Desarrollo de una técnica de síntesis óptima dimensional de mecanismos planos con juntas de rotación para generación de movimiento

dc.contributor.advisorCortés Ramos, Henry Octaviospa
dc.contributor.authorCasas Estevez, Felipespa
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001957571spa
dc.date.accessioned2024-11-12T12:47:38Z
dc.date.available2024-11-12T12:47:38Z
dc.date.issued2024
dc.descriptionilustraciones, diagramas, tablasspa
dc.description.abstractLa síntesis dimensional de mecanismos es el primer paso en el diseño mecánico, tras la elección adecuada del mecanismo en la síntesis de tipo. La optimización dimensional se define a partir del diseño inicial del mecanismo, la técnica que se aborda para el diseño inicial del mecanismo es la síntesis grafica por curvas de acoplador como lo menciona (R. L. Norton, 2011). Este trabajo final de maestría se enfoca en el desarrollo de una técnica computacional para la obtención de la síntesis óptima dimensional de mecanismos planos con juntas de rotación, aplicando una formulación matemática eficiente. El desarrollo inicia con una búsqueda bibliográfica sistematizada de las metodologías existentes que aplican a la síntesis de mecanismos planos. Posteriormente se aplica la metodología de software para la obtención del diseño del algoritmo; esto se logra definiendo los requerimientos del cliente y dando más peso a los más relevantes. Luego se define la arquitectura individual para cada requerimiento unificándolos en una sola arquitectura general y llevando el algoritmo a un proceso de codificación e implementación en Matlab. Finalmente, se evalúan dos estudios de caso en la técnica computacional implementada: el primer estudio de caso es académico y consiste en un mecanismo de cuatro barras que emplea diez posiciones objetivo para la generación de movimiento, y el segundo estudio de caso es un mecanismo de cuatro barras para el avance de película, también para la generación de movimiento, empleando diecisiete posiciones objetivo. Los estudios de caso también se evalúan mediante la aplicación MotionGen. La técnica se evalúa con los algoritmos de optimización de Matlab, presentando criterios de optimalidad, convergencia, error relativo porcentual y el resultado óptimo del mecanismo (Texto tomado de la fuente).spa
dc.description.abstractDimensional synthesis of mechanisms is the first step in mechanical design, following the appropriate selection of the mechanism in type synthesis. Dimensional optimization is defined based on the initial design of the mechanism, the technique addressed for the initial design of the mechanism is the graphic synthesis by coupler curves as mentioned by (R. L. Norton, 2011). This master's thesis focuses on the development of a computational technique for obtaining optimal dimensional synthesis of planar mechanisms with rotational joints, applying a efficient mathematical formulation that allows the addition of various parameters such as constraints, multi-objective functions, weight functions, among others. The development begins with a systematic literature search of existing methodologies applicable to planar mechanism synthesis. Subsequently, the software methodology is applied to obtain the algorithm design; this is achieved by defining customer requirements and giving more weight to the most relevant ones. Then, individual architecture is defined for each requirement, unifying them into a single general architecture and taking the algorithm through a coding and implementation process in Matlab. Finally, two case studies are evaluated in the implemented computational technique: the first case study is academic and consists of a four-bar mechanism that employs ten target positions for motion generation, and the second case study is a four-bar mechanism for film advancement, also for motion generation, employing seventeen target positions. The case studies are also evaluated using the MotionGen application. The technique is evaluated with Matlab optimization algorithms, presenting optimality criteria, convergence, relative percentage error, and the optimal result of the mechanism.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Ingeniería Mecánicaspa
dc.description.methodsEn este capítulo se presenta la recolección y análisis de los requerimientos del cliente que constituyen la primera fase de la metodología seleccionada que es la metodología de diseño de software en cascada propuesta por (David Budgen, 2020). En síntesis, la metodología en cascada se caracteriza por ser una metodología lineal y secuencial, donde se requiere que cada fase se cumpla para continuar con la siguiente y así hasta finalizar la última etapa.spa
dc.description.researchareaIngeniería de Diseño y Biomecánica.spa
dc.format.extent126 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87168
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Mecánicaspa
dc.relation.referencesAbramson, M. A., Audet, C., & Dennis Jr., J. E. (2006). Filter pattern search algorithms for mixed variable constrained optimization problems. Pacific Journal of Optimization, 3(3), 477–500.spa
dc.relation.referencesAlba, J. A., Doblaré, M., & Gracia, L. (2000). A simple method for the synthesis of 2D and 3D mechanisms with kinematic constraints. Mechanism and Machine Theory, 35(5), 645–674. https://doi.org/10.1016/S0094-114X(99)00035-Xspa
dc.relation.referencesAlvarez, J. m. jimenez and J. cardenal and J. cuadrado. (1997). A Simple and general method for kinematic synthesis of spatial mechanisms. Elservier Science Ltd., Vol 32 No., 323–341.spa
dc.relation.referencesAngeles, J., Alivizatos, A., & ralph akhras. (1988). An unconstrained nonlinear least-square method of optimization of RRRR planar path generators. Printed in Great Britain., 23(5), 343–353.spa
dc.relation.referencesArfken, G. B., & J.Weber, H. (2005). Mathematical Methods for Physicists.spa
dc.relation.referencesArthur G.Erdman, George N. Sandor, & Sridhar Kota. (2001). Mechanism design: Analysis and synthesis. In Mechanism and Machine Theory (Vol. 28, Issue 5). https://doi.org/10.1016/0094-114x(93)90015-nspa
dc.relation.referencesAudet, C., & Dennis, J. E. (2003). Analysis of generalized pattern searches. SIAM Journal on Optimization, 13(3), 889–903. https://doi.org/10.1137/S1052623400378742spa
dc.relation.referencesBYRD, R. H., HRIBAR, M. E., & NOCEDAL, J. (1999). AN INTERIOR POINT ALGORITHM FOR LARGE-SCALE NONLINEAR PROGRAMMING. Society for Industrial and Applied Mathematics, 27(3), 1118–1139.spa
dc.relation.referencesCabrera, J. A., Simon, A., & Prado, M. (2002). Optimal synthesis of mechanisms with genetic algorithms. Mechanism and Machine Theory, 37(10), 1165–1177. https://doi.org/10.1016/S0094-114X(02)00051-4spa
dc.relation.referencesChanekar, P. V., & Ghosal, A. (2013). Optimal synthesis of adjustable planar four-bar crank-rocker type mechanisms for approximate multi-path generation. Mechanism and Machine Theory, 69, 263–277. https://doi.org/10.1016/j.mechmachtheory.2013.06.006spa
dc.relation.referencesColeman, T., & Li, Y. (1994). On the Convergence of Reflective Newton Methods for Large-scale Nonlinear Minimization Subject to Bounds. Ithaca, NY, USA: Cornell University. http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:On+the+convergence+of+reflective+Newton+methods+for+large-scale+nonlinear+minimization+subject+to+bounds#3spa
dc.relation.referencesCollard, J. F., Duysinx, P., & Fisette, P. (2006). Optimal synthesis of planar mechanisms via an extensible-link approach. Proceedings of ISMA2006: International Conference on Noise and Vibration Engineering, 1(June), 27–40.spa
dc.relation.referencesConn, A. R., Gould, N. I. M., & Toint, P. L. (1991). Globally convergent augmented Lagrangian algorithm for optimization with general constraints and simple bounds. SIAM Journal on Numerical Analysis, 28(2), 545–572. https://doi.org/10.1137/0728030spa
dc.relation.referencesConn, A. R., Gould, N., & Toint, P. L. (1997). A globally convergent Lagrangian barrier algorithm for optimization with general inequality constraints and simple bounds. Mathematics of Computation, 66(217), 261–289. https://doi.org/10.1090/s0025-5718-97-00777-1spa
dc.relation.referencesD.Bjorner. (2006). Software Engineering 3.spa
dc.relation.referencesDavid Budgen. (2020). Software Design.spa
dc.relation.referencesDavid E. Goldberg. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning.spa
dc.relation.referencesDing, H., Yang, W., & Kecskeméthy, A. (2022). Automatic Structural Synthesis and Creative Design of Mechanisms. (Springer (ed.); 1st ed.). Springer Nature Singapore Pte Ltd 2022.spa
dc.relation.referencesEttefagh, M. M., & Javash, M. S. (2014). Optimal synthesis of four-bar steering mechanism using AIS and genetic algorithms. Journal of Mechanical Science and Technology, 28(6), 2351–2362. https://doi.org/10.1007/s12206-014-0526-3spa
dc.relation.referencesFlórez, E., Romero Nuñez, N. N., & Florez Martínez, Y. A. (2022). Optimal Synthesis of a Four-Bar Mechanism for the Knee Using Natural Coordinates for Kinematic Formulation. Tecnura, 26(73), 115–129. https://doi.org/10.14483/22487638.18031spa
dc.relation.referencesGatti, G., & Mundo, D. (2006). Optimal synthesis of six-bar cammed-linkages for exact rigid-body guidance. Mechanism and Machine Theory, 42(9), 1069–1081. https://doi.org/10.1016/j.mechmachtheory.2006.09.006spa
dc.relation.referencesGe, Q. J., Purwar, A., Zhao, P., & Deshpande, S. (2017). A task-driven approach to unified synthesis of planar four-bar linkages using algebraic fitting of a pencil of g-manifolds. Journal of Computing and Information Science in Engineering, 17(3), 1–20. https://doi.org/10.1115/1.4035528spa
dc.relation.referencesGe, Q. J., Zhao, P., & Purwar, A. (2013). A task driven approach to unified synthesis of planar four-bar linkages using algebraic fitting of a pencil of G-manifolds. Proceedings of the ASME Design Engineering Technical Conference, 6 A(August). https://doi.org/10.1115/DETC2013-12977spa
dc.relation.referencesGe, Q. J., Zhao, P., Purwar, A., & Li, X. (2012). A novel approach to algebraic fitting of a pencil of quadrics for planar 4R motion synthesis. Journal of Computing and Information Science in Engineering, 12(4), 2–8. https://doi.org/10.1115/1.4007447spa
dc.relation.referencesGogat, G. R. ., & Matek, S. B. (2014). Unified synthesis of Watt-I six-link mechanisms using evolutionary optimizatio. Springer, 3076–3086.spa
dc.relation.referencesGoldstein, H., Poole, C., & Safko, J. (2000). Classical mechanics (Third Edit).spa
dc.relation.referencesHansen, J. M. (2002). Synthesis of mechanisms using time-varying dimensions. Multibody System Dynamics, 7(1), 127–144. https://doi.org/10.1023/A:1015247821899spa
dc.relation.referencesHenry Octavio Córtes Ramos. (2016). Path Following Desing.spa
dc.relation.referencesHuang, Q., Yu, Y., Zhang, K., Li, S., Lu, H., Li, J., Zhang, A., & Mei, T. (2022). Optimal synthesis of mechanisms using repellency evolutionary algorithm. Knowledge-Based Systems, 239, 107928. https://doi.org/10.1016/j.knosys.2021.107928spa
dc.relation.referencesJ.Craig, J. (2004). Introduction to Robotics: Mechanics and Control. In The International Journal of Electrical Engineering & Education (Third Edit, Vol. 41, Issue 4). https://doi.org/10.7227/ijeee.41.4.11spa
dc.relation.referencesKrovi, V., Ananthasuresh, G. K., & Kumar, V. (2001). Kinematic synthesis of spatial R-R dyads for path following with applications to coupled serial chain mechanisms. Journal of Mechanical Design, Transactions of the ASME, 123(3), 359–366. https://doi.org/10.1115/1.1370977spa
dc.relation.referencesM.Drake, R., & Kline, S. J. (1964). Kinematic Synthesis of Linkages.spa
dc.relation.referencesMatekar, S. B., & Gogate, G. R. (2012). Optimum synthesis of path generating four-bar mechanisms using differential evolution and a modified error function. Mechanism and Machine Theory, 52, 158–179. https://doi.org/10.1016/j.mechmachtheory.2012.01.017spa
dc.relation.referencesMathworks. (2023). Global Optimization Toolbox R2023b.spa
dc.relation.referencesMichael Rygaard Hansen, & Torben O. Andersen. (2003). Multi Criteria Desing Optimization Of Backhoe Loader Front Mechanism. ASME International Mechanical Engineering Congress, November 2003, 1–7.spa
dc.relation.referencesMinnaar, R. J., Tortorelli, D. A., & Snyman, J. A. (2001). On nonassembly in the optimal dimensional synthesis of planar mechanisms. Structural and Multidisciplinary Optimization, 21(5), 345–354. https://doi.org/10.1007/s001580100113spa
dc.relation.referencesNorton, R. (2004). Diseño de maquinaria sintesis y analisis de mecanismos. McGRAW HILL, 5, 97–102.spa
dc.relation.referencesNorton, R. L. (1998). Diseño de maquinaria, síntesis y análisis de máquinas y mecanismos (Pearson (ed.); 4th ed.).spa
dc.relation.referencesNorton, R. L. (2011). Diseño De Maquinas Un Enfoque Integrado. In Diseño de Elementos de Máquinas. https://books.google.es/books?hl=es&lr=&id=nrYd_BjTL0UC&oi=fnd&pg=PA1&dq=%22sistemas+de+unidades%22&ots=1BKp2eod9D&sig=SwoWt30msLIcScDpGeL1DGKzRGY#v=onepage&q=%22sistemas de unidades%22&f=falsespa
dc.relation.referencesPeón-Escalante, R., Jiménez, F. C., Escalante Soberanis, M. A., & Peñuñuri, F. (2019). Path generation with dwells in the optimum dimensional synthesis of Stephenson III six-bar mechanisms. Mechanism and Machine Theory, 144. https://doi.org/10.1016/j.mechmachtheory.2019.103650spa
dc.relation.referencesPurwar, A., Deshpande, S., & Ge, Q. J. (2016). MotionGen: An iOS and Android app for planar four-bar motion generation. Proceedings of the ASME Design Engineering Technical Conference, 5B-2016, 1–11. https://doi.org/10.1115/DETC2016-60498spa
dc.relation.referencesPurwar, A., Deshpande, S., & Ge, Q. J. (2017). Motiongen: Interactive design and editing of planar four-bar motions for generating pose and geometric constraints. Journal of Mechanisms and Robotics, 9(2). https://doi.org/10.1115/1.4035899spa
dc.relation.referencesRavani, B., & Roth, B. (1983). Motion synthesis using kinematic mappings. Journal of Mechanical Design, Transactions of the ASME, 105(3), 460–467. https://doi.org/10.1115/1.3267382spa
dc.relation.referencesRoger S. Pressman. (2013). Ingeniería de Software un enfoque práctico. In Journal of Chemical Information and Modeling (Septima, Vol. 53, Issue 9).spa
dc.relation.referencesRomero, N. N., Campos, A., Martins, D., & Vieira, R. S. (2019). A new approach for the optimal synthesis of four-bar path generator linkages. SN Applied Sciences, 1(11), 1–8. https://doi.org/10.1007/s42452-019-1511-3spa
dc.relation.referencesRuth, D. A., & McCarthy, J. M. (1999). The Design of spherical 4R linkages for four specified orientations. Mechanism and Machine Theory, 34(5), 677–692. https://doi.org/10.1016/S0094-114X(98)00048-2spa
dc.relation.referencesSancibrian, R., García, P., Viadero, F., & Fernández, A. (2005). A general procedure based on exact gradient determination in dimensional synthesis of planar mechanisms. Mechanism and Machine Theory, 41(2), 212–229. https://doi.org/10.1016/j.mechmachtheory.2005.04.006spa
dc.relation.referencesSchreiber, H., Meer, K., & Schmitt, B. J. (2002). Dimensional synthesis of planar Stephenson mechanisms for motion generation using circlepoint search and homotopy methods. Mechanism and Machine Theory, 37(7), 717–737. https://doi.org/10.1016/S0094-114X(02)00016-2spa
dc.relation.referencesShabana, A. a. (2010). Computational Dynamics (Third Edit).spa
dc.relation.referencesShariati, M., & Norouzi, M. (2010). Optimal synthesis of function generator of four-bar linkages based on distribution of precision points. Meccanica, 46(5),1007–1021. https://doi.org/10.1007/s11012-010-9357-1spa
dc.relation.referencesShigley, J. E., & Jr, J. J. U. (1981). Theory of Machines and Mechanisms. In Journal of Mechanical Design (Vol. 125, Issue 3). https://doi.org/10.1115/1.1605769spa
dc.relation.referencesSiciliano, B., Sciavicco, L., Villani, L., & Oriolo, G. (2008). Robotics - Modelling, Planning and Control-Springer.spa
dc.relation.referencesSuryn, W. (2014). Software Quality Engineering: A Practitioner’s Approach. In Software Quality Engineering: A Practitioner’s Approach (Vol. 9781118592). https://doi.org/10.1002/9781118830208spa
dc.relation.referencesUgray, Z., Lasdon, L., Plummer, J., Glover, F., Kelly, J., & Marti, R. (2011). Scatter Search and Local Nlp Solvers: A Multistart Framework for Global Optimization. SSRN Electronic Journal, September 2018. https://doi.org/10.2139/ssrn.886559spa
dc.relation.referencesUrueña, C. H. G., Daza, C. A. D., & Alvarado, D. A. G. (2009). Aplicación de diseño óptimo dimensional a la síntesis de posición y velocidad en mecanismos de cuatro barras. Revista Facultad de Ingenieria, 38(5), 579–594. https://doi.org/10.1016/S0094-114X(03)00010-7spa
dc.relation.referencesVallejo, J., Aviles, R., Hernández, A., & Amezua, E. (1995). Nonlinear optimization of planar linkages for kinematic syntheses. Mechanism and Machine Theory, 30(4), 501–518. https://doi.org/10.1016/0094-114X(94)00064-Rspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.lembARQUITECTURA-PROCESAMIENTO DE DATOSspa
dc.subject.lembArchitecture - data processingeng
dc.subject.lembECUACIONES DE MOVIMIENTOspa
dc.subject.lembEquations of motioneng
dc.subject.lembMOVIMIENTOS MECANICOSspa
dc.subject.lembMechanical movementseng
dc.subject.lembJUNTAS UNIVERSALES (MECANICA)spa
dc.subject.lembUniversal joints (mechanics)eng
dc.subject.proposalSíntesis de mecanismos,spa
dc.subject.proposalOptimización dimensionalspa
dc.subject.proposalGeneración de movimientospa
dc.subject.proposalAnálisis de posiciónspa
dc.subject.proposalCurva de acopladorspa
dc.subject.proposalMechanism synthesiseng
dc.subject.proposalDimensional optimizationeng
dc.subject.proposalMotion generationeng
dc.subject.proposalPosition analysiseng
dc.subject.proposalCoupler curveeng
dc.titleDesarrollo de una técnica de síntesis óptima dimensional de mecanismos planos con juntas de rotación para generación de movimientospa
dc.title.translatedDevelopment of an optimal dimensional synthesis technique of planar mechanisms with rotational joints for motion generationeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentAdministradoresspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentConsejerosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1033817068.2024.pdf
Tamaño:
3.06 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería Mecánica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: