Modelo Computacional para el análisis de historias clínicas de pacientes con Artritis Reumatoide aplicando bioinformática traslacional y minería de textos
dc.contributor.advisor | Niño Vasquez, Luis Fernando | |
dc.contributor.author | Del Risco Morales, Alexander | |
dc.contributor.educationalvalidator | Quintana Gerardo | |
dc.contributor.researchgroup | laboratorio de Investigación en Sistemas Inteligentes Lisi | spa |
dc.date.accessioned | 2021-11-18T00:29:49Z | |
dc.date.available | 2021-11-18T00:29:49Z | |
dc.date.issued | 2021-11-16 | |
dc.description | Documento en pdf con imágenes y texto | spa |
dc.description.abstract | Este trabajo tiene como finalidad crear un modelo computacional que permita identificar el avance de la enfermedad de artritis reumatoide (AR) con base en el análisis de historias clínicas de pacientes diagnosticados con Artritis Reumatoide. Se plantea que mediante la minería de texto, se puede extraer la información que permita a los profesionales del área identificar datos relevantes para el proceso de diagnóstico de AR y de esta forma hacer un diagnóstico temprano de la misma, así también, se pretende aplicar el concepto de bioinformática traslacional, esto implica que la información de valor y que cumpla con los objetivos propuestos de esta investigación pueda ser transferida de forma efectiva a los pacientes que sufren esta enfermedad. Se ha desarrollado un modelo que aplica minería de textos, recuperación de la información, lingüística computacional, aprendizaje de máquina y otras áreas del conocimiento relacionadas, que permiten transformar y tratar los datos no estructurados para poder hacer el análisis correspondiente de las historias clínicas y así descubrir conocimiento implícito inmerso en las narrativas de las historias clínicas que ayude con el propósito de tener más y mejor información asociada a la artritis reumatoide y la evolución de los pacientes. (Texto tomado de la fuente) | spa |
dc.description.abstract | The purpose of this work is to create a computational model that allows to identify the progression of rheumatoid arthritis (RA) disease based on the analysis of medical records of patients diagnosed with rheumatoid arthritis. It is proposed that through text mining, information can be extracted which allows professionals in the area to identify relevant data for the RA diagnosis process and thus make an early diagnosis, therefore, it is also intended to apply the concept of translational bioinformatics, which implies that valuable information that meets the proposed objectives of this research can be effectively transferred to patients suffering from this disease. A model has been developed that applies text mining, information retrieval, computational linguistics, machine learning and other related areas of knowledge, which allow the transformation and processing of unstructured data in order to carry out the corresponding analysis of medical records and thus discover implicit knowledge immersed in the narratives of medical records that helps with the purpose of having more and better information associated with rheumatoid arthritis and the evolution of patients. | eng |
dc.description.curriculararea | Departamento ingeniería de Sistemas e Industrial | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Bioinformática | spa |
dc.description.methods | Investigación cualitativa | spa |
dc.description.researcharea | Bioinformática | spa |
dc.format.extent | 109 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/80693 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.department | Departamento de Ingeniería de Sistemas e Industrial | spa |
dc.publisher.faculty | Facultad de Ingeniería | spa |
dc.publisher.place | Bogotá - Colombia | spa |
dc.publisher.place | Bogotá - Colombia | spa |
dc.publisher.program | Bogotá - Ingeniería - Maestría en Bioinformática | spa |
dc.relation.references | Afantenos, S., Karkaletsis, V., & Stamatopoulos, P. (2005). Summarization from medical documents: A survey. Artificial Intelligence in Medicine, 33(2), 157–177. https://doi.org/10.1016/j.artmed.2004.07.017 | spa |
dc.relation.references | Aletaha, D., Neogi, T., Silman, A. J., Funovits, J., Felson, D. T., Bingham, C. O., Birnbaum, N. S., Burmester, G. R., Bykerk, V. P., Cohen, M. D., Combe, B., Costenbader, K. H., Dougados, M., Emery, P., Ferraccioli, G., Hazes, J. M. W., Hobbs, K., Huizinga, T. W. J., Kavanaugh, A., … Hawker, G. (2010). 2010 Rheumatoid arthritis classification criteria: An American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis and Rheumatism, 62(9), 2569–2581. https://doi.org/10.1002/art.27584 | spa |
dc.relation.references | Aletaha, D., Neogi, T., Silman, A. J., Funovits, J., Felson, D. T., Bingham, C. O., Birnbaum, N. S., Burmester, G. R., Bykerk, V. P., Cohen, M. D., Combe, B., Costenbader, K. H., Dougados, M., Emery, P., Ferraccioli, G., Hazes, J. M. W., Hobbs, K., Huizinga, T. W. J., Kavanaugh, A., … Hawker, G. (2010). 2010 Rheumatoid arthritis classification criteria: An American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis and Rheumatism, 62(9), 2569–2581. https://doi.org/10.1002/art.27584 | spa |
dc.relation.references | Arthritis Foundation. (n.d.). Biológicos/Modificadores de la Respuesta Biológica (MRB). https://doi.org/https://espanol.arthritis.org/espanol/tratamientos/medicamentos/medicamentos-por-enfermedad/medicamentos-mrb/ | spa |
dc.relation.references | Bichindaritz, I., & Marling, C. (2006). Case-based reasoning in the health sciences: What’s next? Artificial Intelligence in Medicine, 36(2), 127–135. https://doi.org/10.1016/j.artmed.2005.10.008 | spa |
dc.relation.references | Borsari, C., Trader, D. J., Tait, A., & Costi, M. P. (2020). Designing Chimeric Molecules for Drug Discovery by Leveraging Chemical Biology. Journal of Medicinal Chemistry, 63(5), 1908–1928. https://doi.org/10.1021/acs.jmedchem.9b01456 | spa |
dc.relation.references | Cantaert, T., de Rycke, L., Bongartz, T., Matteson, E. L., Tak, P. P., Nicholas, A. P., & Baeten, D. (2006). Citrullinated proteins in rheumatoid arthritis: Crucial... but not sufficient! Arthritis and Rheumatism, 54(11), 3381–3389. https://doi.org/10.1002/art.22206 | spa |
dc.relation.references | Carrascal, A. I. O., Cotte, D. S., Arango, N. A. R., & Vélez, A. F. P. (2019). Descubrimiento de Conocimiento en Historias Clínicas mediante Minería de Texto. RISTI - Revista Ibérica de Sistemas e Tecnologias de Informação, 34, 29–43. https://doi.org/10.17013/risti.34.29-43 | spa |
dc.relation.references | Cely, A. (2018). Construcción de un modelo de procesamiento de historias clínicas electrónicas de pacientes con artritis reumatoide para la obtención de variables relevantes. http://bdigital.unal.edu.co/71670/ | spa |
dc.relation.references | Chen, E. S., Hripcsak, G., Xu, H., Markatou, M., & Friedman, C. (2008). Automated Acquisition of Disease-Drug Knowledge from Biomedical and Clinical Documents: An Initial Study. Journal of the American Medical Informatics Association, 15(1), 87–98. https://doi.org/10.1197/jamia.M2401 | spa |
dc.relation.references | Coden, A., Savova, G., Sominsky, I., Tanenblatt, M., Masanz, J., Schuler, K., Cooper, J., Guan, W., & de Groen, P. C. (2009). Automatically extracting cancer disease characteristics from pathology reports into a Disease Knowledge Representation Model. Journal of Biomedical Informatics, 42(5), 937–949. https://doi.org/10.1016/j.jbi.2008.12.005 | spa |
dc.relation.references | Cohen, K. B., & Hunter, L. E. (2013). Chapter 16: Text Mining for Translational Bioinformatics. PLoS Computational Biology, 9(4). https://doi.org/10.1371/journal.pcbi.1003044 | spa |
dc.relation.references | Dai, H. J., Wei, C. H., Kao, H. Y., Liu, R. L., Tsai, R. T. H., & Lu, Z. (2015). Text mining for translational bioinformatics. BioMed Research International, 2015, 2–4. https://doi.org/10.1155/2015/368264 | spa |
dc.relation.references | Firestein, G. S. (2003). Evolving concepts of rheumatoid arthritis. Nature, 423(6937), 356–361. https://doi.org/10.1038/nature01661 | spa |
dc.relation.references | García Martín, M., & Zurita Molina, A. (1998). Transaminasas: Valoración y significación clínica. Hospital Universitario Virgen Macarena, 267–275. https://www.aeped.es/sites/default/files/documentos/transaminasas.pdf | spa |
dc.relation.references | Guerrero Pupo, J. C., Amell Muñoz, I., & Cañedo Andalia, R. (2004). Tecnología, tecnología médica y tecnología de la salud: Algunas consideraciones básicas. Acimed, 12(4), 1–16. | spa |
dc.relation.references | Hajeer, A. H., & Hutchinson, I. v. (2001). Influence of TNFα gene polymorphisms on TNFα production and disease. Human Immunology, 62(11), 1191–1199. https://doi.org/10.1016/S0198-8859(01)00322-6 | spa |
dc.relation.references | Harrer, S., Shah, P., Antony, B., & Hu, J. (2019). Artificial Intelligence for Clinical Trial Design. Trends in Pharmacological Sciences, 40(8), 577–591. https://doi.org/10.1016/j.tips.2019.05.005 | spa |
dc.relation.references | Hearst, M. A. (1999). Untangling text data mining. 3–10. https://doi.org/10.3115/1034678.1034679 | spa |
dc.relation.references | Hernandez, E. P. H., & Quimbaya, A. P. (2016). HTL: Modelo para la extracción, estructuración y visualización de eventos médicos a partir de texto narrativo en historias clínicas electrónicas. 1–9. https://doi.org/10.1109/columbiancc.2016.7750768 | spa |
dc.relation.references | K, C. M., González, A., & L, G. Q. (2008). Guía de tratamiento de la artritis reumatoide temprana en un Hospital Universitario de Colombia Guideline on treatment of early rheumatoid arthritis in a University Hospital of Colombia. Revista Colombiana de Reumatología, 15(2), 79–91. | spa |
dc.relation.references | Kushima, M., Araki, K., Suzuki, M., Araki, S., & Nikama, T. (2011). Text data mining of in-patient nursing records within electronic medical records using keygraph. IAENG International Journal of Computer Science, 38(3), 215–224. | spa |
dc.relation.references | Lander, E., & Kruglyak, L. (1995). Genetic dissection of complex traits: Guidelines for interpreting and reporting linkage results. Nature Genetics, 11(3), 241–247. https://doi.org/10.1038/ng1195-241 | spa |
dc.relation.references | Mease, P. J., Stryker, S., Liu, M., Salim, B., Rebello, S., Gharaibeh, M., & Collier, D. H. (2021). Treatment patterns in rheumatoid arthritis patients newly initiated on biologic and conventional synthetic disease-modifying antirheumatic drug therapy and enrolled in a North American clinical registry. Arthritis Research and Therapy, 23(1), 1–13. https://doi.org/10.1186/s13075-021-02599-4 | spa |
dc.relation.references | MedlinePlus. (2021a). Inyección de rituximab. https://medlineplus.gov/spanish/druginfo/meds/a607038-es.html | spa |
dc.relation.references | MedlinePlus. (2021b). Proteína C reactiva. Proteína C Reactiva. https://doi.org/https://medlineplus.gov/spanish/ency/article/003356.htm | spa |
dc.relation.references | Montes y Gómez, Manuel and Gelbukh, Alexander and López López, A. (2005). RESUMEN DE TESIS DOCTORAL Minería de Texto empleando la Semejanza entre Estructuras Semánticas. Computacion y Sistemas, 9, 63–81. | spa |
dc.relation.references | Morales Muñoz, L. A. (2014). Modelo computacional para la identificacion de endofenotipos en pacientes con artritis reumatoide utilizando informacion del antigeno leucocitario humano HLA clase II. http://www.bdigital.unal.edu.co/44357/ | spa |
dc.relation.references | Mullins, I. M., Siadaty, M. S., Lyman, J., Scully, K., Garrett, C. T., Greg Miller, W., Muller, R., Robson, B., Apte, C., Weiss, S., Rigoutsos, I., Platt, D., Cohen, S., & Knaus, W. A. (2006). Data mining and clinical data repositories: Insights from a 667,000 patient data set. Computers in Biology and Medicine, 36(12), 1351–1377. https://doi.org/10.1016/j.compbiomed.2005.08.003 | spa |
dc.relation.references | O’Dell, J. R., Mikuls, T. R., Taylor, T. H., Ahluwalia, V., Brophy, M., Warren, S. R., Lew, R. A., Cannella, A. C., Kunkel, G., Phibbs, C. S., Anis, A. H., Leatherman, S., & Keystone, E. (2013). Therapies for Active Rheumatoid Arthritis after Methotrexate Failure. New England Journal of Medicine, 369(4), 307–318. https://doi.org/10.1056/nejmoa1303006 | spa |
dc.relation.references | Ochoa, I. J. A., Orellana García, I. A., Sánchez Corales, I. Y., & Hernández, F. D. (2013). Datos Agrupamiento Sld070 Web Component for the Analysis of Clinical Infor- Mation Using the Technique of Clustering Data Mining. 8. | spa |
dc.relation.references | Páez Leal, M., Gómez, L., & Anaya, J. (2010). Implicaciones funcionales de los linfocitos B en el desarrollo de la artritis reumatoide. MedUNAB, 9(1). | spa |
dc.relation.references | Pedrosa, M. M. F. (2002). Evaluación del daño radiográfico en la artritis reum atoide. Revista Española de Reumatología, 1(S1), 22–26. | spa |
dc.relation.references | Pereira, L., Rijo, R., Silva, C., & Agostinho, M. (2013). ICD9-based Text Mining Approach to Children Epilepsy Classification. Procedia Technology, 9, 1351–1360. https://doi.org/10.1016/j.protcy.2013.12.152 | spa |
dc.relation.references | Perner, P. (2006). Intelligent data analysis in medicine-Recent advances. Artificial Intelligence in Medicine, 37(1), 1–5. https://doi.org/10.1016/j.artmed.2005.10.003 | spa |
dc.relation.references | Piedra, D., Ferrer, A., & Gea, J. (2014). Minería de textos y medicina: Utilidad en las enfermedades respiratorias. Archivos de Bronconeumologia, 50(3), 113–119. https://doi.org/10.1016/j.arbr.2014.02.008 | spa |
dc.relation.references | Pletscher-Frankild, S., Pallejà, A., Tsafou, K., Binder, J. X., & Jensen, L. J. (2015). DISEASES: Text mining and data integration of disease-gene associations. Methods, 74, 83–89. https://doi.org/10.1016/j.ymeth.2014.11.020 | spa |
dc.relation.references | Quiceno, J. M., Vinaccia, S., & Remor, E. (2011). Empowerment program of resilience for rheumatoid arthritis patients. Revista de Psicopatologia y Psicologia Clinica, 16(1), 27–47. https://doi.org/10.5944/rppc.vol.16.num.1.2011.10349 | spa |
dc.relation.references | Ribeiro, J., Duarte, J., Portela, F., & Santos, M. F. (2019). Automatically detect diagnostic patterns based on clinical notes through text mining. Procedia Computer Science, 160, 684–689. https://doi.org/10.1016/j.procs.2019.11.027 | spa |
dc.relation.references | Roberts, A., Gaizauskas, R., Hepple, M., Demetriou, G., Guo, Y., Roberts, I., & Setzer, A. (2009). Building a semantically annotated corpus of clinical texts. Journal of Biomedical Informatics, 42(5), 950–966. https://doi.org/10.1016/j.jbi.2008.12.013 | spa |
dc.relation.references | Smalheiser, N. R., & Swanson, D. R. (1994). Assessing a gap in the biomedical literature: Magnesium deficiency and neurologic disease. In Neuroscience Research Communications. | spa |
dc.relation.references | Sullivan, D. (2001). Document Warehousing and Text Mining: Techniques for Improving Business Operations, Marketing, and Sales. John Wiley & Sons, Inc.605 Third Ave. New York, NYUnited States. http://dl.acm.org/citation.cfm?id=516935 | spa |
dc.relation.references | Swanson, D. R. (1987). Two medical literatures that are logically but not bibliographically connected. Journal of the American Society for Information Science. https://doi.org/10.1002/(SICI)1097-4571(198707)38:4<228::AID-ASI2>3.0.CO;2-G | spa |
dc.relation.references | Tan, E. M., & Smolen, J. S. (2016). Historical observations contributing insights on etiopathogenesis of rheumatoid arthritis and role of rheumatoid factor. Journal of Experimental Medicine, 213(10), 1937–1950. https://doi.org/10.1084/jem.20160792 | spa |
dc.relation.references | Testa, D., Calvacchi, S., Petrelli, F., Giannini, D., Bilia, S., Alunno, A., & Puxeddu, I. (2021). One year in review 2021: Pathogenesis of rheumatoid arthritis. Clinical and Experimental Rheumatology, 39(3), 445–452. | spa |
dc.relation.references | UMLS, R. M. (2009). UMLS ® Reference Manual (Issue September). | spa |
dc.relation.references | UNAL. (2021). Medicamentos biológicos, caros para tratar la artritis. https://doi.org/https://unperiodico.unal.edu.co/pages/detail/medicamentos-biologicos-caros-para-tratar-la-artritis/ | spa |
dc.relation.references | Vijayakrishnan, R., Steinhubl, S. R., Ng, K., Sun, J., Byrd, R. J., Daar, Z., Williams, B. A., Defilippi, C., Ebadollahi, S., & Stewart, W. F. (2014). Prevalence of heart failure signs and symptoms in a large primary care population identified through the use of text and data mining of the electronic health record. Journal of Cardiac Failure, 20(7), 459–464. https://doi.org/10.1016/j.cardfail.2014.03.008 | spa |
dc.relation.references | Wang, R., Zhao, J., Peng, L., Yang, B., Wang, L., & Li, B. (2018). Medical entity recognition of Esophageal Carcinoma based on word clustering. 2018 International Conference on Security, Pattern Analysis, and Cybernetics, SPAC 2018, i, 348–353. https://doi.org/10.1109/SPAC46244.2018.8965515 | spa |
dc.relation.references | Wu, C. S., Kuo, C. J., Su, C. H., Wang, S. H., & Dai, H. J. (2020). Using text mining to extract depressive symptoms and to validate the diagnosis of major depressive disorder from electronic health records. Journal of Affective Disorders, 260(415), 617–623. https://doi.org/10.1016/j.jad.2019.09.044 | spa |
dc.relation.references | Yauney, G., & Shah, P. (2018). Reinforcement Learning with Action-Derived Rewards for Chemotherapy and Clinical Trial Dosing Regimen Selection. Proceedings of the 3rd Machine Learning for Healthcare Conference, 85, 161–226. http://web.media.mit.edu/~pratiks/mlhc_2018/reinforcement_learning_with_action_derived_rewards_for_chemotherapy_and_clinical_trial_dosing_regimen_selection.pdf | spa |
dc.relation.references | Zhai, C., & Massung, S. (2016). Text Data Management and Analysis: A Practical Introduction to Information Retrieval and Text Mining. In Text Data Management and Analysis: A Practical Introduction to Information Retrieval and Text Mining. https://doi.org/10.1145/2915031 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Reconocimiento 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.ddc | 000 - Ciencias de la computación, información y obras generales::003 - Sistemas | spa |
dc.subject.ddc | 000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación | spa |
dc.subject.ddc | 610 - Medicina y salud::616 - Enfermedades | spa |
dc.subject.lemb | Rheumatoid arthritis | |
dc.subject.proposal | Snomed | eng |
dc.subject.proposal | Snomed | spa |
dc.subject.proposal | Artritis reumatoide | spa |
dc.subject.proposal | Rheumatoid arthritis | |
dc.subject.proposal | Bioinformática traslacional | spa |
dc.subject.proposal | Translational bioinformatics | eng |
dc.subject.proposal | Minería de textos | spa |
dc.subject.proposal | Text mining | eng |
dc.subject.proposal | Aprendizaje de máquina | spa |
dc.subject.proposal | Machine learning | eng |
dc.subject.proposal | Procesamiento de lenguaje natural | spa |
dc.subject.proposal | Natural language processing | eng |
dc.title | Modelo Computacional para el análisis de historias clínicas de pacientes con Artritis Reumatoide aplicando bioinformática traslacional y minería de textos | spa |
dc.title.translated | Computational Model for the analysis of clinical records of patients with Rheumatoid Arthritis applying translational bioinformatics and text mining | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 79865755.2021.pdf
- Tamaño:
- 3.26 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Bioinformática
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 3.98 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: