug and gene delivery systems. In this work, it was proposed to obtain dendrimers that present four copies of AMPs sequences. Specifically, (i) the synthesis, purification, and characterization of peptide-resorcinarene dendrimers derived from the sequences LfcinB (20-25): RRWQWR and BF (32-35): RLLR, and (ii) the antimicrobial and cytotoxic activity were explored. of these dendrimers. The synthesis routes that allowed obtaining: a) alkyne-resorcinarenes and b) peptides functionalized with the azide group were established, which were used to generate c) peptide-resorcinarene dendrimers by azide-alkyne cycloaddition (CuAAC) click chemistry. Finally, the antimicrobial and cytotoxic activity of the dendrimers obtained was evaluated against reference strains and clinical isolates. These results allowed the identification of promising antimicrobial molecules that may lead to breakthroughs in the development of new therapeutic agents.eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ciencias - Químicaspa
dc.format.extent269 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85642
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Químicaspa
dc.relation.referencesJ. M. Sierra, E. Fusté, F. Rabanal, T. Vinuesa, and M. Viñas, “An overview of antimicrobial peptides and the latest advances in their development,” Expert Opin Biol Ther, vol. 17, no. 6, pp. 663–676, 2017, doi: 10.1080/14712598.2017.1315402.spa
dc.relation.references“WHO | Antibiotic resistance,” WHO, 2017. http://www.who.int/mediacentre/factsheets/antibiotic-resistance/en/ (accessed Dec. 24, 2017).spa
dc.relation.referencesWHO, “Prevention & AMP,” 2016. http://www.who.int/antimicrobial-resistance/amr-aidememoire-may2016.pdf (accessed Dec. 24, 2017).spa
dc.relation.references“WHO | WHO publishes list of bacteria for which new antibiotics are urgently needed,” WHO, 2017. http://www.who.int/mediacentre/news/releases/2017/bacteria-antibiotics-needed/en/ (accessed Dec. 24, 2017).spa
dc.relation.references“WHO | World Health Organization,” WHO, 2016. http://www.who.int/antimicrobial-resistance/Microbes_and_Antimicrobials/en/ (accessed Dec. 24, 2017).spa
dc.relation.referencesM. A. León-Calvijo, A. L. Leal-Castro, G. A. Almanzar-Reina, J. E. Rosas-Pérez, J. E. García-Castañeda, and Z. J. Rivera-Monroy, “Antibacterial Activity of Synthetic Peptides Derived from Lactoferricin against Escherichia coli ATCC 25922 and Enterococcus faecalis ATCC 29212,” Biomed Res Int, vol. 2015, pp. 1–8, 2015, doi: 10.1155/2015/453826.spa
dc.relation.referencesM. Dathe, H. Nikolenko, J. Klose, and M. Bienert, “Cyclization increases the antimicrobial activity and selectivity of arginine- and tryptophan-containing hexapeptides,” Biochemistry, vol. 43, no. 28, pp. 9140–9150, 2004, doi: 10.1021/bi035948v.spa
dc.relation.referencesS. C. Vega, D. A. Martínez, M. del S. Chalá, H. A. Vargas, and J. E. Rosas, “Design, Synthesis and Evaluation of Branched RRWQWR-Based Peptides as Antibacterial Agents Against Clinically Relevant Gram-Positive and Gram-Negative Pathogens,” Front Microbiol, vol. 9, p. 329, Mar. 2018, doi: 10.3389/fmicb.2018.00329.spa
dc.relation.referencesN. Dong et al., “Short symmetric-end antimicrobial peptides centered on β-turn amino acids unit improve selectivity and stability,” Front Microbiol, vol. 9, no. NOV, 2018, doi: 10.3389/fmicb.2018.02832.spa
dc.relation.referencesB. Y. Jia et al., “High cell selectivity and bactericidal mechanism of symmetric peptides centered on d-pro–gly pairs,” Int J Mol Sci, vol. 21, no. 3, 2020, doi: 10.3390/ijms21031140.spa
dc.relation.referencesH. M. Pineda-Castañeda, L. D. Bonilla-Velásquez, A. L. Leal-Castro, R. Fierro-Medina, J. E. García-Castañeda, and Z. J. Rivera-Monroy, “Use of Click Chemistry for Obtaining an Antimicrobial Chimeric Peptide Containing the LfcinB and Buforin II Minimal Antimicrobial Motifs,” ChemistrySelect, vol. 5, no. 5, 2020, doi: 10.1002/slct.201903834.spa
dc.relation.referencesY.K. Agrawal and R.N. Patadia, “Studies on Resorcinarenes and their Analytical Applications,” Rev Anal Chem, vol. 25, no. 3, pp. 155–239, 2006, doi: https://doi.org/10.1515/REVAC.2006.25.3.155.spa
dc.relation.referencesM. D. Shah and Y. Agrawal, “Calixarene: A new architecture in the analytical and pharmaceutical technology,” J Sci Ind Res (India), vol. 71, pp. 21–26, Jan. 2012.spa
dc.relation.referencesV. K. Jain and P. H. Kanaiya, “Chemistry of calix[4]resorcinarenes,” Russian Chemical Reviews, vol. 80, no. 1, pp. 75–102, 2011, doi: 10.1070/rc2011v080n01abeh004127.spa
dc.relation.referencesL. M. Tunstad et al., “Host-Guest Complexation. 48. Octol Building Blocks for Cavitands and Carcerands,” Journal of Organic Chemistry, vol. 54, no. 6, pp. 1305–1312, 1989, doi: 10.1021/jo00267a015.spa
dc.relation.referencesH. Konishi, K. Ohata, O. Morikawa, and K. Kobayashi, “Calix[6]resorcinarenes: The first examples of [16] metacyclophanes derived from resorcinols,” J Chem Soc Chem Commun, no. 3, pp. 309–310, 1995, doi: 10.1039/C39950000309.spa
dc.relation.referencesK. Deleersnyder, H. Mehdi, I. T. Horváth, K. Binnemans, and T. N. Parac-Vogt, “Lanthanide(III) nitrobenzenesulfonates and p-toluenesulfonate complexes of lanthanide(III), iron(III), and copper(II) as novel catalysts for the formation of calix[4]resorcinarene,” Tetrahedron, vol. 63, no. 37, pp. 9063–9070, 2007, doi: 10.1016/j.tet.2007.06.090.spa
dc.relation.referencesM. Hedidi et al., “Microwave-assisted synthesis of calix[4]resorcinarenes,” Tetrahedron, vol. 62, no. 24, pp. 5652–5655, 2006, doi: 10.1016/j.tet.2006.03.095.spa
dc.relation.referencesD. Moore, G. W. Watson, T. Gunnlaugsson, and S. E. Matthews, “Selective formation of the rctt chair stereoisomers of octa-O-alkyl resorcin[4]arenes using Brønsted acid catalysis,” New Journal of Chemistry, vol. 32, no. 6, pp. 994–1002, 2008, doi: 10.1039/b714735j.spa
dc.relation.referencesP. Ziaja, A. Krogul, P. TS, and G. Litwinienko, “Structure and stoichiometry of resorcinarene solvates as host-guest complexes - NMR, X-ray and thermoanalytical studies,” Thermochim Acta, vol. 623, pp. 112–119, 2016, doi: 10.1016/j.tca.2015.10.018.spa
dc.relation.referencesA. Velásquez-Silva, B. Cortés, Z. J. Rivera-Monroy, A. Pérez-Redondo, and M. Maldonado, “Crystal structure and dynamic NMR studies of octaacetyl-tetra(propyl)calix[4]resorcinarene,” J Mol Struct, vol. 1137, pp. 380–386, Jun. 2017, doi: 10.1016/j.molstruc.2017.02.059.spa
dc.relation.referencesA. A. Castillo-Aguirre, A. Pérez-Redondo, and M. Maldonado, “Influence of the hydrogen bond on the iteroselective O-alkylation of calix[4]resorcinarenes,” J Mol Struct, vol. 1202, p. 127402, 2020, doi: 10.1016/j.molstruc.2019.127402.spa
dc.relation.referencesE. S. Español and M. M. Villamil, “Calixarenes: Generalities and their role in improving the solubility, biocompatibility, stability, bioavailability, detection, and transport of biomolecules,” Biomolecules, vol. 9, no. 3, 2019, doi: 10.3390/biom9030090.spa
dc.relation.referencesR. A. Sarmiento Forero, “Reacción de sulfometilación de resorcinarenos alquilados en el borde inferior y estudio del efecto de estos sustituyentes en el proceso de reconocimiento molecular de Colina,” Universidad Nacional de Colombia - Sede Bogotá, Jul. 2018.spa
dc.relation.referencesA. Castillo-Aguirre, Z. Rivera-Monroy, and M. Maldonado, “Selective o-alkylation of the crown conformer of tetra(4-hydroxyphenyl)calix[4]resorcinarene to the corresponding tetraalkyl ether,” Molecules, vol. 22, no. 10, Oct. 2017, doi: 10.3390/molecules22101660.spa
dc.relation.referencesI. Victorovna-Lijanova, M. I. Reyes-Valderrama, J. L. Maldonado, G. Ramos-Ortiz, K. Tatiana, and M. Martínez-García, “Synthesis and cubic nonlinear optical behavior of phenyl and ferrocenyl-ended resorcinarene-based dendrimers,” Tetrahedron, vol. 64, no. 19, pp. 4460–4467, 2008, doi: 10.1016/j.tet.2008.02.050.spa
dc.relation.referencesD. Eisler, W. Hong, M. C. Jennings, and R. J. Puddephatt, “An organometallic octopus complex: Structure and properties of a resorcinarene with 16 cobalt centers,” Organometallics, vol. 21, no. 19, pp. 3955–3960, 2002, doi: 10.1021/om020394y.spa
dc.relation.referencesB. A. Velásquez-Silva, A. Castillo-Aguirre, Z. J. Rivera-Monroy, and M. Maldonado, “Aminomethylated calix[4]resorcinarenes as modifying agents for glycidyl methacrylate (GMA) rigid copolymers surface,” Polymers (Basel), vol. 11, no. 7, 2019, doi: 10.3390/polym11071147.spa
dc.relation.referencesA. Shivanyuk, C. Schmidt, V. Böhmer, E. F. Paulus, O. Lukin, and W. Vogt, “Selective derivatization of resorcarenes. 3. C2-symmetrical and transcavity bridged bis-benzoxazines derived from C(2v)-symmetrical tetratosylates,” J Am Chem Soc, vol. 120, no. 18, pp. 4319–4326, 1998, doi: 10.1021/ja9729286.spa
dc.relation.referencesB. Kuberski, M. Pecul, and A. Szumna, “A chiral ‘frozen’ hydrogen bonding in C4-symmetric inherently chiral resorcin[4]arenes: NMR, X-ray, circular dichroism, and theoretical study,” European J Org Chem, no. 18, pp. 3069–3078, 2008, doi: 10.1002/ejoc.200800247spa
dc.relation.referencesE. Sanabria, M. A. Esteso, A. Pérez-Redondo, E. Vargas, and M. Maldonado, “Synthesis and characterization of two sulfonated resorcinarenes: A new example of a linear array of sodium centers and macrocycles,” Molecules, vol. 20, no. 6, pp. 9915–9928, 2015, doi: 10.3390/molecules20069915.spa
dc.relation.referencesH. Konishi, H. Yamaguchi, M. Miyashiro, K. Kobayashi, and O. Morikawa, “Functionalization at the extraannular positions of calix[4]resorcinarene using a Mannich-type thiomethylation,” Tetrahedron Lett, vol. 37, no. 47, pp. 8547–8548, 1996, doi: 10.1016/0040-4039(96)01988-0.spa
dc.relation.referencesM. P. Scott and M. S. Sherburn, Resorcinarenes and Pyrogallolarenes, Second Edi., vol. 1. Elsevier, 2017. doi: 10.1016/b978-0-12-409547-2.12475-8.spa
dc.relation.referencesB. Astrid and V. Silva, “Funcionalización de materiales monolíticos con derivados de calix[4]resorcinareno y evaluación de su aplicación en el desarrollo de columnas para el análisis de péptidos por HPLC,” 2018.spa
dc.relation.referencesM. Urbaniak, J. Mattay, and W. Iwanek, “Synthesis of resorcinarene derivatives by the catalyzed mannich reaction, Part 2: Resorcinarene derivatives with unsaturated bonds,” Synth Commun, vol. 38, no. 24, pp. 4345–4351, 2008, doi: 10.1080/00397910802326588.spa
dc.relation.referencesS. Das and M. K. Das, Surface Modification of Nanoparticles for Targeted Drug Delivery. Cham: Springer International Publishing, 2019. doi: 10.1007/978-3-030-06115-9.spa
dc.relation.referencesK. J. Palmer, R. Y. Wong, L. Jurd, and K. Stevens, “The Structures of the Oetaaeetate Esters of Two Condensation Tetramers of Resoreinol with,” Acta Crystallographica B, vol. B32, pp. 847–852, 1976.spa
dc.relation.referencesW. Iwanek, “The synthesis of octamethoxyresorc[4]arenes catalysed by Lewis acids,” Tetrahedron, vol. 54, no. 46, pp. 14089–14094, 1998, doi: 10.1016/S0040-4020(98)00859-X.spa
dc.relation.referencesJ. Han and C. G. Yan, “Synthesis, crystal structure and configuration of resorcinarene amides,” J Incl Phenom Macrocycl Chem, vol. 61, no. 1–2, pp. 119–126, 2008, doi: 10.1007/s10847-007-9403-3.spa
dc.relation.referencesC. M. O’Farrell, J. M. Chudomel, J. M. Collins, C. F. Dignam, and T. J. Wenzel, “Water-soluble calix[4]resorcinarenes with hydroxyproline groups as chiral NMR solvating agents,” Journal of Organic Chemistry, vol. 73, no. 7, pp. 2843–2851, Apr. 2008, doi: 10.1021/jo702751z.spa
dc.relation.referencesB. Botta, M. Pierini, G. D. Monache, D. Subissati, F. Subrizi, and G. Zappia, “Synthesis of amino and ammonium resorcin[4]arenes as potential receptors,” Synthesis (Stuttg), no. 13, pp. 2110–2116, 2008, doi: 10.1055/s-2008-1067111.spa
dc.relation.referencesW. Xu, J. P. Rourke, J. J. Vittal, and R. J. Puddephatt, “Transition Metal Rimmed-Calixresorcinarene Complexes,” Inorg Chem, vol. 34, no. 1, pp. 323–329, Jan. 1995, doi: 10.1021/ic00105a050.spa
dc.relation.referencesZ. H. Soomro et al., “CuAAC synthesis of resorcin[4]arene-based glycoclusters as multivalent ligands of lectins,” Org Biomol Chem, vol. 9, no. 19, pp. 6587–6597, 2011, doi: 10.1039/c1ob05676j.spa
dc.relation.referencesR. E. Sardjono, A. Kadarohman, and A. Mardhiyah, “Green Synthesis of Some Calix[4]Resorcinarene Under Microwave Irradiation,” Procedia Chem, vol. 4, pp. 224–231, 2012, doi: 10.1016/j.proche.2012.06.031.spa
dc.relation.referencesX. Han et al., “A resorcinarene for inhibition of Aβ fibrillation,” Chem Sci, vol. 8, no. 3, pp. 2003–2009, 2017, doi: 10.1039/c6sc04854d.spa
dc.relation.referencesJ. Han, Y. H. Cai, L. Liu, C. G. Yan, and Q. Li, “Syntheses, crystal structures, and electrochemical properties of multi-ferrocenyl resorcinarenes,” Tetrahedron, vol. 63, no. 10, pp. 2275–2282, 2007, doi: 10.1016/j.tet.2006.12.073.spa
dc.relation.referencesH. C. Kolb and K. B. Sharpless, “The growing impact of click chemistry on drug discovery.,” Drug Discov Today, vol. 8, no. 24, pp. 1128–37, Dec. 2003.spa
dc.relation.referencesJ. Thundimadathil, “ChemInform Abstract: Click Chemistry in Peptide Science: A Mini-Review: Synthesis of Clickable Peptides and Applications,” ChemInform, vol. 44, no. 45, pp. 34–37, 2013, doi: 10.1002/chin.201345215.spa
dc.relation.referencesH. M. Pineda-Castañeda, Z. J. Rivera-Monroy, and M. Maldonado, “Copper(I)-Catalyzed Alkyne–Azide Cycloaddition (CuAAC) ‘Click’ Reaction: A Powerful Tool for Functionalizing Polyhydroxylated Platforms,” ACS Omega, Jan. 2023, doi: 10.1021/ACSOMEGA.2C06269.spa
dc.relation.referencesC. J. H. D. Díaz Díaz, M.G. Finn, K.B. Sharpless, V.V. Fokin, “Cicloadición 1,3-dipolar de azidas y alquinos. I: pricipales aspectos sintéticos,” Anales de Química, vol. 104, no. 3, pp. 173–180, Jul. 2008.spa
dc.relation.referencesV. V. Rostovtsev, L. G. Green, V. V. Fokin, and K. B. Sharpless, “A stepwise huisgen cycloaddition process: Copper(I)-catalyzed regioselective ‘ligation’ of azides and terminal alkynes,” Angewandte Chemie - International Edition, vol. 41, no. 14, pp. 2596–2599, Jul. 2002, doi: 10.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4.spa
dc.relation.referencesH. M. Pineda Castañeda, “Péptidos quiméricos derivados de la lactoferricina bovina y la buforina: síntesis, caracterización y evaluación de su actividad antibacteriana,” Universidad Nacional de Colombia - Sede Bogotá, 2019. [Online]. Available: http://bdigital.unal.edu.co/73364/spa
dc.relation.referencesT. Qadri, I. Ali, M. Hussain, F. Ahmed, M. R. Shah, and Z. Hussain, “Synthesis of New Tetra Triazole Functionalized Calix[4]resorcinarene and Chemosensing of Copper Ions in Aqueous Medium,” Curr Org Chem, vol. 24, no. 3, pp. 332–337, May 2020, doi: 10.2174/1385272824666200211114211.spa
dc.relation.referencesE. Galante et al., “Glycoclusters presenting lactose on calix[4]arene cores display trypanocidal activity,” Tetrahedron, vol. 67, no. 33, pp. 5902–5912, 2011, doi: 10.1016/j.tet.2011.06.065.spa
dc.relation.referencesA. Dondoni and A. Marra, “C-glycoside clustering on calix[4]arene, adamantane, and benzene scaffolds through 1,2,3-triazole linkers,” Journal of Organic Chemistry, vol. 71, no. 20, pp. 7546–7557, 2006, doi: 10.1021/jo0607156.spa
dc.relation.referencesA. A. Husain and K. S. Bisht, “Synthesis of a novel resorcin[4]arene-glucose conjugate and its catalysis of the CuAAC reaction for the synthesis of 1,4-disubstituted 1,2,3-triazoles in water,” RSC Adv, vol. 9, no. 18, pp. 10109–10116, 2019, doi: 10.1039/c9ra00972h.spa
dc.relation.referencesC. Gao et al., “Synthesis and characterization of resorcinarene-centered amphiphilic A 8B4 miktoarm star copolymers based on poly(ε- caprolactone) and poly(ethylene glycol) by combination of CROP and ‘click’ chemistry,” J Polym Sci A Polym Chem, vol. 51, no. 13, pp. 2824–2833, 2013, doi: 10.1002/pola.26670.spa
dc.relation.referencesW. Liu, M. A. Minier, A. H. Franz, M. Curtis, and L. Xue, “Synthesis of nucleobase-calix[4]arenes via click chemistry and evaluation of their complexation with alkali metal ions and molecular assembly,” Supramol Chem, vol. 23, no. 12, pp. 806–818, 2011, doi: 10.1080/10610278.2011.632824.spa
dc.relation.referencesT. Läppchen et al., “Novel analogs of antitumor agent calixarene 0118: Synthesis, cytotoxicity, click labeling with 2-[18F]fluoroethylazide, and in vivo evaluation,” Eur J Med Chem, vol. 89, pp. 279–295, 2015, doi: 10.1016/j.ejmech.2014.10.048.spa
dc.relation.referencesR. Hosseinzadeh, E. Domehri, M. Tajbakhsh, and A. Bekhradnia, “New fluorescent sensor based on a calix[4]arene bearing two triazole–coumarin units for copper ions: application for Cu 2+ detection in human blood serum,” J Incl Phenom Macrocycl Chem, vol. 93, no. 3–4, pp. 245–252, 2019, doi: 10.1007/s10847-018-0872-3.spa
dc.relation.referencesJ. Mo, P. K. Eggers, Z. X. Yuan, C. L. Raston, and L. Y. Lim, “Paclitaxel-loaded phosphonated calixarene nanovesicles as a modular drug delivery platform,” Sci Rep, vol. 6, no. March, pp. 1–12, 2016, doi: 10.1038/srep23489.spa
dc.relation.referencesB. Garska, M. Tabatabai, and H. Ritter, “Calix[4]arene-click-cyclodextrin and supramolecular structures with watersoluble NIPAAM-copolymers bearing adamantyl units: ‘Rings on ring on chain,’” Beilstein Journal of Organic Chemistry, vol. 6, pp. 784–788, 2010, doi: 10.3762/bjoc.6.83.spa
dc.relation.referencesR. Nag, S. Polepalli, M. Althaf Hussain, and C. P. Rao, “Ratiometric Cu2+ Binding, Cell Imaging, Mitochondrial Targeting, and Anticancer Activity with Nanomolar IC50 by Spiro-Indoline-Conjugated Calix[4]arene,” ACS Omega, vol. 4, no. 8, pp. 13231–13240, 2019, doi: 10.1021/acsomega.9b01402.spa
dc.relation.referencesM. Charnley et al., “Generation of bioactive materials with rapid self-assembling resorcinarene-peptides,” Advanced Materials, vol. 21, no. 28, pp. 2909–2915, Jul. 2009, doi: 10.1002/adma.200802731.spa
dc.relation.referencesD. Astruc, E. Boisselier, and C. Ornelas, “Dendrimers designed for functions: From physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicine,” Chem Rev, vol. 110, no. 4, pp. 1857–1959, 2010, doi: 10.1021/cr900327d.spa
dc.relation.referencesS. Kajouj et al., “ Synthesis and photophysical studies of a multivalent photoreactive Ru II -calix[4]arene complex bearing RGD-containing cyclopentapeptides ,” Beilstein Journal of Organic Chemistry, vol. 14, no. Ii, pp. 1758–1768, 2018, doi: 10.3762/bjoc.14.150.spa
dc.relation.referencesM. Li et al., “Metal ion-responsive nanocarrier derived from phosphonated calix[4]arenes for delivering dauricine specifically to sites of brain injury in a mouse model of intracerebral hemorrhage,” J Nanobiotechnology, vol. 18, no. 1, pp. 1–19, 2020, doi: 10.1186/s12951-020-00616-3.spa
dc.relation.referencesB. A. Makwana, K. Bhatt, D. Vyas, H. S. Gupte, and V. K. Jain, “Synthesis , Characterisation , Binding Behaviour and Antimicrobial Activity of Azocalix [ 4 ] Resorcine dye derived from 8-aminoquinoline,” vol. 3, no. 6, pp. 463–470, 2014.spa
dc.relation.referencesR. R. Kashapov et al., “N-Methyl-d-glucamine–Calix[4]resorcinarene Conjugates: Self-assembly and biological properties,” Molecules, vol. 24, no. 10, pp. 1–15, 2019, doi: 10.3390/molecules24101939.spa
dc.relation.referencesRoxane. Salvatierra-González, Yehuda. Benguigui, Pan American Health Organization., Pan American Sanitary Bureau., and World Health Organization., Resistencia antimicrobiana en las Américas magnitud del problema y su contención. Organización Panamericana de la Salud, Oficina Sanitaria Panamericana, Oficina Regional de la Organización Mundial de la Salud, 2000.spa
dc.relation.referencesJ. Castañeda-casimiro et al., “Péptidos antimicrobianos: péptidos con múltiples funciones,” Alergia, asma e inmunología, vol. 18, no. 1, pp. 16–29, 2009, [Online]. Available: http://www.medigraphic.com/pdfs/alergia/al-2009/al091d.pdfspa
dc.relation.referencesN. Bruni et al., “Antimicrobial activity of lactoferrin-related peptides and applications in human and veterinary medicine,” Molecules, vol. 21, no. 6, 2016, doi: 10.3390/molecules21060752.spa
dc.relation.referencesJ. L. Gifford, H. N. Hunter, and H. J. Vogel, “Lactoferricin: A lactoferrin-derived peptide with antimicrobial, antiviral, antitumor and immunological properties,” Cellular and Molecular Life Sciences, vol. 62, no. 22, pp. 2588–2598, 2005, doi: 10.1007/s00018-005-5373-z.spa
dc.relation.referencesS. Farnaud and R. W. Evans, “Lactoferrin - A multifunctional protein with antimicrobial properties,” Mol Immunol, vol. 40, no. 7, pp. 395–405, 2003, doi: 10.1016/S0161-5890(03)00152-4.spa
dc.relation.referencesD. J. Schibli, P. M. Hwang, and H. J. Vogel, “The structure of the antimicrobial active center of lactoferricin B bound to sodium dodecyl sulfate micelles,” FEBS Lett, vol. 446, no. 2–3, pp. 213–217, 1999, doi: 10.1016/S0014-5793(99)00214-8.spa
dc.relation.referencesL. H. Vorland, H. Ulvatne, J. Andersen, H. Haukland, Ø. Rekdal, and J. S. Svendsen, “Lactoferricin of Bovine Origin is More Active than Lactoferricins of Human , Murine and Caprine Origin,” pp. 513–517, 1998.spa
dc.relation.referencesN. D. J. Huertas Méndez et al., “Synthetic Peptides Derived from Bovine Lactoferricin Exhibit Antimicrobial Activity against E. coli ATCC 11775, S. maltophilia ATCC 13636 and S. enteritidis ATCC 13076,” Molecules, vol. 22, no. 3, pp. 1–10, 2017, doi: 10.3390/molecules22030452spa
dc.relation.referencesY. Vargas-Casanova et al., “Synergistic bactericide and antibiotic effects of dimeric, tetrameric, or palindromic peptides containing the RWQWR motif against Gram-positive and Gram-negative strains,” RSC Adv, vol. 9, no. 13, pp. 7239–7245, 2019, doi: 10.1039/c9ra00708c.spa
dc.relation.referencesN. De Jesús Huertas, Z. J. R. Monroy, R. F. Medina, and J. E. G. Casta, “Antimicrobial activity of truncated and polyvalent peptides derived from the FKCRRWQWRMKKGLA sequence against Escherichia coli ATCC 25922 and staphylococcus aureus ATCC 25923,” Molecules, vol. 22, no. 6, 2017, doi: 10.3390/molecules22060987.spa
dc.relation.referencesY. Vargas Casanova et al., “Antibacterial Synthetic Peptides Derived from Bovine Lactoferricin Exhibit Cytotoxic Effect against MDA-MB-468 and MDA-MB-231 Breast Cancer Cell Lines,” Molecules, vol. 22, no. 10, p. 1641, Sep. 2017, doi: 10.3390/molecules22101641.spa
dc.relation.referencesJ. H. Cho, B. H. Sung, and S. C. Kim, “Buforins: Histone H2A-derived antimicrobial peptides from toad stomach,” Biochim Biophys Acta Biomembr, vol. 1788, no. 8, pp. 1564–1569, 2009, doi: 10.1016/j.bbamem.2008.10.025.spa
dc.relation.referencesG. Tonarelli and A. Simonetta, “Péptidos antimicrobianos de organismos procariotas y eucariotas como agentes terapéuticos y conservantes de alimentos,” Fabicib, vol. 17, pp. 137–177, 2014, doi: 10.14409/fabicib.v17i0.4316.spa
dc.relation.referencesE. Fleming, N. P. Maharaj, J. L. Chen, R. B. Nelson, and D. E. Elmore, “Effect of lipid composition on buforin II structure and membrane entry,” Proteins: Structure, Function, and Bioinformatics, vol. 73, no. 2, pp. 480–491, 2008, doi: 10.1002/prot.22074.spa
dc.relation.referencesH. S. Lee et al., “Mechanism of anticancer activity of buforin IIb, a histone H2A-derived peptide,” Cancer Lett, vol. 271, no. 1, pp. 47–55, 2008, doi: 10.1016/j.canlet.2008.05.041.spa
dc.relation.referencesC. B. Park, K.-S. Yi, K. Matsuzaki, M. S. Kim, and S. C. Kim, “Structure-activity analysis of buforin II, a histone H2A-derived antimicrobial peptide: The proline hinge is responsible for the cell-penetrating ability of buforin II,” Proceedings of the National Academy of Sciences, vol. 97, no. 15, pp. 8245–8250, 2000, doi: 10.1073/pnas.150518097.spa
dc.relation.referencesH. S. Lee et al., “Mechanism of anticancer activity of buforin IIb, a histone H2A-derived peptide,” Cancer Lett, vol. 271, no. 1, pp. 47–55, 2008, doi: 10.1016/j.canlet.2008.05.041.spa
dc.relation.referencesS. A. Jang et al., “Mechanism of action and specificity of antimicrobial peptides designed based on buforin IIb,” Peptides (N.Y.), vol. 34, no. 2, pp. 283–289, 2012, doi: 10.1016/j.peptides.2012.01.015.spa
dc.relation.referencesH. M. Pineda-Castañeda, L. D. Bonilla-Velásquez, A. L. Leal-Castro, R. Fierro-Medina, J. E. García-Castañeda, and Z. J. Rivera-Monroy, “Use of Click Chemistry for Obtaining an Antimicrobial Chimeric Peptide Containing the LfcinB and Buforin II Minimal Antimicrobial Motifs,” ChemistrySelect, vol. 5, no. 5, pp. 1655–1657, 2020, doi: 10.1002/slct.201903834.spa
dc.relation.referencesK. Fosgerau and T. Hoffmann, “Peptide therapeutics: Current status and future directions,” Drug Discov Today, vol. 20, no. 1, pp. 2–8, 2015, doi: 10.1016/j.drudis.2014.10.003.spa
dc.relation.referencesMinisterio de salud, “Proceso De Investigación, Desarrollo Y Aprobación De Un Fármaco,” MSDsalud, pp. 1–9, 2016.spa
dc.relation.referencesS. B. Levy and M. Bonnie, “Antibacterial resistance worldwide: Causes, challenges and responses,” Nature Medicine, vol. 10, no. 12S. Nat Med, pp. S122–S129, 2004. doi: 10.1038/nm1145.spa
dc.relation.referencesM. C. Maranan, B. Moreira, S. Boyle-Vavra, and R. S. Daum, “Antimicrobial resistance in staphylococci. Epidemiology, molecular mechanisms, and clinical relevance,” Infect Dis Clin North Am, vol. 11, no. 4, pp. 813–849, 1997, doi: 10.1016/S0891-5520(05)70392-5.spa
dc.relation.referencesC. L. Ventola, “The Antibiotic Resistance Crisis,” Pharmacy and Therapeutics, vol. 40, no. 4, pp. 1–7, 2015, doi: 10.5796/electrochemistry.82.749.spa
dc.relation.referencesF. Pasteran, A. Corso, M. Monsalvo, J. Frenkel, and J. Lazovski, “Resistencia a los antimicrobianos : causas , consecuencias y perspectivas en Argentina,” Whonet-Argentina, vol. 4, pp. 1–4, 2013.spa
dc.relation.referencesL. Morrison and T. R. Zembower, “Antimicrobial Resistance,” Gastrointestinal Endoscopy Clinics of North America, vol. 30, no. 4. W.B. Saunders, pp. 619–635, Oct. 01, 2020. doi: 10.1016/j.giec.2020.06.004.spa
dc.relation.references“OMS | Prevención y control de los brotes de cólera: política y recomendaciones de la OMS.” https://www.who.int/topics/cholera/control/es/ (accessed Nov. 06, 2020).spa
dc.relation.referencesM. Ali, A. R. Nelson, A. L. Lopez, and D. A. Sack, “Updated global burden of cholera in endemic countries,” PLoS Negl Trop Dis, vol. 9, no. 6, Jun. 2015, doi: 10.1371/journal.pntd.0003832.spa
dc.relation.referencesR. Laxminarayan and G. M. Brown, “Economics of antibiotic resistance: A theory of optimal use,” J Environ Econ Manage, vol. 42, no. 2, pp. 183–206, Sep. 2001, doi: 10.1006/jeem.2000.1156spa
dc.relation.referencesA. Giuliani, G. Pirri, and S. F. Nicoletto, Antimicrobial peptides: an overview of a promising class of therapeutics, vol. 2, no. 1. 2007. doi: 10.2478/s11535-007-0010-5.spa
dc.relation.referencesN. J. Afacan, A. T.Y. Yeung, O. M. Pena, and R. E.W. Hancock, “Therapeutic Potential of Host Defense Peptides in Antibiotic-resistant Infections,” Curr Pharm Des, vol. 18, no. 6, pp. 807–819, 2012, doi: 10.2174/138161212799277617.spa
dc.relation.referencesJ. L. Lau and M. K. Dunn, “Therapeutic peptides: Historical perspectives, current development trends, and future directions,” Bioorg Med Chem, vol. 26, no. 10, pp. 2700–2707, 2018, doi: 10.1016/j.bmc.2017.06.052.spa
dc.relation.referencesO. E. Akanbi, H. A. Njom, J. Fri, A. C. Otigbu, and A. M. Clarke, “Antimicrobial Susceptibility of Staphylococcus aureus Isolated from Recreational Waters and Beach Sand in Eastern Cape Province of South Africa,” Int J Environ Res Public Health, vol. 14, no. 9, p. 1001, Sep. 2017, doi: 10.3390/ijerph14091001.spa
dc.relation.referencesT. A. Taylor and C. G. Unakal, Staphylococcus Aureus. StatPearls Publishing, 2017.spa
dc.relation.referencesF. P. A. Robinson and M. Shalit, “Características generales del Staphylococcus aureus,” Anti-Corrosion Methods and Materials, vol. 1, no. 4, pp. 11–14, 2014, doi: 10.1108/eb020168.spa
dc.relation.referencesR. Camarena, J; Roberto, “INFECCIÓN POR Staphylococcus aureus RESISTENTE A METICILINA,” Control calidad SEIMC, pp. 1–5, 2000.spa
dc.relation.referencesR. AGUILAR and J. OLARTE, “Escherichia coli como causa de diarrea infantil,” Rev Cubana Pediatr, vol. 22, no. 6, pp. 334–33448, 2003.spa
dc.relation.referencesBETELGEUX, “Escherichia Coli: características, patogenicidad y prevención (I) -,” BETELGEUX, 2016.spa
dc.relation.referencesR. AGUILAR and J. OLARTE, “Escherichia coli como causa de diarrea infantil,” Rev Cubana Pediatr, vol. 22, no. 6, pp. 334–33448, 2003spa
dc.relation.referencesS. Mosquito, J. Ruiz, and T. J. Ochoa, “MECANISMOS MOLECULARES DE RESISTENCIA ANTIBIÓTICA EN Escherichia coli ASOCIADAS A DIARREA Escherichia coli- ASSOCIATED DIARRHEA,” vol. 28, no. 4, pp. 9–11, 2011.spa
dc.relation.referencesA. T. Pavia et al., “Hemolytic-uremic syndrome during an outbreak of Escherichia coli O157:H7 infections in institutions for mentally retarded persons: Clinical and epidemiologic observations,” J Pediatr, vol. 116, no. 4, pp. 544–551, 1990, doi: 10.1016/S0022-3476(05)81600-2.spa
dc.relation.referencesJ. M. Sánchez Merino, C. Guillán Maquieira, C. Fuster Foz, F. J. Madrid García, M. Jiménez Rodríguez, and J. García Alonso, “Sensibilidad microbiana de escherichia coli en infecciones urinarias extrahospitalarias,” Actas Urol Esp, vol. 27, no. 10, pp. 3–7, 2003, doi: 10.1016/S0210-4806(03)73014-9.spa
dc.relation.referencesZ. Rivera et al., “Double dimer peptide constructs are immunogenic and protective against Plasmodium falciparum in the experimental Aotus monkey model,” Journal of Peptide Research, vol. 59, no. 2, pp. 62–70, 2002, doi: 10.1046/j.1397-002x.2001.00001_957.x.spa
dc.relation.referencesA. G. S. Hogberg, “Two stereoisomeric macrocyclic resorcinol-acetaldehyde condensation products,” Journal of Organic Chemistry, vol. 45, no. 22, pp. 4498–4500, 2002, doi: 10.1021/JO01310A046.spa
dc.relation.referencesA. Kivrak, C. Yilmaz, M. Konus, H. Koca, S. Aydemir, and J. A. Oagaz, “Synthesis and biological properties of novel 1-methyl-2-(2-(prop-2-yn-1-yloxy)benzylidene) hydrazine analogues,” Turk J Chem, vol. 42, no. 2, pp. 306–316, Apr. 2018, doi: 10.3906/kim-1701-42.spa
dc.relation.referencesV. Rodríguez et al., “Efficient Fmoc Group Removal Using Diluted 4-Methylpiperidine: An Alternative for a Less-Polluting SPPS-Fmoc/tBu Protocol,” Int J Pept Res Ther, no. 0123456789, pp. 4–6, 2019, doi: 10.1007/s10989-019-09865-9spa
dc.relation.referencesX. Li, “Click to join peptides/proteins together,” Chem Asian J, vol. 6, no. 10, pp. 2606–2616, 2011, doi: 10.1002/asia.201100329spa
dc.relation.referencesO. Avrutina et al., “Application of copper(I) catalyzed azide-alkyne [3+2] cycloaddition to the synthesis of template-assembled multivalent peptide conjugates.,” Org Biomol Chem, vol. 7, no. 20, pp. 4177–4185, 2009, doi: 10.1039/b908261aspa
dc.relation.referencesA. Suárez, “Reacciones de cicloadición 1,3-dipolares a alquinos catalizadas por cobre,” An. Quím, vol. 108, no. 4, pp. 306–313, 2012, [Online]. Available: file:///C:/Users/Usuario/Downloads/pag_306.pdfspa
dc.relation.referencesM. D. C. C. S. Arthur L. Barry, Ph.D. William A. Craig, M.D. Harriette Nadler, Ph.D. L. Barth Reller, “M26-A: Methods for Determining Bactericidal Activity of Antimicrobial Agents; Approved Guideline,” Clinical and laboratory standards institute, vol. 19, no. 1, pp. 56–78, 1999.spa
dc.relation.referencesL. Saiman, “Clinical utility of synergy testing for multidrug-resistant Pseudomonas aeruginosa isolated from patients with cystic fibrosis: ‘the motion for,’” Paediatr Respir Rev, vol. 8, no. 3, pp. 249–255, 2007, doi: 10.1016/j.prrv.2007.04.006.spa
dc.relation.referencesM27-A3 Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Approved Standard-Third Edition,” 2008, Accessed: Sep. 07, 2022. [Online]. Available: www.clsi.orgspa
dc.relation.referencesY. Vargas-Casanova et al., “Synergistic bactericide and antibiotic effects of dimeric, tetrameric, or palindromic peptides containing the RWQWR motif against Gram-positive and Gram-negative strains,” RSC Adv, vol. 9, no. 13, pp. 7239–7245, 2019, doi: 10.1039/c9ra00708c.spa
dc.relation.referencesV. Solarte, J. Rosas, Z. Rivera, J. E. García, M. Arango, and J.-P. Vernot, “A tetrameric peptide ferived from bovine lactoferricin exhibits specific cytotoxic effects against Oral Squamous-Cell Carcinoma cell lines,” Biomed Res Int, p. 13, 2015, doi: 10.1155/2015/630179.spa
dc.relation.referencesT. Langan, K. Rodgers, and R. Chou, “Synchromization of Mammalian Cell Cultures by Serum Deprivation,” Methods in Cell Science, vol. 1524, pp. 97–105, 2017, doi: 10.1023/A:1009872403440spa
dc.relation.referencesS. Alfei and A. M. Schito, “From nanobiotechnology, positively charged biomimetic dendrimers as novel antibacterial agents: A review,” Nanomaterials, vol. 10, no. 10, pp. 1–50, 2020, doi: 10.3390/nano10102022spa
dc.relation.referencesP. Patel, V. Patel, and P. M. Patel, “Synthetic strategy of dendrimers: A review,” Journal of the Indian Chemical Society, vol. 99, no. 7, p. 100514, Jul. 2022, doi: 10.1016/J.JICS.2022.100514spa
dc.relation.referencesA. Velásquez-Silva, B. Cortés, Z. J. Rivera-Monroy, A. Pérez-Redondo, and M. Maldonado, “Crystal structure and dynamic NMR studies of octaacetyl-tetra(propyl)calix[4]resorcinarene,” J Mol Struct, vol. 1137, pp. 380–386, Jun. 2017, doi: 10.1016/j.molstruc.2017.02.059spa
dc.relation.referencesM. He et al., “Chromophore formation in resorcinarene solutions and the visual detection of mono- and oligosaccharides,” J Am Chem Soc, vol. 124, no. 18, pp. 5000–5009, May 2002, doi: 10.1021/JA017713H/SUPPL_FILE/JA017713H_S2.CIFspa
dc.relation.referencesN. K. Beyeh and K. Rissanen, “Tetranitroresorcin[4]arene: synthesis and structure of a new stereoisomer,” Tetrahedron Lett, vol. 50, no. 52, pp. 7369–7373, Dec. 2009, doi: 10.1016/J.TETLET.2009.10.075spa
dc.relation.referencesH. Mu, R. Zhou, J. Sun, and C. Yan, “Syntheses and crystal structures of functionalized tetramethyl resorcinarenes,” Chem Res Chin Univ, vol. 31, no. 6, pp. 925–929, 2015, doi: 10.1007/s40242-015-5235-7spa
dc.relation.referencesH. Ito, T. Nakayama, M. Sherwood, D. Miller, and M. Ueda, “Characterization and Lithographic Application of Calix[4]resorcinarene Derivatives,” Chemistry of Materials, vol. 20, no. 1, pp. 341–356, Jan. 2007, doi: 10.1021/CM7021483spa
dc.relation.referencesA. A. Castillo-Aguirre, Z. J. Rivera Monroy, and M. Maldonado, “Analysis by RP-HPLC and Purification by RP-SPE of the C -Tetra(p -hydroxyphenyl)resorcinolarene Crown and Chair Stereoisomers,” J Anal Methods Chem, vol. 2019, 2019, doi: 10.1155/2019/2051282spa
dc.relation.referencesD. S. Insuasty Cepeda et al., “Synthetic Peptide Purification via Solid-Phase Extraction with Gradient Elution: A Simple, Economical, Fast, and Efficient Methodology,” Molecules, vol. 24, no. 7, 2019, doi: 10.3390/molecules24071215spa
dc.relation.referencesH. M. Pineda-Castañeda, M. Maldonado, and Z. J. Rivera-Monroy, “Efficient Separation of C-Tetramethylcalix[4]resorcinarene Conformers by Means of Reversed-Phase Solid-Phase Extraction,” ACS Omega, vol. 8, no. 1, pp. 231–237, Jan. 2023, doi: 10.1021/acsomega.2c03218spa
dc.relation.referencesI. R. Knyazeva et al., “Synthesis of novel highly functionalized triazole-linked calix[4]resorcinols via click reaction,” Mendeleev Communications, vol. 27, no. 6, pp. 556–558, 2017, doi: 10.1016/j.mencom.2017.11.005spa
dc.relation.referencesH. Wenschuh, M. Beyermann, R. Winter, M. Bienert, D. Ionescu, and L. A. Carpino, “Fmoc amino acid fluorides in peptide synthesis — Extension of the method to extremely hindered amino acids,” Tetrahedron Lett, vol. 37, no. 31, pp. 5483–5486, Jul. 1996, doi: 10.1016/0040-4039(96)01160-4spa
dc.relation.referencesG. B. Fields and R. L. Noble, “Solid phase peptide synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids,” Int J Pept Protein Res, vol. 35, no. 3, pp. 161–214, 1990, doi: 10.1111/j.1399-3011.1990.tb00939.xspa
dc.relation.referencesR. Behrendt, P. White, and J. Offer, “Advances in Fmoc solid-phase peptide synthesis,” Journal of Peptide Science, vol. 22, no. 1, pp. 4–27, 2016, doi: 10.1002/psc.2836spa
dc.relation.referencesP. E. Schneggenburger, B. Worbs, and U. Diederichsen, “Azide reduction during peptide cleavage from solid support—the choice of thioscavenger?,” Journal of Peptide Science, vol. 16, no. 1, pp. 10–14, Jan. 2010, doi: 10.1002/PSC.1202spa
dc.relation.referencesM. Arias, L. J. McDonald, E. F. Haney, K. Nazmi, J. G. M. Bolscher, and H. J. Vogel, “Bovine and human lactoferricin peptides: Chimeras and new cyclic analogs,” BioMetals, vol. 27, no. 5, pp. 935–948, 2014, doi: 10.1007/s10534-014-9753-4.spa
dc.relation.referencesM. A. León-Calvijo, A. L. Leal-Castro, G. A. Almanzar-Reina, J. E. Rosas-Pérez, J. E. García-Castañeda, and Z. J. Rivera-Monroy, “Antibacterial Activity of Synthetic Peptides Derived from Lactoferricin against Escherichia coli ATCC 25922 and Enterococcus faecalis ATCC 29212,” Biomed Res Int, vol. 2015, pp. 1–8, Mar. 2015, doi: 10.1155/2015/453826spa
dc.relation.referencesV. Solarte, J. Rosas, Z. Rivera, J. E. García, M. Arango, and J.-P. Vernot, “A tetrameric peptide ferived from bovine lactoferricin exhibits specific cytotoxic effects against Oral Squamous-Cell Carcinoma cell lines,” Biomed Res Int, vol. 2015, p. 13, 2015, doi: 10.1155/2015/630179spa
dc.relation.referencesB. Fang, H. Y. Guo, M. Zhang, L. Jiang, and F. Z. Ren, “The six amino acid antimicrobial peptide bLFcin6 penetrates cells and delivers siRNA,” FEBS Journal, vol. 280, no. 4, pp. 1007–1017, 2013, doi: 10.1111/febs.12093.spa
dc.relation.referencesK. Aguirre-Guataqui et al., “Chimeric Peptides Derived from Bovine Lactoferricin and Buforin II: Antifungal Activity against Reference Strains and Clinical Isolates of Candida spp.,” Antibiotics, vol. 11, no. 11, p. 1561, Nov. 2022, doi: 10.3390/antibiotics11111561spa
dc.relation.referencesS. K. Carvajal, Y. Vargas-Casanova, H. M. Pineda-Castañeda, J. E. García-Castañeda, Z. J. Rivera-Monroy, and C. M. Parra-Giraldo, “In Vitro Antifungal Activity of Chimeric Peptides Derived from Bovine Lactoferricin and Buforin II against Cryptococcus neoformans var. grubii,” Antibiotics 2022, Vol. 11, Page 1819, vol. 11, no. 12, p. 1819, Dec. 2022, doi: 10.3390/ANTIBIOTICS11121819.spa
dc.relation.referencesH. M. Pineda-Castañeda et al., “Designing Chimeric Peptides: A Powerful Tool for Enhancing Antibacterial Activity,” Chem Biodivers, vol. 18, no. 2, 2021, doi: 10.1002/cbdv.202000885spa
dc.relation.referencesJ. R. Guerra et al., “The tetrameric peptide LfcinB (20-25)4 derived from bovine lactoferricin induces apoptosis in the MCF-7 breast cancer cell line,” RSC Adv, vol. 9, no. 36, pp. 20497–20504, 2019, doi: 10.1039/c9ra04145aspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc540 - Química y ciencias afinesspa
dc.subject.decsProgramas de Optimización del Uso de los Antimicrobianosspa
dc.subject.decsAntimicrobial Stewardshipeng
dc.subject.decsAntiinfecciososspa
dc.subject.decsAnti-Infective Agentseng
dc.subject.proposalDendrimerosspa
dc.subject.proposalPéptidospa
dc.subject.proposalResorcinarenospa
dc.subject.proposalPéptidos Antimicrobianosspa
dc.subject.proposalQuímica clickspa
dc.titleDendrímeros péptido-resorcinareno: (i) obtención mediante reacción de cicloadición azida/alquino y (ii) evaluación de su potencial antibacterianospa
dc.title.translatedPeptide-resorcinarene dendrimers: (i) obtaining by azide/alkyne cycloaddition reaction and (ii) evaluation of their antibacterial potentialeng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentDataPaperspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleDiseño y obtención de nuevos agentes antibacterianos basados en dendrímeros péptido-resorcinareno: Una alternativa para combatir la resistencia bacterianaspa
oaire.fundernameMincienciasspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1016063614.2023.pdf
Tamaño:
47.63 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ciencias - Química

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: