Modelo Computacional para el análisis de historias clínicas de pacientes con Artritis Reumatoide aplicando bioinformática traslacional y minería de textos

dc.contributor.advisorNiño Vasquez, Luis Fernando
dc.contributor.authorDel Risco Morales, Alexander
dc.contributor.educationalvalidatorQuintana Gerardo
dc.contributor.researchgrouplaboratorio de Investigación en Sistemas Inteligentes Lisispa
dc.date.accessioned2021-11-18T00:29:49Z
dc.date.available2021-11-18T00:29:49Z
dc.date.issued2021-11-16
dc.descriptionDocumento en pdf con imágenes y textospa
dc.description.abstractEste trabajo tiene como finalidad crear un modelo computacional que permita identificar el avance de la enfermedad de artritis reumatoide (AR) con base en el análisis de historias clínicas de pacientes diagnosticados con Artritis Reumatoide. Se plantea que mediante la minería de texto, se puede extraer la información que permita a los profesionales del área identificar datos relevantes para el proceso de diagnóstico de AR y de esta forma hacer un diagnóstico temprano de la misma, así también, se pretende aplicar el concepto de bioinformática traslacional, esto implica que la información de valor y que cumpla con los objetivos propuestos de esta investigación pueda ser transferida de forma efectiva a los pacientes que sufren esta enfermedad. Se ha desarrollado un modelo que aplica minería de textos, recuperación de la información, lingüística computacional, aprendizaje de máquina y otras áreas del conocimiento relacionadas, que permiten transformar y tratar los datos no estructurados para poder hacer el análisis correspondiente de las historias clínicas y así descubrir conocimiento implícito inmerso en las narrativas de las historias clínicas que ayude con el propósito de tener más y mejor información asociada a la artritis reumatoide y la evolución de los pacientes. (Texto tomado de la fuente)spa
dc.description.abstractThe purpose of this work is to create a computational model that allows to identify the progression of rheumatoid arthritis (RA) disease based on the analysis of medical records of patients diagnosed with rheumatoid arthritis. It is proposed that through text mining, information can be extracted which allows professionals in the area to identify relevant data for the RA diagnosis process and thus make an early diagnosis, therefore, it is also intended to apply the concept of translational bioinformatics, which implies that valuable information that meets the proposed objectives of this research can be effectively transferred to patients suffering from this disease. A model has been developed that applies text mining, information retrieval, computational linguistics, machine learning and other related areas of knowledge, which allow the transformation and processing of unstructured data in order to carry out the corresponding analysis of medical records and thus discover implicit knowledge immersed in the narratives of medical records that helps with the purpose of having more and better information associated with rheumatoid arthritis and the evolution of patients.eng
dc.description.curricularareaDepartamento ingeniería de Sistemas e Industrialspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Bioinformáticaspa
dc.description.methodsInvestigación cualitativaspa
dc.description.researchareaBioinformáticaspa
dc.format.extent109 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80693
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Ingeniería de Sistemas e Industrialspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá - Colombiaspa
dc.publisher.placeBogotá - Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Bioinformáticaspa
dc.relation.referencesAfantenos, S., Karkaletsis, V., & Stamatopoulos, P. (2005). Summarization from medical documents: A survey. Artificial Intelligence in Medicine, 33(2), 157–177. https://doi.org/10.1016/j.artmed.2004.07.017spa
dc.relation.referencesAletaha, D., Neogi, T., Silman, A. J., Funovits, J., Felson, D. T., Bingham, C. O., Birnbaum, N. S., Burmester, G. R., Bykerk, V. P., Cohen, M. D., Combe, B., Costenbader, K. H., Dougados, M., Emery, P., Ferraccioli, G., Hazes, J. M. W., Hobbs, K., Huizinga, T. W. J., Kavanaugh, A., … Hawker, G. (2010). 2010 Rheumatoid arthritis classification criteria: An American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis and Rheumatism, 62(9), 2569–2581. https://doi.org/10.1002/art.27584spa
dc.relation.referencesAletaha, D., Neogi, T., Silman, A. J., Funovits, J., Felson, D. T., Bingham, C. O., Birnbaum, N. S., Burmester, G. R., Bykerk, V. P., Cohen, M. D., Combe, B., Costenbader, K. H., Dougados, M., Emery, P., Ferraccioli, G., Hazes, J. M. W., Hobbs, K., Huizinga, T. W. J., Kavanaugh, A., … Hawker, G. (2010). 2010 Rheumatoid arthritis classification criteria: An American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis and Rheumatism, 62(9), 2569–2581. https://doi.org/10.1002/art.27584spa
dc.relation.referencesArthritis Foundation. (n.d.). Biológicos/Modificadores de la Respuesta Biológica (MRB). https://doi.org/https://espanol.arthritis.org/espanol/tratamientos/medicamentos/medicamentos-por-enfermedad/medicamentos-mrb/spa
dc.relation.referencesBichindaritz, I., & Marling, C. (2006). Case-based reasoning in the health sciences: What’s next? Artificial Intelligence in Medicine, 36(2), 127–135. https://doi.org/10.1016/j.artmed.2005.10.008spa
dc.relation.referencesBorsari, C., Trader, D. J., Tait, A., & Costi, M. P. (2020). Designing Chimeric Molecules for Drug Discovery by Leveraging Chemical Biology. Journal of Medicinal Chemistry, 63(5), 1908–1928. https://doi.org/10.1021/acs.jmedchem.9b01456spa
dc.relation.referencesCantaert, T., de Rycke, L., Bongartz, T., Matteson, E. L., Tak, P. P., Nicholas, A. P., & Baeten, D. (2006). Citrullinated proteins in rheumatoid arthritis: Crucial... but not sufficient! Arthritis and Rheumatism, 54(11), 3381–3389. https://doi.org/10.1002/art.22206spa
dc.relation.referencesCarrascal, A. I. O., Cotte, D. S., Arango, N. A. R., & Vélez, A. F. P. (2019). Descubrimiento de Conocimiento en Historias Clínicas mediante Minería de Texto. RISTI - Revista Ibérica de Sistemas e Tecnologias de Informação, 34, 29–43. https://doi.org/10.17013/risti.34.29-43spa
dc.relation.referencesCely, A. (2018). Construcción de un modelo de procesamiento de historias clínicas electrónicas de pacientes con artritis reumatoide para la obtención de variables relevantes. http://bdigital.unal.edu.co/71670/spa
dc.relation.referencesChen, E. S., Hripcsak, G., Xu, H., Markatou, M., & Friedman, C. (2008). Automated Acquisition of Disease-Drug Knowledge from Biomedical and Clinical Documents: An Initial Study. Journal of the American Medical Informatics Association, 15(1), 87–98. https://doi.org/10.1197/jamia.M2401spa
dc.relation.referencesCoden, A., Savova, G., Sominsky, I., Tanenblatt, M., Masanz, J., Schuler, K., Cooper, J., Guan, W., & de Groen, P. C. (2009). Automatically extracting cancer disease characteristics from pathology reports into a Disease Knowledge Representation Model. Journal of Biomedical Informatics, 42(5), 937–949. https://doi.org/10.1016/j.jbi.2008.12.005spa
dc.relation.referencesCohen, K. B., & Hunter, L. E. (2013). Chapter 16: Text Mining for Translational Bioinformatics. PLoS Computational Biology, 9(4). https://doi.org/10.1371/journal.pcbi.1003044spa
dc.relation.referencesDai, H. J., Wei, C. H., Kao, H. Y., Liu, R. L., Tsai, R. T. H., & Lu, Z. (2015). Text mining for translational bioinformatics. BioMed Research International, 2015, 2–4. https://doi.org/10.1155/2015/368264spa
dc.relation.referencesFirestein, G. S. (2003). Evolving concepts of rheumatoid arthritis. Nature, 423(6937), 356–361. https://doi.org/10.1038/nature01661spa
dc.relation.referencesGarcía Martín, M., & Zurita Molina, A. (1998). Transaminasas: Valoración y significación clínica. Hospital Universitario Virgen Macarena, 267–275. https://www.aeped.es/sites/default/files/documentos/transaminasas.pdfspa
dc.relation.referencesGuerrero Pupo, J. C., Amell Muñoz, I., & Cañedo Andalia, R. (2004). Tecnología, tecnología médica y tecnología de la salud: Algunas consideraciones básicas. Acimed, 12(4), 1–16.spa
dc.relation.referencesHajeer, A. H., & Hutchinson, I. v. (2001). Influence of TNFα gene polymorphisms on TNFα production and disease. Human Immunology, 62(11), 1191–1199. https://doi.org/10.1016/S0198-8859(01)00322-6spa
dc.relation.referencesHarrer, S., Shah, P., Antony, B., & Hu, J. (2019). Artificial Intelligence for Clinical Trial Design. Trends in Pharmacological Sciences, 40(8), 577–591. https://doi.org/10.1016/j.tips.2019.05.005spa
dc.relation.referencesHearst, M. A. (1999). Untangling text data mining. 3–10. https://doi.org/10.3115/1034678.1034679spa
dc.relation.referencesHernandez, E. P. H., & Quimbaya, A. P. (2016). HTL: Modelo para la extracción, estructuración y visualización de eventos médicos a partir de texto narrativo en historias clínicas electrónicas. 1–9. https://doi.org/10.1109/columbiancc.2016.7750768spa
dc.relation.referencesK, C. M., González, A., & L, G. Q. (2008). Guía de tratamiento de la artritis reumatoide temprana en un Hospital Universitario de Colombia Guideline on treatment of early rheumatoid arthritis in a University Hospital of Colombia. Revista Colombiana de Reumatología, 15(2), 79–91.spa
dc.relation.referencesKushima, M., Araki, K., Suzuki, M., Araki, S., & Nikama, T. (2011). Text data mining of in-patient nursing records within electronic medical records using keygraph. IAENG International Journal of Computer Science, 38(3), 215–224.spa
dc.relation.referencesLander, E., & Kruglyak, L. (1995). Genetic dissection of complex traits: Guidelines for interpreting and reporting linkage results. Nature Genetics, 11(3), 241–247. https://doi.org/10.1038/ng1195-241spa
dc.relation.referencesMease, P. J., Stryker, S., Liu, M., Salim, B., Rebello, S., Gharaibeh, M., & Collier, D. H. (2021). Treatment patterns in rheumatoid arthritis patients newly initiated on biologic and conventional synthetic disease-modifying antirheumatic drug therapy and enrolled in a North American clinical registry. Arthritis Research and Therapy, 23(1), 1–13. https://doi.org/10.1186/s13075-021-02599-4spa
dc.relation.referencesMedlinePlus. (2021a). Inyección de rituximab. https://medlineplus.gov/spanish/druginfo/meds/a607038-es.htmlspa
dc.relation.referencesMedlinePlus. (2021b). Proteína C reactiva. Proteína C Reactiva. https://doi.org/https://medlineplus.gov/spanish/ency/article/003356.htmspa
dc.relation.referencesMontes y Gómez, Manuel and Gelbukh, Alexander and López López, A. (2005). RESUMEN DE TESIS DOCTORAL Minería de Texto empleando la Semejanza entre Estructuras Semánticas. Computacion y Sistemas, 9, 63–81.spa
dc.relation.referencesMorales Muñoz, L. A. (2014). Modelo computacional para la identificacion de endofenotipos en pacientes con artritis reumatoide utilizando informacion del antigeno leucocitario humano HLA clase II. http://www.bdigital.unal.edu.co/44357/spa
dc.relation.referencesMullins, I. M., Siadaty, M. S., Lyman, J., Scully, K., Garrett, C. T., Greg Miller, W., Muller, R., Robson, B., Apte, C., Weiss, S., Rigoutsos, I., Platt, D., Cohen, S., & Knaus, W. A. (2006). Data mining and clinical data repositories: Insights from a 667,000 patient data set. Computers in Biology and Medicine, 36(12), 1351–1377. https://doi.org/10.1016/j.compbiomed.2005.08.003spa
dc.relation.referencesO’Dell, J. R., Mikuls, T. R., Taylor, T. H., Ahluwalia, V., Brophy, M., Warren, S. R., Lew, R. A., Cannella, A. C., Kunkel, G., Phibbs, C. S., Anis, A. H., Leatherman, S., & Keystone, E. (2013). Therapies for Active Rheumatoid Arthritis after Methotrexate Failure. New England Journal of Medicine, 369(4), 307–318. https://doi.org/10.1056/nejmoa1303006spa
dc.relation.referencesOchoa, I. J. A., Orellana García, I. A., Sánchez Corales, I. Y., & Hernández, F. D. (2013). Datos Agrupamiento Sld070 Web Component for the Analysis of Clinical Infor- Mation Using the Technique of Clustering Data Mining. 8.spa
dc.relation.referencesPáez Leal, M., Gómez, L., & Anaya, J. (2010). Implicaciones funcionales de los linfocitos B en el desarrollo de la artritis reumatoide. MedUNAB, 9(1).spa
dc.relation.referencesPedrosa, M. M. F. (2002). Evaluación del daño radiográfico en la artritis reum atoide. Revista Española de Reumatología, 1(S1), 22–26.spa
dc.relation.referencesPereira, L., Rijo, R., Silva, C., & Agostinho, M. (2013). ICD9-based Text Mining Approach to Children Epilepsy Classification. Procedia Technology, 9, 1351–1360. https://doi.org/10.1016/j.protcy.2013.12.152spa
dc.relation.referencesPerner, P. (2006). Intelligent data analysis in medicine-Recent advances. Artificial Intelligence in Medicine, 37(1), 1–5. https://doi.org/10.1016/j.artmed.2005.10.003spa
dc.relation.referencesPiedra, D., Ferrer, A., & Gea, J. (2014). Minería de textos y medicina: Utilidad en las enfermedades respiratorias. Archivos de Bronconeumologia, 50(3), 113–119. https://doi.org/10.1016/j.arbr.2014.02.008spa
dc.relation.referencesPletscher-Frankild, S., Pallejà, A., Tsafou, K., Binder, J. X., & Jensen, L. J. (2015). DISEASES: Text mining and data integration of disease-gene associations. Methods, 74, 83–89. https://doi.org/10.1016/j.ymeth.2014.11.020spa
dc.relation.referencesQuiceno, J. M., Vinaccia, S., & Remor, E. (2011). Empowerment program of resilience for rheumatoid arthritis patients. Revista de Psicopatologia y Psicologia Clinica, 16(1), 27–47. https://doi.org/10.5944/rppc.vol.16.num.1.2011.10349spa
dc.relation.referencesRibeiro, J., Duarte, J., Portela, F., & Santos, M. F. (2019). Automatically detect diagnostic patterns based on clinical notes through text mining. Procedia Computer Science, 160, 684–689. https://doi.org/10.1016/j.procs.2019.11.027spa
dc.relation.referencesRoberts, A., Gaizauskas, R., Hepple, M., Demetriou, G., Guo, Y., Roberts, I., & Setzer, A. (2009). Building a semantically annotated corpus of clinical texts. Journal of Biomedical Informatics, 42(5), 950–966. https://doi.org/10.1016/j.jbi.2008.12.013spa
dc.relation.referencesSmalheiser, N. R., & Swanson, D. R. (1994). Assessing a gap in the biomedical literature: Magnesium deficiency and neurologic disease. In Neuroscience Research Communications.spa
dc.relation.referencesSullivan, D. (2001). Document Warehousing and Text Mining: Techniques for Improving Business Operations, Marketing, and Sales. John Wiley & Sons, Inc.605 Third Ave. New York, NYUnited States. http://dl.acm.org/citation.cfm?id=516935spa
dc.relation.referencesSwanson, D. R. (1987). Two medical literatures that are logically but not bibliographically connected. Journal of the American Society for Information Science. https://doi.org/10.1002/(SICI)1097-4571(198707)38:4<228::AID-ASI2>3.0.CO;2-Gspa
dc.relation.referencesTan, E. M., & Smolen, J. S. (2016). Historical observations contributing insights on etiopathogenesis of rheumatoid arthritis and role of rheumatoid factor. Journal of Experimental Medicine, 213(10), 1937–1950. https://doi.org/10.1084/jem.20160792spa
dc.relation.referencesTesta, D., Calvacchi, S., Petrelli, F., Giannini, D., Bilia, S., Alunno, A., & Puxeddu, I. (2021). One year in review 2021: Pathogenesis of rheumatoid arthritis. Clinical and Experimental Rheumatology, 39(3), 445–452.spa
dc.relation.referencesUMLS, R. M. (2009). UMLS ® Reference Manual (Issue September).spa
dc.relation.referencesUNAL. (2021). Medicamentos biológicos, caros para tratar la artritis. https://doi.org/https://unperiodico.unal.edu.co/pages/detail/medicamentos-biologicos-caros-para-tratar-la-artritis/spa
dc.relation.referencesVijayakrishnan, R., Steinhubl, S. R., Ng, K., Sun, J., Byrd, R. J., Daar, Z., Williams, B. A., Defilippi, C., Ebadollahi, S., & Stewart, W. F. (2014). Prevalence of heart failure signs and symptoms in a large primary care population identified through the use of text and data mining of the electronic health record. Journal of Cardiac Failure, 20(7), 459–464. https://doi.org/10.1016/j.cardfail.2014.03.008spa
dc.relation.referencesWang, R., Zhao, J., Peng, L., Yang, B., Wang, L., & Li, B. (2018). Medical entity recognition of Esophageal Carcinoma based on word clustering. 2018 International Conference on Security, Pattern Analysis, and Cybernetics, SPAC 2018, i, 348–353. https://doi.org/10.1109/SPAC46244.2018.8965515spa
dc.relation.referencesWu, C. S., Kuo, C. J., Su, C. H., Wang, S. H., & Dai, H. J. (2020). Using text mining to extract depressive symptoms and to validate the diagnosis of major depressive disorder from electronic health records. Journal of Affective Disorders, 260(415), 617–623. https://doi.org/10.1016/j.jad.2019.09.044spa
dc.relation.referencesYauney, G., & Shah, P. (2018). Reinforcement Learning with Action-Derived Rewards for Chemotherapy and Clinical Trial Dosing Regimen Selection. Proceedings of the 3rd Machine Learning for Healthcare Conference, 85, 161–226. http://web.media.mit.edu/~pratiks/mlhc_2018/reinforcement_learning_with_action_derived_rewards_for_chemotherapy_and_clinical_trial_dosing_regimen_selection.pdfspa
dc.relation.referencesZhai, C., & Massung, S. (2016). Text Data Management and Analysis: A Practical Introduction to Information Retrieval and Text Mining. In Text Data Management and Analysis: A Practical Introduction to Information Retrieval and Text Mining. https://doi.org/10.1145/2915031spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::003 - Sistemasspa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computaciónspa
dc.subject.ddc610 - Medicina y salud::616 - Enfermedadesspa
dc.subject.lembRheumatoid arthritis
dc.subject.proposalSnomedeng
dc.subject.proposalSnomedspa
dc.subject.proposalArtritis reumatoidespa
dc.subject.proposalRheumatoid arthritis
dc.subject.proposalBioinformática traslacionalspa
dc.subject.proposalTranslational bioinformaticseng
dc.subject.proposalMinería de textosspa
dc.subject.proposalText miningeng
dc.subject.proposalAprendizaje de máquinaspa
dc.subject.proposalMachine learningeng
dc.subject.proposalProcesamiento de lenguaje naturalspa
dc.subject.proposalNatural language processingeng
dc.titleModelo Computacional para el análisis de historias clínicas de pacientes con Artritis Reumatoide aplicando bioinformática traslacional y minería de textosspa
dc.title.translatedComputational Model for the analysis of clinical records of patients with Rheumatoid Arthritis applying translational bioinformatics and text miningeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
79865755.2021.pdf
Tamaño:
3.26 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Bioinformática

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: