Predicción de la infiltración en el suelo mediante la integración de sensores remotos e inferencia espacial en una microcuenca andina

dc.contributor.advisorDarghan Contreras, Aquiles Enrique
dc.contributor.advisorLeal Villamil, Julián
dc.contributor.authorPáez Lugo, Eliana Alejandra
dc.contributor.orcidPaez Lugo, Eliana Alejandra [0009-0009-6435-1049]spa
dc.date.accessioned2024-07-17T18:36:20Z
dc.date.available2024-07-17T18:36:20Z
dc.date.issued2024
dc.descriptionilustraciones, diagramas, mapas, tablasspa
dc.description.abstractLa infiltración es el proceso de entrada del agua al suelo, su estimación es importante tanto para hacer un eficiente uso del recurso hídrico en cultivos, como para efectos de los modelos hidrológicos. Debido a su complejidad metodológica y espacial, se han desarrollado diversos modelos para su estimación; sin embargo, la idoneidad y ajuste de estos a las condiciones particulares de cada suelo generalmente no resulta simple, conllevando a la necesidad de disminuir su incertidumbre para obtener resultados más consistentes. Esta investigación desarrolló un modelo espacial para estimar la tasa de infiltración básica empleando índices de humedad y vegetación provenientes de imágenes Sentinel- 1, atributos del terreno obtenidos del modelo digital de elevación ALOS PALSAR y algunas propiedades del suelo. Los resultados demostraron que el modelo autorregresivo espacial con errores autorregresivos permitió modelar espacialmente la infiltración base, donde el ajuste de los valores observados y estimados presentaron un coeficiente de correlación de 0.98. Se evidenció una relación estadística significativa entre los índices de radar y la infiltración base en los suelos y se confirmó la incidencia de la elevación y algunas de las propiedades físicas del suelo en la estimación de la infiltración base, esta relación se entiende también como el impacto que tienen dichas variables en el cálculo de la infiltración, allí se encontró que todas las variables tuvieron impacto positivo, particularmente el índice de humedad y la elevación tuvieron el mayor impacto y el porcentaje de arenas el menor (texto tomado de la fuente).spa
dc.description.abstractInfiltration is the process of entry of water into the soil, its estimation is important both for an efficient use of the water resource in crops, and for the effects of hydrological models. Due to its methodological and spatial complexity, various models have been developed for its estimation; however, the suitability and adjustment of these to the particular conditions of each soil is generally not simple, leading to the need to reduce their uncertainty to obtain more consistent results. This research developed a spatial model to estimate the steady-state infiltration rate using moisture and vegetation indices from Sentinel-1 images, terrain attributes obtained from the ALOS PALSAR digital elevation model and some soil properties. The results showed that the spatial autoregressive model with autoregressive errors allowed to spatially model the base infiltration, where the adjustment of the observed and estimated values presented a Pearson correlation coefficient of 0.98. A significant statistical relationship between radar indices and steady-state infiltration rate in soils was evidenced and the incidence of elevation and some of the physical properties of the soil in the estimation of base infiltration was confirmed, this relationship is also understood as the impact that these variables have on the calculation of infiltration, it was found that all variables had a positive impact, particularly the humidity index and elevation had the greatest impact and the percentage of sand the least.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Geomáticaspa
dc.description.researchareaTecnologías Geoespacialesspa
dc.format.extent118 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86537
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ciencias Agrariasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias Agrarias - Maestría en Geomáticaspa
dc.relation.referencesAchouri, M., y Gifford, G. F. (1984). Spatial and seasonal variability of field Measured Infiltration Rates on a Rangeland Site in Utah. Journal of Range Management, 37(5), 451. https://doi.org/10.2307/3899635spa
dc.relation.referencesAl-Qinna, M. I., Salahat, M. A. y Shatnawi, Z. N. (2008). Effect of carbonates and gravel contents on hydraulic properties in gravely-calcareous soils. Dirasat, Agricultural Sciences, 35 (3), 145-158spa
dc.relation.referencesAngelaki, A., Singh Nain, S., Singh, V., y Sihag, P. (2018). Estimation of models for cumulative infiltration of soil using machine learning methods. Https://Doi.Org/10.1080/09715010.2018.1531274, 27(2), 162–169. https://doi.org/10.1080/09715010.2018.1531274spa
dc.relation.referencesAsfawesen Molla, G., Desta, G., y Dananto, M. (2022). Soil Management and crop practice effect on soil water infiltration and soil water storage in the humid lowlands of Beles sub-basin, Ethiopia. Hydrology, 10(1), 1. https://doi.org/10.11648/j.hyd.20221001.11spa
dc.relation.referencesAtwood, D. K., Small, D., & Gens, R. (2012). Improving PolSAR land cover classification with radiometric correction of the coherency matrix. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5(3), 848–856. https://doi.org/10.1109/JSTARS.2012.2186791spa
dc.relation.referencesBaraha, S., & Sahoo, A. K. (2023). Synthetic aperture radar image and its despeckling using variational methods: A Review of recent trends. Signal Processing, 212, 109156. https://doi.org/10.1016/J.SIGPRO.2023.109156spa
dc.relation.referencesBautista, S., Mayor, Á. G., Bourakhouadar, J., y Bellot, J. (2007). Plant spatial pattern Predicts Hillslope Runoff and Erosion in a Semiarid Mediterranean Landscape. Ecosystems 2007 10:6, 10(6), 987–998. https://doi.org/10.1007/S10021-007-9074-3spa
dc.relation.referencesBayabil, H. K., Dile, Y. T., Tebebu, T. Y., Engda, T. A., y Steenhuis, T. S. (2019). Evaluating infiltration models and pedotransfer functions: Implications for hydrologic modeling. Geoderma, 338, 159–169. https://doi.org/10.1016/J.GEODERMA.2018.11.028spa
dc.relation.referencesBergeson, C. B., Martin, K. L., Doll, B., y Cutts, B. B. (2022). Soil infiltration rates are underestimated by models in an urban watershed in central North Carolina, USA. Journal of Environmental Management, 313, 115004. https://doi.org/10.1016/j.jenvman.2022.115004spa
dc.relation.referencesBerryman, E., Hatten, J., Page-Dumroese, D. S., Heckman, K. A., D’Amore, D. V., Puttere, J., SanClements, M., Connolly, S. J., Hobie Perry, C. H., y Domke, G. M. (2020). Soil Carbon. Forest and rangeland soils of the United States under changing conditions: A Comprehensive Science Synthesis, 9–31. https://doi.org/10.1007/978-3-030-45216-2_2/TABLES/2spa
dc.relation.referencesBivand, R. (2023a). Package “spatialreg.” https://doi.org/10.1080/01621459.1975.10480272spa
dc.relation.referencesBivand, R. (2023b). Package “spdep.” https://doi.org/10.1002/(SICI)1097-0258(19990830)18:16%3C2147::AIDspa
dc.relation.referencesBrady, N. C., y Weil, R. R. (2008). The Nature and properties of soils.spa
dc.relation.referencesBrath, A., Montanari, A., Brath, A., y Montanari, A. (2000). The effects of the spatial variability of soil infiltration capacity in distributed flood modelling. HyPr, 14(15), 2779–2794. https://doi.org/10.1002/1099-1085(20001030)14:15spa
dc.relation.referencesBryan, B. A. (2003). Physical environmental modeling, visualization and query for supporting landscape planning decisions. Landscape and Urban Planning, 65(4), 237–259. https://doi.org/10.1016/S0169-2046(03)00059-8spa
dc.relation.referencesBuzai, G. D., y Montes Galbán, E. J. (2022). Estadística Espacial: Fundamentos y aplicación con Sistemas de Información Geográfica. https://ri.conicet.gov.ar/handle/11336/161048spa
dc.relation.referencesCampbell, J. B., & Wynne, R. H. (2011). Introduction to remote sensing. 667.spa
dc.relation.referencesCapowiez, Y., Sammartino, S., Keller, T., y Bottinelli, N. (2021). Decreased burrowing activity of endogeic earthworms and effects on water infiltration in response to an increase in soil bulk density. Pedobiologia, 85–86, 150728. https://doi.org/10.1016/J.PEDOBI.2021.150728spa
dc.relation.referencesChari, M. M., Poozan, M. T., y Afrasiab, P. (2020). Modelling soil water infiltration variability using scaling. Biosystems Engineering, 196, 56–66. https://doi.org/10.1016/J.BIOSYSTEMSENG.2020.05.014spa
dc.relation.referencesChavent, M., Kuentz-Simonet, V., Labenne, A., y Saracco, J. (2018). ClustGeo: an R package for hierarchical clustering with spatial constraints. Computational Statistics, 33(4), 1799–1822. https://doi.org/10.1007/S00180-018-0791-1/METRICSspa
dc.relation.referencesCohen, J., Lemmetyinen, J., Jorge Ruiz, J., Rautiainen, K., Ikonen, J., Kontu, A., & Pulliainen, J. (2024). Detection of soil and canopy freeze/thaw state in the boreal region with L and C Band Synthetic Aperture Radar. Remote Sensing of Environment, 305, 114102. https://doi.org/10.1016/J.RSE.2024.114102spa
dc.relation.referencesCorporación Autónoma Regional del Tolima. (2016). Cartografía escala 1:25,000 de las microcuencas del departamento del Tolima.spa
dc.relation.referencesCorporación Autónoma Regional del Tolima, y Universidad de Ibagué. (2018). Ajuste parcial a la zonificación ambiental del Plan de Ordenación y Manejo de la cuenca hidrográfica del río Coello: Cartografía 1:25.000 de la Cobertura y Uso de la Tierra.spa
dc.relation.referencesCORTOLIMA, & Universidad del Tolima. (2021). Informe Final Evaluación Regional del Agua del Departamento del Tolima Fase 1.spa
dc.relation.referencesCortes-D, D. L., Camacho-Tamayo, J. H., y Giraldo, R. (2018). Spatial prediction of soil infiltration using functional geostatistics. Acta Universitatis Carolinae, Geographica, 53(2), 149–155. https://doi.org/10.14712/23361980.2018.15spa
dc.relation.referencesDas, K., & Paul, P. K. (2015). Present status of soil moisture estimation by microwave remote sensing. Cogent Geoscience, 1(1), 1084669. https://doi.org/10.1080/23312041.2015.1084669spa
dc.relation.referencesDubitzky, W., Wolkenhauer, O., Cho, K.-H., y Yokota, H. (2013). Encyclopedia of Systems Biology. Encyclopedia of Systems Biology. https://doi.org/10.1007/978-1-4419-9863-7spa
dc.relation.referencesDualeh, E. W., Ebmeier, S. K., Wright, T. J., Poland, M. P., Grandin, R., Stinton, A. J., Camejo-Harry, M., Esse, B., & Burton, M. (2023). Rapid pre-explosion increase in dome extrusion rate at La Soufrière, St. Vincent quantified from synthetic aperture radar backscatter. Earth and Planetary Science Letters, 603, 117980. https://doi.org/10.1016/J.EPSL.2022.117980spa
dc.relation.referencesDuan, R., Fedler, C. B., y Borrelli, J. (2011). Field evaluation of infiltration models in lawn soils. Irrigation Science, 29(5), 379–389. https://doi.org/10.1007/S00271-010-0248-Y/METRICSspa
dc.relation.referencesEkhmaj, A. I. (2010). Predicting soil infiltration rate using artificial neural network. ICEEA 2010 - 2010 International Conference on Environmental Engineering and Applications, Proceedings, 117–121. https://doi.org/10.1109/ICEEA.2010.5596107spa
dc.relation.referencesElhorst, J. P. (2014). Spatial econometrics from Cross-Sectional Data to Spatial Panels. http://www.springer.com/series/10096spa
dc.relation.referencesESA. (2023). Copernicus Sentinel data.spa
dc.relation.referencesEsch, S., Korres, W., Reichenau, T. G., y Schneider, K. (2018). Soil moisture index from ERS-SAR and its application to the analysis of spatial patterns in agricultural areas. Https://Doi.Org/10.1117/1.JRS.12.022206, 12(2), 022206. https://doi.org/10.1117/1.JRS.12.022206spa
dc.relation.referencesFil, P. P., Yurova, A. Y., Dobrokhotov, A., Kozlov, D., Yurova, P. P. ;, Dobrokhotov, A. Y. ;, Kozlov, A. ;, Cugueró-Escofet, À., y Puig, V. (2021). Estimation of Infiltration Volumes and Rates in Seasonally Water-Filled Topographic Depressions Based on Remote-Sensing Time Series. Sensors 2021, Vol. 21, Page 7403, 21(21), 7403. https://doi.org/10.3390/S21217403spa
dc.relation.referencesFischer, M. M., & Nijkamp, P. (2014). Handbook of regional science. Handbook of Regional Science, 1–1732. https://doi.org/10.1007/978-3-642-23430-9/COVERspa
dc.relation.referencesFlores-Anderson, A., Herndon, K., Thapa, R. B., & Cherrington, E. (2019). The SAR Handbook:Comprehensive Methodologies for Forest Monitoring and Biomass Estimation. https://doi.org/10.25966/nr2c-s697spa
dc.relation.referencesFlügel, W. A. (1997). Combining GIS with regional hydrological modelling using hydrological response units (HRUs): An application from Germany. Mathematics and Computers in Simulation, 43(3–6), 297–304. https://doi.org/10.1016/S0378-4754(97)00013-Xspa
dc.relation.referencesFranceschetti, G., & Lanari, R. (2018). Synthetic aperture radar processing. Synthetic Aperture Radar Processing, 1–307. https://doi.org/10.1201/9780203737484/Synthetic-aperture-radar-processing-fidler-giorgio-franceschetti-riccardo-lanari-giorgio-franceschetti-riccardo-lanarispa
dc.relation.referencesFrancos, N., Chabrillat, S., Tziolas, N., Milewski, R., Brell, M., Samarinas, N., Angelopoulou, T., Tsakiridis, N., Liakopoulos, V., Ruhtz, T., y Ben-Dor, E. (2023). Estimation of water-infiltration rate in Mediterranean sandy soils using airborne hyperspectral sensors. CATENA, 233, 107476. https://doi.org/10.1016/J.CATENA.2023.107476spa
dc.relation.referencesFrancos, N., Romano, N., Nasta, P., Zeng, Y., Szabó, B., Manfreda, S., Ciraolo, G., Mészáros, J., Zhuang, R., Su, B., y Ben‐dor, E. (2021). Mapping Water Infiltration Rate Using Ground and UAV Hyperspectral Data: A Case Study of Alento, Italy. Remote Sensing 2021, Vol. 13, Page 2606, 13(13), 2606. https://doi.org/10.3390/RS13132606spa
dc.relation.referencesFrery, A. C., Wu, J., y Gómez, L. (2022). SAR image analysis: a computational statistics approach : with R code, data, and applications. 182. https://www.wiley.com/en-us/SAR+Image+Analysis+A+Computational+Statistics+Approach%3A+With+R+Code%2C+Data%2C+and+Applications-p-9781119795292spa
dc.relation.referencesGan, F., Shi, H., Gou, J., Zhang, L., y Liu, C. (2023). Effects of bedrock strata dip on soil infiltration capacity under different land use types in a karst trough valley of Southwest China. CATENA, 230, 107253. https://doi.org/10.1016/J.CATENA.2023.107253spa
dc.relation.referencesGoldshleger, N., Chudnovsky, A., & Ben-Dor, E. (2012). Using reflectance spectroscopy and artificial neural network to assess water infiltration rate into the soil profile. Applied and Environmental Soil Science, 2012. https://doi.org/10.1155/2012/439567spa
dc.relation.referencesGovindaraju, R. S., Corradini, C., y Morbidelli, R. (2006). A semi-analytical model of expected areal-average infiltration under spatial heterogeneity of rainfall and soil saturated hydraulic conductivity. Journal of Hydrology, 316(1–4), 184–194. https://doi.org/10.1016/J.JHYDROL.2005.04.019spa
dc.relation.referencesGray, D. M., y Norum, D. I. (1967). Effect of soil moisture in infiltration as related to runoff and recharge. Hydrol Symp Proc. https://doi.org/10.3/JQUERY-UI.JSspa
dc.relation.referencesHadria, R., Duchemin, B., Baup, F., Le Toan, T., Bouvet, A., Dedieu, G., y Le Page, M. (2009). Combined use of optical and radar satellite data for the detection of tillage and irrigation operations: Case study in Central Morocco. Agricultural Water Management, 96(7), 1120–1127. https://doi.org/10.1016/J.AGWAT.2009.02.010spa
dc.relation.referencesHervada-Sala, C., y Jarauta-Bragulat, E. (2004). A program to perform Ward’s clustering method on several regionalized variables. Computers y Geosciences, 30(8), 881–886. https://doi.org/10.1016/J.CAGEO.2004.07.003spa
dc.relation.referencesHervé-Fernández, P., Muñoz-Arriagada, R., Glucevic-Almonacid, C., Bahamonde-Vidal, L., y Radic-Schilling, S. (2023). Influence of Rangeland Land Cover on Infiltration Rates, Field-Saturated Hydraulic Conductivity, and Soil Water Repellency in Southern Patagonia. Rangeland Ecology y Management, 90, 92–100. https://doi.org/10.1016/J.RAMA.2023.06.004spa
dc.relation.referencesHillel, D. (2003). Introduction to environmental soil physics. Introduction to Environmental Soil Physics, 1–494. https://doi.org/10.1016/B978-0-12-348655-4.X5000-Xspa
dc.relation.referencesHoekman, D. H., & Reiche, J. (2015). Multi-model radiometric slope correction of SAR images of complex terrain using a two-stage semi-empirical approach. Remote Sensing of Environment, 156, 1–10. https://doi.org/10.1016/J.RSE.2014.08.037spa
dc.relation.referencesHovde, K., Mevik, B.-H., Wehrens, R., & Hiemstra, P. (2023). Partial Least Squares and Principal Component Regression [R package pls version 2.8-3]. https://CRAN.R-project.org/package=plsspa
dc.relation.referencesIDEAM. (2012). Mapa de clasificación climática Caldas-Lang de la República de Colombia.spa
dc.relation.referencesIDEAM. (2022). Proyecto DHIME.spa
dc.relation.referencesInstituto Geográfico Agustín Codazzi. (2004). Estudio general de suelos y zonificación de tierras departamento del Tolima. Instituto Geográfico Agustín Codazzi.spa
dc.relation.referencesJAXA/METI. (2010). ALOS-1PALSAR Radiometric High Resolution Terrain Corrected Image.spa
dc.relation.referencesJi, X., Thompson, A., Lin, J., Jiang, F., Ge, H., Yu, M., y Huang, Y. (2020). Modeling spatial distribution of rainfall infiltration amounts in South China using cellular automata and its relationship with the occurrence of collapsing gullies. Catena, 194. https://doi.org/10.1016/j.catena.2020.104676spa
dc.relation.referencesJin, F., y Lee, L. fei. (2018). Outer-product-of-gradients tests for spatial autoregressive models. Regional Science and Urban Economics, 72, 35–57. https://doi.org/10.1016/J.REGSCIURBECO.2017.03.006spa
dc.relation.referencesKang, X., Ma, X., Fan, H., Liu, H., y Shojaaddini, A. (2022). Soil infiltration, its prediction, and GIS-mapping in calcareous soils in northwest Iran. Archives of Agronomy and Soil Science, 68(2), 242–256. https://doi.org/10.1080/03650340.2020.1830377spa
dc.relation.referencesKambezidis, H. D. (2012). The Solar Resource. Comprehensive Renewable Energy, 27–84. https://doi.org/10.1016/B978-0-08-087872-0.00302-4spa
dc.relation.referencesKarunasingha, D. S. K. (2022). Root mean square error or mean absolute error? Use their ratio as well. Information Sciences, 585, 609–629. https://doi.org/10.1016/J.INS.2021.11.036spa
dc.relation.referencesKashi, H., Emamgholizadeh, S., y Ghorbani, H. (2014). Estimation of Soil Infiltration and Cation Exchange Capacity Based on Multiple Regression, ANN (RBF, MLP), and ANFIS Models. Communications in Soil Science and Plant Analysis, 45(9), 1195–1213. https://doi.org/10.1080/00103624.2013.874029spa
dc.relation.referencesKirkland, E. J. (2010). Advanced computing in electron microscopy: Second edition. Advanced Computing in Electron Microscopy: Second Edition, 1–289. https://doi.org/10.1007/978-1-4419-6533-2spa
dc.relation.referencesKornelsen, K. C., y Coulibaly, P. (2013). Advances in soil moisture retrieval from synthetic aperture radar and hydrological applications. Journal of Hydrology, 476, 460–489. https://doi.org/10.1016/J.JHYDROL.2012.10.044spa
dc.relation.referencesLähderanta, T., Lovén, L., Ruha, L., Leppänen, T., Launonen, I., Riekki, J., & Sillanpää, M. J. (2024). Capacitated spatial clustering with multiple constraints and attributes. Engineering Applications of Artificial Intelligence, 127, 107182. https://doi.org/10.1016/J.ENGAPPAI.2023.107182spa
dc.relation.referencesLeal, J. (2022). Evaluación del comportamiento hidráulico de suelos con presencia de fragmentos de roca en el perfil. Estudio de caso: Microcuenca Zanja Honda, Cuenca Baja del Rio Combeima (Ibagué-Tolima). Universidad Del Tolima.spa
dc.relation.referencesLeal, J., Avila, E. A., Darghan, A. E., y Lobo, D. (2023). Spatial modeling of infiltration and its relationship with surface coverage of rock fragments and porosity in soils of an andean micro-watershed in Tolima (Colombia). Geoderma Regional, 33, e00637. https://doi.org/10.1016/J.GEODRS.2023.E00637spa
dc.relation.referencesLeSage, J., y Pace, R. K. (2011). Introduction to Spatial Econometrics. Journal of the Royal Statistical Society Series A: Statistics in Society, 174(2), 513–514. https://doi.org/10.1111/J.1467-985X.2010.00681_13.Xspa
dc.relation.referencesLiu, T., y Lee, L. fei. (2019). A likelihood ratio test for spatial model selection. Journal of Econometrics, 213(2), 434–458. https://doi.org/10.1016/J.JECONOM.2019.07.001spa
dc.relation.referencesLiu, C. an, Chen, Z. xin, Shao, Y., Chen, J. song, Hasi, T., & Pan, H. zhu. (2019). Research advances of SAR remote sensing for agriculture applications: A review. Journal of Integrative Agriculture, 18(3), 506–525. https://doi.org/10.1016/S2095-3119(18)62016-7spa
dc.relation.referencesMachiwal, D., Jha, M. K., y Mal, B. C. (2006). Modelling Infiltration and quantifying Spatial Soil Variability in a Wasteland of Kharagpur, India. Biosystems Engineering, 95(4), 569–582. https://doi.org/10.1016/j.biosystemseng.2006.08.007spa
dc.relation.referencesMahapatra, S., Jha, M. K., Biswal, S., y Senapati, D. (2020). Assessing Variability of Infiltration Characteristics and Reliability of Infiltration Models in a Tropical Sub-humid Region of India. Scientific Reports 2020 10:1, 10(1), 1–18. https://doi.org/10.1038/s41598-020-58333-8spa
dc.relation.referencesMahdian, M. H., Oskoee, R. S., Kamali, K., Angoshtari, H., y Kadkhodapo, M. A. (2009). Developing Pedo Transfer Functions to Predict Infiltration Rate in Flood Spreading Stations of Iran. Research Journal of Environmental Sciences, 3(6), 697–704. https://doi.org/10.3923/RJES.2009.697.704spa
dc.relation.referencesMaître, H. (2008). Processing of Synthetic Aperture Radar Images. Processing of Synthetic Aperture Radar Images. https://doi.org/10.1002/9780470611111spa
dc.relation.referencesMandal, D., Kumar, V., Ratha, D., Lopez-Sanchez, J. M., Bhattacharya, A., McNairn, H., Rao, Y. S., y Ramana, K. V. (2020). Assessment of rice growth conditions in a semi-arid region of India using the Generalized Radar Vegetation Index derived from RADARSAT-2 polarimetric SAR data. Remote Sensing of Environment, 237, 111561. https://doi.org/10.1016/J.RSE.2019.111561spa
dc.relation.referencesMartínez, E., Fuentes, J. P., y Acevedo, E. (2008). Carbono orgánico y propiedades del suelo. Revista de La Ciencia Del Suelo y Nutrición Vegetal, 8(1), 68–96. https://doi.org/10.4067/S0718-27912008000100006spa
dc.relation.referencesMishra, S. K., Tyagi, J. V., y Singh, V. P. (2003). Comparison of infiltration models. Hydrological Processes, 17(13), 2629–2652. https://doi.org/10.1002/HYP.1257spa
dc.relation.referencesMiyata, S., Gomi, T., Sidle, R. C., Hiraoka, M., Onda, Y., Yamamoto, K., y Nonoda, T. (2019). Assessing spatially distributed infiltration capacity to evaluate storm runoff in forested catchments: Implications for hydrological connectivity. Science of The Total Environment, 669, 148–159. https://doi.org/10.1016/J.SCITOTENV.2019.02.453spa
dc.relation.referencesMoraes, A. G. de L., de Carvalho, D. F., Antunes, M. A. H., Ceddia, M. B., y Flanagan, D. C. (2020). Steady infiltration rate spatial modeling from remote sensing data and terrain attributes in southeast Brazil. Geoderma Regional, 20, e00242. https://doi.org/10.1016/J.GEODRS.2019.E00242spa
dc.relation.referencesMoreira, A., Prats-Iraola, P., Younis, M., Krieger, G., Hajnsek, I., & Papathanassiou, K. P. (2013). A tutorial on synthetic aperture radar. IEEE Geoscience and Remote Sensing Magazine, 1(1), 6–43. https://doi.org/10.1109/MGRS.2013.2248301spa
dc.relation.referencesMosquera, L. (1986). Clasificación de las tierras por su capacidad de uso. Instituto Geográfico Agustín Codazzi. Subdirección Agrológica.spa
dc.relation.referencesMosquera, L., Polo, M., & Carrera, E. (1973). Clasificación de las tierras por su capacidad de uso. Instituto Geográfico Agustín Codazzi. Subdirección Agrológicaspa
dc.relation.referencesMullissa, A., Vollrath, A., Odongo-Braun, C., Slagter, B., Balling, J., Gou, Y., Gorelick, N., y Reiche, J. (2021). Sentinel-1 SAR Backscatter Analysis Ready Data Preparation in Google Earth Engine. Remote Sensing 2021, Vol. 13, Page 1954, 13(10), 1954. https://doi.org/10.3390/RS13101954spa
dc.relation.referencesMuneer, A. S., Sayl, K. N., y Kamal, A. H. (2021). Modeling of spatially distributed infiltration in the Iraqi Western Desert. Applied Geomatics 2021 13:3, 13(3), 467–479. https://doi.org/10.1007/S12518-021-00363-6spa
dc.relation.referencesNasirzadehdizaji, R., Sanli, F. B., Abdikan, S., Cakir, Z., Sekertekin, A., y Ustuner, M. (2019). Sensitivity Analysis of Multi-Temporal Sentinel-1 SAR Parameters to Crop Height and Canopy Coverage. Applied Sciences 2019, Vol. 9, Page 655, 9(4), 655. https://doi.org/10.3390/APP9040655spa
dc.relation.referencesNovak, V., y Surda, P. (2010). The water retention of a granite rock fragments in high tatras stony soils. Journal of Hydrology and Hydromechanics, 58(3), 181–187. https://doi.org/10.2478/v10098-010-0017-xspa
dc.relation.referencesOrjuela-Matta, H. M., Sanabria, Y. R., & Camacho-Tamayo, J. H. (2012). Spatial Analysis of Infiltration in an Oxisol of the Eastern Plains of Colombia. Chilean Journal of Agricultural Research, 72(3), 404–410. https://doi.org/10.4067/S0718-58392012000300015spa
dc.relation.referencesPahlavan-Rad, M. R., Dahmardeh, K., Hadizadeh, M., Keykha, G., Mohammadnia, N., Gangali, M., Keikha, M., Davatgar, N., y Brungard, C. (2020a). Prediction of soil water infiltration using multiple linear regression and random forest in a dry flood plain, eastern Iran. Catena, 194, 104715. https://doi.org/10.1016/J.CATENA.2020.104715spa
dc.relation.referencesPaige, G., y Stone, J. (2000). Measurement Methods to Identify and Quantify Spatial Variability of Infiltration on Rangelandsspa
dc.relation.referencesPanahi, M., Khosravi, K., Ahmad, S., Panahi, S., Heddam, S., Melesse, A. M., Omidvar, E., y Lee, C. W. (2021). Cumulative infiltration and infiltration rate prediction using optimized deep learning algorithms: A study in Western Iran. Journal of Hydrology: Regional Studies, 35, 100825. https://doi.org/10.1016/J.EJRH.2021.100825spa
dc.relation.referencesPebesma, E. (2023). Package “sp” Title Classes and Methods for Spatial Data.spa
dc.relation.referencesPeng, J., Albergel, C., Balenzano, A., Brocca, L., Cartus, O., Cosh, M. H., Crow, W. T., Dabrowska-Zielinska, K., Dadson, S., Davidson, M. W. J., de Rosnay, P., Dorigo, W., Gruber, A., Hagemann, S., Hirschi, M., Kerr, Y. H., Lovergine, F., Mahecha, M. D., Marzahn, P., … Loew, A. (2021). A roadmap for high-resolution satellite soil moisture applications – confronting product characteristics with user requirements. Remote Sensing of Environment, 252, 112162. https://doi.org/10.1016/J.RSE.2020.112162spa
dc.relation.referencesPinto, E. P., Pires, M. A., Matos, R. S., Zamora, R. R. M., Menezes, R. P., Araújo, R. S., y de Souza, T. M. (2021). Lacunarity exponent and Moran index: A complementary methodology to analyze AFM images and its application to chitosan films. Physica A: Statistical Mechanics and Its Applications, 581, 126192. https://doi.org/10.1016/J.PHYSA.2021.126192spa
dc.relation.referencesProfillidis, V. A., y Botzoris, G. N. (2019). Statistical Methods for Transport Demand Modeling. Modeling of Transport Demand, 163–224. https://doi.org/10.1016/B978-0-12-811513-8.00005-4spa
dc.relation.referencesQGIS Association. (2023). QGIS Geographic Information System. QGIS Association.spa
dc.relation.referencesQuegan, S., & Yu, J. J. (2001). Filtering of multichannel SAR images. IEEE Transactions on Geoscience and Remote Sensing, 39(11), 2373–2379. https://doi.org/10.1109/36.964973spa
dc.relation.referencesQuiroz Londoño, O. M., Romanelli, A., Lima, M. L., Massone, H. E., y Martínez, D. E. (2016). Fuzzy logic-based assessment for mapping potential infiltration areas in low-gradient watersheds. Journal of Environmental Management, 176, 101–111. https://doi.org/10.1016/J.JENVMAN.2016.03.038spa
dc.relation.referencesRayyad, A., Elderderi, S., Massot, V., y Chourpa, I. (2023). Comparison of SVMR and PLSR for ATR-IR data treatment: Application to AQC of mAbs in clinical solutions. Vibrational Spectroscopy, 129, 103594. https://doi.org/10.1016/j.vibspec.2023.103594spa
dc.relation.referencesR Core Team. (2020). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing.spa
dc.relation.referencesRestrepo, L., y González, J. (2007). De Pearson a Spearman. Revista Colombiana de Ciencias Pecuarias, 20. http://www.scielo.org.co/scielo.php?script=sci_arttextypid=S0120-06902007000200010spa
dc.relation.referencesRodríguez-Vásquez, A. F., Aristizábal-Castillo, A. M., y Camacho-Tamayo, J. H. (2008). Variabilidad espacial de los modelos de infiltración de Philip y Kostiakov en un suelo Ándico. Engenharia Agrícola, 28(1), 64–75. https://doi.org/10.1590/S0100-69162008000100007spa
dc.relation.referencesSarmadian, F., & Taghizadeh-Mehrjardi, R. (2014). Estimation of infiltration rate and deep percolation water using feed-forward neural networks in Gorgan Province. Eurasian Journal of Soil Science, 3, 1–6.spa
dc.relation.referencesShukla, M. K. (2014). Soil Physics an Introduction.spa
dc.relation.referencesStasolla, M., & Neyt, X. (2018). An Operational Tool for the Automatic Detection and Removal of Border Noise in Sentinel-1 GRD Products. Sensors 2018, Vol. 18, Page 3454, 18(10), 3454. https://doi.org/10.3390/S18103454spa
dc.relation.referencesTashayo, B., Honarbakhsh, A., Akbari, M., y Ostovari, Y. (2020). Digital mapping of Philip model parameters for prediction of water infiltration at the watershed scale in a semi-arid region of Iran. Geoderma Regional, 22, e00301. https://doi.org/10.1016/J.GEODRS.2020.E00301spa
dc.relation.referencesTeegavarapu, R. S. V., Salas, J. D., y Stedinger, J. R. (2019). Statistical Analysis of Hydrologic Variables: Methods and Applications. In Statistical Analysis of Hydrologic Variables: Methods and Applications. American Society of Civil Engineers (ASCE). https://doi.org/10.1061/9780784415177spa
dc.relation.referencesTorres, R., Snoeij, P., Geudtner, D., Bibby, D., Davidson, M., Attema, E., Potin, P., Rommen, B. Ö., Floury, N., Brown, M., Traver, I. N., Deghaye, P., Duesmann, B., Rosich, B., Miranda, N., Bruno, C., L’Abbate, M., Croci, R., Pietropaolo, A., … Rostan, F. (2012). GMES Sentinel-1 mission. Remote Sensing of Environment, 120, 9–24. https://doi.org/10.1016/j.rse.2011.05.028spa
dc.relation.referencesValentin, C. y Casenave, A. (1992). Infiltration into sealed soils as influenced by gravel cover. Soil Science Society of America Journal, 56 (6), 1667-1673. https://doi.org/10.2136/sssaj1992.0361599500 5600060002xspa
dc.relation.referencesValentin, C. (1994). Surface sealing as affected by various rock fragment covers in West Africa. Catena, 23(1-2), 87-97. https://doi.org/10. 1016/0341-8162(94)90055-8spa
dc.relation.referencesvan Schaik, N. L. M. B. (2009). Spatial variability of infiltration patterns related to site characteristics in a semi-arid watershed. Catena, 78(1), 36–47. https://doi.org/10.1016/j.catena.2009.02.017spa
dc.relation.referencesVollrath, A., Mullissa, A., & Reiche, J. (2020). Angular-Based Radiometric Slope Correction for Sentinel-1 on Google Earth Engine. Remote Sensing 2020, Vol. 12, Page 1867, 12(11), 1867. https://doi.org/10.3390/RS12111867spa
dc.relation.referencesWoodhouse, I. H. (2017). Introduction to microwave remote sensing. Introduction to Microwave Remote Sensing, 1–400. https://doi.org/10.1201/9781315272573/introduction-microwave-remote-sensing-iain-woodhousespa
dc.relation.referencesXie, K., Liu, P., Zhang, J., Wang, G., Zhang, X., y Zhou, L. (2021). Identification of spatially distributed parameters of hydrological models using the dimension-adaptive key grid calibration strategy. Journal of Hydrology, 598, 125772. https://doi.org/10.1016/J.JHYDROL.2020.125772spa
dc.relation.referencesXiong, Y., Yang, W., Liao, H., Gong, Z., Xu, Z., Du, Y., y Li, W. (2022). Soft variable selection combining partial least squares and attention mechanism for multivariable calibration. Chemometrics and Intelligent Laboratory Systems, 223, 104532. https://doi.org/10.1016/J.CHEMOLAB.2022.104532spa
dc.relation.referencesYamagata, Y., & Seya, H. (2019). Spatial Analysis Using Big Data : Econometrical Methods and Applications. Elsevier Academic Press. http://www.sciencedirect.com:5070/book/9780128131275/spatial-analysis-using-big-dataspa
dc.relation.referencesYang, M., Zhang, Y., y Pan, X. (2020). Improving the Horton infiltration equation by considering soil moisture variation. Journal of Hydrology, 586, 124864. https://doi.org/10.1016/J.JHYDROL.2020.124864spa
dc.relation.referencesZapata, N., & Playán, E. (2000). Elevation and infiltration in a level basin. I. Characterizing variability. Irrigation Science, 19(4), 155–164.https://doi.org/10.1007/s002710000017spa
dc.relation.referencesZhu, P., Zhang, G., Yang, Y., Wang, C., Chen, S., y Wan, Y. (2023). Infiltration properties affected by slope position on cropped hillslopes. Geoderma, 432, 116379. https://doi.org/10.1016/J.GEODERMA.2023.11637spa
dc.relation.referencesZou, C., Wang, Z., Cui, X., & Ostovari, Y. (2020). GIS-based digital modeling of soil infiltration in calcareous soils. Communications in Soil Science and Plant Analysis, 1590–1601. https://doi.org/10.1080/00103624.2020.1791153spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materialesspa
dc.subject.lembINFILTRACION DEL SUELOspa
dc.subject.lembSoil infiltrationeng
dc.subject.lembUSO DE LA TIERRAspa
dc.subject.lembLand useeng
dc.subject.lembHIDROLOGIA-MODELOS MATEMATICOSspa
dc.subject.lembHidrology - mathematical modelseng
dc.subject.proposalSensoramiento remotospa
dc.subject.proposalPropiedades físicas del suelospa
dc.subject.proposalHidrodinámica del suelospa
dc.subject.proposalModelo de elevación digitalspa
dc.subject.proposalCobertura y uso del suelospa
dc.subject.proposalModelación espacialspa
dc.subject.proposalAnálisis de impactosspa
dc.subject.proposalRemote sensingeng
dc.subject.proposalSoil physical propertieseng
dc.subject.proposalSoil hydrodynamicseng
dc.subject.proposalDigital elevation modeleng
dc.subject.proposalLand cover and useeng
dc.subject.proposalSpatial modelingeng
dc.subject.proposalImpact analysiseng
dc.titlePredicción de la infiltración en el suelo mediante la integración de sensores remotos e inferencia espacial en una microcuenca andinaspa
dc.title.translatedPrediction of soil infiltration through the integration of remote sensors and spatial inference in an Andean micro-watershedeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1016087397.2024.pdf
Tamaño:
5.03 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Geomática

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: