Predicción de la infiltración en el suelo mediante la integración de sensores remotos e inferencia espacial en una microcuenca andina
dc.contributor.advisor | Darghan Contreras, Aquiles Enrique | |
dc.contributor.advisor | Leal Villamil, Julián | |
dc.contributor.author | Páez Lugo, Eliana Alejandra | |
dc.contributor.orcid | Paez Lugo, Eliana Alejandra [0009-0009-6435-1049] | spa |
dc.date.accessioned | 2024-07-17T18:36:20Z | |
dc.date.available | 2024-07-17T18:36:20Z | |
dc.date.issued | 2024 | |
dc.description | ilustraciones, diagramas, mapas, tablas | spa |
dc.description.abstract | La infiltración es el proceso de entrada del agua al suelo, su estimación es importante tanto para hacer un eficiente uso del recurso hídrico en cultivos, como para efectos de los modelos hidrológicos. Debido a su complejidad metodológica y espacial, se han desarrollado diversos modelos para su estimación; sin embargo, la idoneidad y ajuste de estos a las condiciones particulares de cada suelo generalmente no resulta simple, conllevando a la necesidad de disminuir su incertidumbre para obtener resultados más consistentes. Esta investigación desarrolló un modelo espacial para estimar la tasa de infiltración básica empleando índices de humedad y vegetación provenientes de imágenes Sentinel- 1, atributos del terreno obtenidos del modelo digital de elevación ALOS PALSAR y algunas propiedades del suelo. Los resultados demostraron que el modelo autorregresivo espacial con errores autorregresivos permitió modelar espacialmente la infiltración base, donde el ajuste de los valores observados y estimados presentaron un coeficiente de correlación de 0.98. Se evidenció una relación estadística significativa entre los índices de radar y la infiltración base en los suelos y se confirmó la incidencia de la elevación y algunas de las propiedades físicas del suelo en la estimación de la infiltración base, esta relación se entiende también como el impacto que tienen dichas variables en el cálculo de la infiltración, allí se encontró que todas las variables tuvieron impacto positivo, particularmente el índice de humedad y la elevación tuvieron el mayor impacto y el porcentaje de arenas el menor (texto tomado de la fuente). | spa |
dc.description.abstract | Infiltration is the process of entry of water into the soil, its estimation is important both for an efficient use of the water resource in crops, and for the effects of hydrological models. Due to its methodological and spatial complexity, various models have been developed for its estimation; however, the suitability and adjustment of these to the particular conditions of each soil is generally not simple, leading to the need to reduce their uncertainty to obtain more consistent results. This research developed a spatial model to estimate the steady-state infiltration rate using moisture and vegetation indices from Sentinel-1 images, terrain attributes obtained from the ALOS PALSAR digital elevation model and some soil properties. The results showed that the spatial autoregressive model with autoregressive errors allowed to spatially model the base infiltration, where the adjustment of the observed and estimated values presented a Pearson correlation coefficient of 0.98. A significant statistical relationship between radar indices and steady-state infiltration rate in soils was evidenced and the incidence of elevation and some of the physical properties of the soil in the estimation of base infiltration was confirmed, this relationship is also understood as the impact that these variables have on the calculation of infiltration, it was found that all variables had a positive impact, particularly the humidity index and elevation had the greatest impact and the percentage of sand the least. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magister en Geomática | spa |
dc.description.researcharea | Tecnologías Geoespaciales | spa |
dc.format.extent | 118 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/86537 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ciencias Agrarias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias Agrarias - Maestría en Geomática | spa |
dc.relation.references | Achouri, M., y Gifford, G. F. (1984). Spatial and seasonal variability of field Measured Infiltration Rates on a Rangeland Site in Utah. Journal of Range Management, 37(5), 451. https://doi.org/10.2307/3899635 | spa |
dc.relation.references | Al-Qinna, M. I., Salahat, M. A. y Shatnawi, Z. N. (2008). Effect of carbonates and gravel contents on hydraulic properties in gravely-calcareous soils. Dirasat, Agricultural Sciences, 35 (3), 145-158 | spa |
dc.relation.references | Angelaki, A., Singh Nain, S., Singh, V., y Sihag, P. (2018). Estimation of models for cumulative infiltration of soil using machine learning methods. Https://Doi.Org/10.1080/09715010.2018.1531274, 27(2), 162–169. https://doi.org/10.1080/09715010.2018.1531274 | spa |
dc.relation.references | Asfawesen Molla, G., Desta, G., y Dananto, M. (2022). Soil Management and crop practice effect on soil water infiltration and soil water storage in the humid lowlands of Beles sub-basin, Ethiopia. Hydrology, 10(1), 1. https://doi.org/10.11648/j.hyd.20221001.11 | spa |
dc.relation.references | Atwood, D. K., Small, D., & Gens, R. (2012). Improving PolSAR land cover classification with radiometric correction of the coherency matrix. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5(3), 848–856. https://doi.org/10.1109/JSTARS.2012.2186791 | spa |
dc.relation.references | Baraha, S., & Sahoo, A. K. (2023). Synthetic aperture radar image and its despeckling using variational methods: A Review of recent trends. Signal Processing, 212, 109156. https://doi.org/10.1016/J.SIGPRO.2023.109156 | spa |
dc.relation.references | Bautista, S., Mayor, Á. G., Bourakhouadar, J., y Bellot, J. (2007). Plant spatial pattern Predicts Hillslope Runoff and Erosion in a Semiarid Mediterranean Landscape. Ecosystems 2007 10:6, 10(6), 987–998. https://doi.org/10.1007/S10021-007-9074-3 | spa |
dc.relation.references | Bayabil, H. K., Dile, Y. T., Tebebu, T. Y., Engda, T. A., y Steenhuis, T. S. (2019). Evaluating infiltration models and pedotransfer functions: Implications for hydrologic modeling. Geoderma, 338, 159–169. https://doi.org/10.1016/J.GEODERMA.2018.11.028 | spa |
dc.relation.references | Bergeson, C. B., Martin, K. L., Doll, B., y Cutts, B. B. (2022). Soil infiltration rates are underestimated by models in an urban watershed in central North Carolina, USA. Journal of Environmental Management, 313, 115004. https://doi.org/10.1016/j.jenvman.2022.115004 | spa |
dc.relation.references | Berryman, E., Hatten, J., Page-Dumroese, D. S., Heckman, K. A., D’Amore, D. V., Puttere, J., SanClements, M., Connolly, S. J., Hobie Perry, C. H., y Domke, G. M. (2020). Soil Carbon. Forest and rangeland soils of the United States under changing conditions: A Comprehensive Science Synthesis, 9–31. https://doi.org/10.1007/978-3-030-45216-2_2/TABLES/2 | spa |
dc.relation.references | Bivand, R. (2023a). Package “spatialreg.” https://doi.org/10.1080/01621459.1975.10480272 | spa |
dc.relation.references | Bivand, R. (2023b). Package “spdep.” https://doi.org/10.1002/(SICI)1097-0258(19990830)18:16%3C2147::AID | spa |
dc.relation.references | Brady, N. C., y Weil, R. R. (2008). The Nature and properties of soils. | spa |
dc.relation.references | Brath, A., Montanari, A., Brath, A., y Montanari, A. (2000). The effects of the spatial variability of soil infiltration capacity in distributed flood modelling. HyPr, 14(15), 2779–2794. https://doi.org/10.1002/1099-1085(20001030)14:15 | spa |
dc.relation.references | Bryan, B. A. (2003). Physical environmental modeling, visualization and query for supporting landscape planning decisions. Landscape and Urban Planning, 65(4), 237–259. https://doi.org/10.1016/S0169-2046(03)00059-8 | spa |
dc.relation.references | Buzai, G. D., y Montes Galbán, E. J. (2022). Estadística Espacial: Fundamentos y aplicación con Sistemas de Información Geográfica. https://ri.conicet.gov.ar/handle/11336/161048 | spa |
dc.relation.references | Campbell, J. B., & Wynne, R. H. (2011). Introduction to remote sensing. 667. | spa |
dc.relation.references | Capowiez, Y., Sammartino, S., Keller, T., y Bottinelli, N. (2021). Decreased burrowing activity of endogeic earthworms and effects on water infiltration in response to an increase in soil bulk density. Pedobiologia, 85–86, 150728. https://doi.org/10.1016/J.PEDOBI.2021.150728 | spa |
dc.relation.references | Chari, M. M., Poozan, M. T., y Afrasiab, P. (2020). Modelling soil water infiltration variability using scaling. Biosystems Engineering, 196, 56–66. https://doi.org/10.1016/J.BIOSYSTEMSENG.2020.05.014 | spa |
dc.relation.references | Chavent, M., Kuentz-Simonet, V., Labenne, A., y Saracco, J. (2018). ClustGeo: an R package for hierarchical clustering with spatial constraints. Computational Statistics, 33(4), 1799–1822. https://doi.org/10.1007/S00180-018-0791-1/METRICS | spa |
dc.relation.references | Cohen, J., Lemmetyinen, J., Jorge Ruiz, J., Rautiainen, K., Ikonen, J., Kontu, A., & Pulliainen, J. (2024). Detection of soil and canopy freeze/thaw state in the boreal region with L and C Band Synthetic Aperture Radar. Remote Sensing of Environment, 305, 114102. https://doi.org/10.1016/J.RSE.2024.114102 | spa |
dc.relation.references | Corporación Autónoma Regional del Tolima. (2016). Cartografía escala 1:25,000 de las microcuencas del departamento del Tolima. | spa |
dc.relation.references | Corporación Autónoma Regional del Tolima, y Universidad de Ibagué. (2018). Ajuste parcial a la zonificación ambiental del Plan de Ordenación y Manejo de la cuenca hidrográfica del río Coello: Cartografía 1:25.000 de la Cobertura y Uso de la Tierra. | spa |
dc.relation.references | CORTOLIMA, & Universidad del Tolima. (2021). Informe Final Evaluación Regional del Agua del Departamento del Tolima Fase 1. | spa |
dc.relation.references | Cortes-D, D. L., Camacho-Tamayo, J. H., y Giraldo, R. (2018). Spatial prediction of soil infiltration using functional geostatistics. Acta Universitatis Carolinae, Geographica, 53(2), 149–155. https://doi.org/10.14712/23361980.2018.15 | spa |
dc.relation.references | Das, K., & Paul, P. K. (2015). Present status of soil moisture estimation by microwave remote sensing. Cogent Geoscience, 1(1), 1084669. https://doi.org/10.1080/23312041.2015.1084669 | spa |
dc.relation.references | Dubitzky, W., Wolkenhauer, O., Cho, K.-H., y Yokota, H. (2013). Encyclopedia of Systems Biology. Encyclopedia of Systems Biology. https://doi.org/10.1007/978-1-4419-9863-7 | spa |
dc.relation.references | Dualeh, E. W., Ebmeier, S. K., Wright, T. J., Poland, M. P., Grandin, R., Stinton, A. J., Camejo-Harry, M., Esse, B., & Burton, M. (2023). Rapid pre-explosion increase in dome extrusion rate at La Soufrière, St. Vincent quantified from synthetic aperture radar backscatter. Earth and Planetary Science Letters, 603, 117980. https://doi.org/10.1016/J.EPSL.2022.117980 | spa |
dc.relation.references | Duan, R., Fedler, C. B., y Borrelli, J. (2011). Field evaluation of infiltration models in lawn soils. Irrigation Science, 29(5), 379–389. https://doi.org/10.1007/S00271-010-0248-Y/METRICS | spa |
dc.relation.references | Ekhmaj, A. I. (2010). Predicting soil infiltration rate using artificial neural network. ICEEA 2010 - 2010 International Conference on Environmental Engineering and Applications, Proceedings, 117–121. https://doi.org/10.1109/ICEEA.2010.5596107 | spa |
dc.relation.references | Elhorst, J. P. (2014). Spatial econometrics from Cross-Sectional Data to Spatial Panels. http://www.springer.com/series/10096 | spa |
dc.relation.references | ESA. (2023). Copernicus Sentinel data. | spa |
dc.relation.references | Esch, S., Korres, W., Reichenau, T. G., y Schneider, K. (2018). Soil moisture index from ERS-SAR and its application to the analysis of spatial patterns in agricultural areas. Https://Doi.Org/10.1117/1.JRS.12.022206, 12(2), 022206. https://doi.org/10.1117/1.JRS.12.022206 | spa |
dc.relation.references | Fil, P. P., Yurova, A. Y., Dobrokhotov, A., Kozlov, D., Yurova, P. P. ;, Dobrokhotov, A. Y. ;, Kozlov, A. ;, Cugueró-Escofet, À., y Puig, V. (2021). Estimation of Infiltration Volumes and Rates in Seasonally Water-Filled Topographic Depressions Based on Remote-Sensing Time Series. Sensors 2021, Vol. 21, Page 7403, 21(21), 7403. https://doi.org/10.3390/S21217403 | spa |
dc.relation.references | Fischer, M. M., & Nijkamp, P. (2014). Handbook of regional science. Handbook of Regional Science, 1–1732. https://doi.org/10.1007/978-3-642-23430-9/COVER | spa |
dc.relation.references | Flores-Anderson, A., Herndon, K., Thapa, R. B., & Cherrington, E. (2019). The SAR Handbook:Comprehensive Methodologies for Forest Monitoring and Biomass Estimation. https://doi.org/10.25966/nr2c-s697 | spa |
dc.relation.references | Flügel, W. A. (1997). Combining GIS with regional hydrological modelling using hydrological response units (HRUs): An application from Germany. Mathematics and Computers in Simulation, 43(3–6), 297–304. https://doi.org/10.1016/S0378-4754(97)00013-X | spa |
dc.relation.references | Franceschetti, G., & Lanari, R. (2018). Synthetic aperture radar processing. Synthetic Aperture Radar Processing, 1–307. https://doi.org/10.1201/9780203737484/Synthetic-aperture-radar-processing-fidler-giorgio-franceschetti-riccardo-lanari-giorgio-franceschetti-riccardo-lanari | spa |
dc.relation.references | Francos, N., Chabrillat, S., Tziolas, N., Milewski, R., Brell, M., Samarinas, N., Angelopoulou, T., Tsakiridis, N., Liakopoulos, V., Ruhtz, T., y Ben-Dor, E. (2023). Estimation of water-infiltration rate in Mediterranean sandy soils using airborne hyperspectral sensors. CATENA, 233, 107476. https://doi.org/10.1016/J.CATENA.2023.107476 | spa |
dc.relation.references | Francos, N., Romano, N., Nasta, P., Zeng, Y., Szabó, B., Manfreda, S., Ciraolo, G., Mészáros, J., Zhuang, R., Su, B., y Ben‐dor, E. (2021). Mapping Water Infiltration Rate Using Ground and UAV Hyperspectral Data: A Case Study of Alento, Italy. Remote Sensing 2021, Vol. 13, Page 2606, 13(13), 2606. https://doi.org/10.3390/RS13132606 | spa |
dc.relation.references | Frery, A. C., Wu, J., y Gómez, L. (2022). SAR image analysis: a computational statistics approach : with R code, data, and applications. 182. https://www.wiley.com/en-us/SAR+Image+Analysis+A+Computational+Statistics+Approach%3A+With+R+Code%2C+Data%2C+and+Applications-p-9781119795292 | spa |
dc.relation.references | Gan, F., Shi, H., Gou, J., Zhang, L., y Liu, C. (2023). Effects of bedrock strata dip on soil infiltration capacity under different land use types in a karst trough valley of Southwest China. CATENA, 230, 107253. https://doi.org/10.1016/J.CATENA.2023.107253 | spa |
dc.relation.references | Goldshleger, N., Chudnovsky, A., & Ben-Dor, E. (2012). Using reflectance spectroscopy and artificial neural network to assess water infiltration rate into the soil profile. Applied and Environmental Soil Science, 2012. https://doi.org/10.1155/2012/439567 | spa |
dc.relation.references | Govindaraju, R. S., Corradini, C., y Morbidelli, R. (2006). A semi-analytical model of expected areal-average infiltration under spatial heterogeneity of rainfall and soil saturated hydraulic conductivity. Journal of Hydrology, 316(1–4), 184–194. https://doi.org/10.1016/J.JHYDROL.2005.04.019 | spa |
dc.relation.references | Gray, D. M., y Norum, D. I. (1967). Effect of soil moisture in infiltration as related to runoff and recharge. Hydrol Symp Proc. https://doi.org/10.3/JQUERY-UI.JS | spa |
dc.relation.references | Hadria, R., Duchemin, B., Baup, F., Le Toan, T., Bouvet, A., Dedieu, G., y Le Page, M. (2009). Combined use of optical and radar satellite data for the detection of tillage and irrigation operations: Case study in Central Morocco. Agricultural Water Management, 96(7), 1120–1127. https://doi.org/10.1016/J.AGWAT.2009.02.010 | spa |
dc.relation.references | Hervada-Sala, C., y Jarauta-Bragulat, E. (2004). A program to perform Ward’s clustering method on several regionalized variables. Computers y Geosciences, 30(8), 881–886. https://doi.org/10.1016/J.CAGEO.2004.07.003 | spa |
dc.relation.references | Hervé-Fernández, P., Muñoz-Arriagada, R., Glucevic-Almonacid, C., Bahamonde-Vidal, L., y Radic-Schilling, S. (2023). Influence of Rangeland Land Cover on Infiltration Rates, Field-Saturated Hydraulic Conductivity, and Soil Water Repellency in Southern Patagonia. Rangeland Ecology y Management, 90, 92–100. https://doi.org/10.1016/J.RAMA.2023.06.004 | spa |
dc.relation.references | Hillel, D. (2003). Introduction to environmental soil physics. Introduction to Environmental Soil Physics, 1–494. https://doi.org/10.1016/B978-0-12-348655-4.X5000-X | spa |
dc.relation.references | Hoekman, D. H., & Reiche, J. (2015). Multi-model radiometric slope correction of SAR images of complex terrain using a two-stage semi-empirical approach. Remote Sensing of Environment, 156, 1–10. https://doi.org/10.1016/J.RSE.2014.08.037 | spa |
dc.relation.references | Hovde, K., Mevik, B.-H., Wehrens, R., & Hiemstra, P. (2023). Partial Least Squares and Principal Component Regression [R package pls version 2.8-3]. https://CRAN.R-project.org/package=pls | spa |
dc.relation.references | IDEAM. (2012). Mapa de clasificación climática Caldas-Lang de la República de Colombia. | spa |
dc.relation.references | IDEAM. (2022). Proyecto DHIME. | spa |
dc.relation.references | Instituto Geográfico Agustín Codazzi. (2004). Estudio general de suelos y zonificación de tierras departamento del Tolima. Instituto Geográfico Agustín Codazzi. | spa |
dc.relation.references | JAXA/METI. (2010). ALOS-1PALSAR Radiometric High Resolution Terrain Corrected Image. | spa |
dc.relation.references | Ji, X., Thompson, A., Lin, J., Jiang, F., Ge, H., Yu, M., y Huang, Y. (2020). Modeling spatial distribution of rainfall infiltration amounts in South China using cellular automata and its relationship with the occurrence of collapsing gullies. Catena, 194. https://doi.org/10.1016/j.catena.2020.104676 | spa |
dc.relation.references | Jin, F., y Lee, L. fei. (2018). Outer-product-of-gradients tests for spatial autoregressive models. Regional Science and Urban Economics, 72, 35–57. https://doi.org/10.1016/J.REGSCIURBECO.2017.03.006 | spa |
dc.relation.references | Kang, X., Ma, X., Fan, H., Liu, H., y Shojaaddini, A. (2022). Soil infiltration, its prediction, and GIS-mapping in calcareous soils in northwest Iran. Archives of Agronomy and Soil Science, 68(2), 242–256. https://doi.org/10.1080/03650340.2020.1830377 | spa |
dc.relation.references | Kambezidis, H. D. (2012). The Solar Resource. Comprehensive Renewable Energy, 27–84. https://doi.org/10.1016/B978-0-08-087872-0.00302-4 | spa |
dc.relation.references | Karunasingha, D. S. K. (2022). Root mean square error or mean absolute error? Use their ratio as well. Information Sciences, 585, 609–629. https://doi.org/10.1016/J.INS.2021.11.036 | spa |
dc.relation.references | Kashi, H., Emamgholizadeh, S., y Ghorbani, H. (2014). Estimation of Soil Infiltration and Cation Exchange Capacity Based on Multiple Regression, ANN (RBF, MLP), and ANFIS Models. Communications in Soil Science and Plant Analysis, 45(9), 1195–1213. https://doi.org/10.1080/00103624.2013.874029 | spa |
dc.relation.references | Kirkland, E. J. (2010). Advanced computing in electron microscopy: Second edition. Advanced Computing in Electron Microscopy: Second Edition, 1–289. https://doi.org/10.1007/978-1-4419-6533-2 | spa |
dc.relation.references | Kornelsen, K. C., y Coulibaly, P. (2013). Advances in soil moisture retrieval from synthetic aperture radar and hydrological applications. Journal of Hydrology, 476, 460–489. https://doi.org/10.1016/J.JHYDROL.2012.10.044 | spa |
dc.relation.references | Lähderanta, T., Lovén, L., Ruha, L., Leppänen, T., Launonen, I., Riekki, J., & Sillanpää, M. J. (2024). Capacitated spatial clustering with multiple constraints and attributes. Engineering Applications of Artificial Intelligence, 127, 107182. https://doi.org/10.1016/J.ENGAPPAI.2023.107182 | spa |
dc.relation.references | Leal, J. (2022). Evaluación del comportamiento hidráulico de suelos con presencia de fragmentos de roca en el perfil. Estudio de caso: Microcuenca Zanja Honda, Cuenca Baja del Rio Combeima (Ibagué-Tolima). Universidad Del Tolima. | spa |
dc.relation.references | Leal, J., Avila, E. A., Darghan, A. E., y Lobo, D. (2023). Spatial modeling of infiltration and its relationship with surface coverage of rock fragments and porosity in soils of an andean micro-watershed in Tolima (Colombia). Geoderma Regional, 33, e00637. https://doi.org/10.1016/J.GEODRS.2023.E00637 | spa |
dc.relation.references | LeSage, J., y Pace, R. K. (2011). Introduction to Spatial Econometrics. Journal of the Royal Statistical Society Series A: Statistics in Society, 174(2), 513–514. https://doi.org/10.1111/J.1467-985X.2010.00681_13.X | spa |
dc.relation.references | Liu, T., y Lee, L. fei. (2019). A likelihood ratio test for spatial model selection. Journal of Econometrics, 213(2), 434–458. https://doi.org/10.1016/J.JECONOM.2019.07.001 | spa |
dc.relation.references | Liu, C. an, Chen, Z. xin, Shao, Y., Chen, J. song, Hasi, T., & Pan, H. zhu. (2019). Research advances of SAR remote sensing for agriculture applications: A review. Journal of Integrative Agriculture, 18(3), 506–525. https://doi.org/10.1016/S2095-3119(18)62016-7 | spa |
dc.relation.references | Machiwal, D., Jha, M. K., y Mal, B. C. (2006). Modelling Infiltration and quantifying Spatial Soil Variability in a Wasteland of Kharagpur, India. Biosystems Engineering, 95(4), 569–582. https://doi.org/10.1016/j.biosystemseng.2006.08.007 | spa |
dc.relation.references | Mahapatra, S., Jha, M. K., Biswal, S., y Senapati, D. (2020). Assessing Variability of Infiltration Characteristics and Reliability of Infiltration Models in a Tropical Sub-humid Region of India. Scientific Reports 2020 10:1, 10(1), 1–18. https://doi.org/10.1038/s41598-020-58333-8 | spa |
dc.relation.references | Mahdian, M. H., Oskoee, R. S., Kamali, K., Angoshtari, H., y Kadkhodapo, M. A. (2009). Developing Pedo Transfer Functions to Predict Infiltration Rate in Flood Spreading Stations of Iran. Research Journal of Environmental Sciences, 3(6), 697–704. https://doi.org/10.3923/RJES.2009.697.704 | spa |
dc.relation.references | Maître, H. (2008). Processing of Synthetic Aperture Radar Images. Processing of Synthetic Aperture Radar Images. https://doi.org/10.1002/9780470611111 | spa |
dc.relation.references | Mandal, D., Kumar, V., Ratha, D., Lopez-Sanchez, J. M., Bhattacharya, A., McNairn, H., Rao, Y. S., y Ramana, K. V. (2020). Assessment of rice growth conditions in a semi-arid region of India using the Generalized Radar Vegetation Index derived from RADARSAT-2 polarimetric SAR data. Remote Sensing of Environment, 237, 111561. https://doi.org/10.1016/J.RSE.2019.111561 | spa |
dc.relation.references | Martínez, E., Fuentes, J. P., y Acevedo, E. (2008). Carbono orgánico y propiedades del suelo. Revista de La Ciencia Del Suelo y Nutrición Vegetal, 8(1), 68–96. https://doi.org/10.4067/S0718-27912008000100006 | spa |
dc.relation.references | Mishra, S. K., Tyagi, J. V., y Singh, V. P. (2003). Comparison of infiltration models. Hydrological Processes, 17(13), 2629–2652. https://doi.org/10.1002/HYP.1257 | spa |
dc.relation.references | Miyata, S., Gomi, T., Sidle, R. C., Hiraoka, M., Onda, Y., Yamamoto, K., y Nonoda, T. (2019). Assessing spatially distributed infiltration capacity to evaluate storm runoff in forested catchments: Implications for hydrological connectivity. Science of The Total Environment, 669, 148–159. https://doi.org/10.1016/J.SCITOTENV.2019.02.453 | spa |
dc.relation.references | Moraes, A. G. de L., de Carvalho, D. F., Antunes, M. A. H., Ceddia, M. B., y Flanagan, D. C. (2020). Steady infiltration rate spatial modeling from remote sensing data and terrain attributes in southeast Brazil. Geoderma Regional, 20, e00242. https://doi.org/10.1016/J.GEODRS.2019.E00242 | spa |
dc.relation.references | Moreira, A., Prats-Iraola, P., Younis, M., Krieger, G., Hajnsek, I., & Papathanassiou, K. P. (2013). A tutorial on synthetic aperture radar. IEEE Geoscience and Remote Sensing Magazine, 1(1), 6–43. https://doi.org/10.1109/MGRS.2013.2248301 | spa |
dc.relation.references | Mosquera, L. (1986). Clasificación de las tierras por su capacidad de uso. Instituto Geográfico Agustín Codazzi. Subdirección Agrológica. | spa |
dc.relation.references | Mosquera, L., Polo, M., & Carrera, E. (1973). Clasificación de las tierras por su capacidad de uso. Instituto Geográfico Agustín Codazzi. Subdirección Agrológica | spa |
dc.relation.references | Mullissa, A., Vollrath, A., Odongo-Braun, C., Slagter, B., Balling, J., Gou, Y., Gorelick, N., y Reiche, J. (2021). Sentinel-1 SAR Backscatter Analysis Ready Data Preparation in Google Earth Engine. Remote Sensing 2021, Vol. 13, Page 1954, 13(10), 1954. https://doi.org/10.3390/RS13101954 | spa |
dc.relation.references | Muneer, A. S., Sayl, K. N., y Kamal, A. H. (2021). Modeling of spatially distributed infiltration in the Iraqi Western Desert. Applied Geomatics 2021 13:3, 13(3), 467–479. https://doi.org/10.1007/S12518-021-00363-6 | spa |
dc.relation.references | Nasirzadehdizaji, R., Sanli, F. B., Abdikan, S., Cakir, Z., Sekertekin, A., y Ustuner, M. (2019). Sensitivity Analysis of Multi-Temporal Sentinel-1 SAR Parameters to Crop Height and Canopy Coverage. Applied Sciences 2019, Vol. 9, Page 655, 9(4), 655. https://doi.org/10.3390/APP9040655 | spa |
dc.relation.references | Novak, V., y Surda, P. (2010). The water retention of a granite rock fragments in high tatras stony soils. Journal of Hydrology and Hydromechanics, 58(3), 181–187. https://doi.org/10.2478/v10098-010-0017-x | spa |
dc.relation.references | Orjuela-Matta, H. M., Sanabria, Y. R., & Camacho-Tamayo, J. H. (2012). Spatial Analysis of Infiltration in an Oxisol of the Eastern Plains of Colombia. Chilean Journal of Agricultural Research, 72(3), 404–410. https://doi.org/10.4067/S0718-58392012000300015 | spa |
dc.relation.references | Pahlavan-Rad, M. R., Dahmardeh, K., Hadizadeh, M., Keykha, G., Mohammadnia, N., Gangali, M., Keikha, M., Davatgar, N., y Brungard, C. (2020a). Prediction of soil water infiltration using multiple linear regression and random forest in a dry flood plain, eastern Iran. Catena, 194, 104715. https://doi.org/10.1016/J.CATENA.2020.104715 | spa |
dc.relation.references | Paige, G., y Stone, J. (2000). Measurement Methods to Identify and Quantify Spatial Variability of Infiltration on Rangelands | spa |
dc.relation.references | Panahi, M., Khosravi, K., Ahmad, S., Panahi, S., Heddam, S., Melesse, A. M., Omidvar, E., y Lee, C. W. (2021). Cumulative infiltration and infiltration rate prediction using optimized deep learning algorithms: A study in Western Iran. Journal of Hydrology: Regional Studies, 35, 100825. https://doi.org/10.1016/J.EJRH.2021.100825 | spa |
dc.relation.references | Pebesma, E. (2023). Package “sp” Title Classes and Methods for Spatial Data. | spa |
dc.relation.references | Peng, J., Albergel, C., Balenzano, A., Brocca, L., Cartus, O., Cosh, M. H., Crow, W. T., Dabrowska-Zielinska, K., Dadson, S., Davidson, M. W. J., de Rosnay, P., Dorigo, W., Gruber, A., Hagemann, S., Hirschi, M., Kerr, Y. H., Lovergine, F., Mahecha, M. D., Marzahn, P., … Loew, A. (2021). A roadmap for high-resolution satellite soil moisture applications – confronting product characteristics with user requirements. Remote Sensing of Environment, 252, 112162. https://doi.org/10.1016/J.RSE.2020.112162 | spa |
dc.relation.references | Pinto, E. P., Pires, M. A., Matos, R. S., Zamora, R. R. M., Menezes, R. P., Araújo, R. S., y de Souza, T. M. (2021). Lacunarity exponent and Moran index: A complementary methodology to analyze AFM images and its application to chitosan films. Physica A: Statistical Mechanics and Its Applications, 581, 126192. https://doi.org/10.1016/J.PHYSA.2021.126192 | spa |
dc.relation.references | Profillidis, V. A., y Botzoris, G. N. (2019). Statistical Methods for Transport Demand Modeling. Modeling of Transport Demand, 163–224. https://doi.org/10.1016/B978-0-12-811513-8.00005-4 | spa |
dc.relation.references | QGIS Association. (2023). QGIS Geographic Information System. QGIS Association. | spa |
dc.relation.references | Quegan, S., & Yu, J. J. (2001). Filtering of multichannel SAR images. IEEE Transactions on Geoscience and Remote Sensing, 39(11), 2373–2379. https://doi.org/10.1109/36.964973 | spa |
dc.relation.references | Quiroz Londoño, O. M., Romanelli, A., Lima, M. L., Massone, H. E., y Martínez, D. E. (2016). Fuzzy logic-based assessment for mapping potential infiltration areas in low-gradient watersheds. Journal of Environmental Management, 176, 101–111. https://doi.org/10.1016/J.JENVMAN.2016.03.038 | spa |
dc.relation.references | Rayyad, A., Elderderi, S., Massot, V., y Chourpa, I. (2023). Comparison of SVMR and PLSR for ATR-IR data treatment: Application to AQC of mAbs in clinical solutions. Vibrational Spectroscopy, 129, 103594. https://doi.org/10.1016/j.vibspec.2023.103594 | spa |
dc.relation.references | R Core Team. (2020). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. | spa |
dc.relation.references | Restrepo, L., y González, J. (2007). De Pearson a Spearman. Revista Colombiana de Ciencias Pecuarias, 20. http://www.scielo.org.co/scielo.php?script=sci_arttextypid=S0120-06902007000200010 | spa |
dc.relation.references | Rodríguez-Vásquez, A. F., Aristizábal-Castillo, A. M., y Camacho-Tamayo, J. H. (2008). Variabilidad espacial de los modelos de infiltración de Philip y Kostiakov en un suelo Ándico. Engenharia Agrícola, 28(1), 64–75. https://doi.org/10.1590/S0100-69162008000100007 | spa |
dc.relation.references | Sarmadian, F., & Taghizadeh-Mehrjardi, R. (2014). Estimation of infiltration rate and deep percolation water using feed-forward neural networks in Gorgan Province. Eurasian Journal of Soil Science, 3, 1–6. | spa |
dc.relation.references | Shukla, M. K. (2014). Soil Physics an Introduction. | spa |
dc.relation.references | Stasolla, M., & Neyt, X. (2018). An Operational Tool for the Automatic Detection and Removal of Border Noise in Sentinel-1 GRD Products. Sensors 2018, Vol. 18, Page 3454, 18(10), 3454. https://doi.org/10.3390/S18103454 | spa |
dc.relation.references | Tashayo, B., Honarbakhsh, A., Akbari, M., y Ostovari, Y. (2020). Digital mapping of Philip model parameters for prediction of water infiltration at the watershed scale in a semi-arid region of Iran. Geoderma Regional, 22, e00301. https://doi.org/10.1016/J.GEODRS.2020.E00301 | spa |
dc.relation.references | Teegavarapu, R. S. V., Salas, J. D., y Stedinger, J. R. (2019). Statistical Analysis of Hydrologic Variables: Methods and Applications. In Statistical Analysis of Hydrologic Variables: Methods and Applications. American Society of Civil Engineers (ASCE). https://doi.org/10.1061/9780784415177 | spa |
dc.relation.references | Torres, R., Snoeij, P., Geudtner, D., Bibby, D., Davidson, M., Attema, E., Potin, P., Rommen, B. Ö., Floury, N., Brown, M., Traver, I. N., Deghaye, P., Duesmann, B., Rosich, B., Miranda, N., Bruno, C., L’Abbate, M., Croci, R., Pietropaolo, A., … Rostan, F. (2012). GMES Sentinel-1 mission. Remote Sensing of Environment, 120, 9–24. https://doi.org/10.1016/j.rse.2011.05.028 | spa |
dc.relation.references | Valentin, C. y Casenave, A. (1992). Infiltration into sealed soils as influenced by gravel cover. Soil Science Society of America Journal, 56 (6), 1667-1673. https://doi.org/10.2136/sssaj1992.0361599500 5600060002x | spa |
dc.relation.references | Valentin, C. (1994). Surface sealing as affected by various rock fragment covers in West Africa. Catena, 23(1-2), 87-97. https://doi.org/10. 1016/0341-8162(94)90055-8 | spa |
dc.relation.references | van Schaik, N. L. M. B. (2009). Spatial variability of infiltration patterns related to site characteristics in a semi-arid watershed. Catena, 78(1), 36–47. https://doi.org/10.1016/j.catena.2009.02.017 | spa |
dc.relation.references | Vollrath, A., Mullissa, A., & Reiche, J. (2020). Angular-Based Radiometric Slope Correction for Sentinel-1 on Google Earth Engine. Remote Sensing 2020, Vol. 12, Page 1867, 12(11), 1867. https://doi.org/10.3390/RS12111867 | spa |
dc.relation.references | Woodhouse, I. H. (2017). Introduction to microwave remote sensing. Introduction to Microwave Remote Sensing, 1–400. https://doi.org/10.1201/9781315272573/introduction-microwave-remote-sensing-iain-woodhouse | spa |
dc.relation.references | Xie, K., Liu, P., Zhang, J., Wang, G., Zhang, X., y Zhou, L. (2021). Identification of spatially distributed parameters of hydrological models using the dimension-adaptive key grid calibration strategy. Journal of Hydrology, 598, 125772. https://doi.org/10.1016/J.JHYDROL.2020.125772 | spa |
dc.relation.references | Xiong, Y., Yang, W., Liao, H., Gong, Z., Xu, Z., Du, Y., y Li, W. (2022). Soft variable selection combining partial least squares and attention mechanism for multivariable calibration. Chemometrics and Intelligent Laboratory Systems, 223, 104532. https://doi.org/10.1016/J.CHEMOLAB.2022.104532 | spa |
dc.relation.references | Yamagata, Y., & Seya, H. (2019). Spatial Analysis Using Big Data : Econometrical Methods and Applications. Elsevier Academic Press. http://www.sciencedirect.com:5070/book/9780128131275/spatial-analysis-using-big-data | spa |
dc.relation.references | Yang, M., Zhang, Y., y Pan, X. (2020). Improving the Horton infiltration equation by considering soil moisture variation. Journal of Hydrology, 586, 124864. https://doi.org/10.1016/J.JHYDROL.2020.124864 | spa |
dc.relation.references | Zapata, N., & Playán, E. (2000). Elevation and infiltration in a level basin. I. Characterizing variability. Irrigation Science, 19(4), 155–164.https://doi.org/10.1007/s002710000017 | spa |
dc.relation.references | Zhu, P., Zhang, G., Yang, Y., Wang, C., Chen, S., y Wan, Y. (2023). Infiltration properties affected by slope position on cropped hillslopes. Geoderma, 432, 116379. https://doi.org/10.1016/J.GEODERMA.2023.11637 | spa |
dc.relation.references | Zou, C., Wang, Z., Cui, X., & Ostovari, Y. (2020). GIS-based digital modeling of soil infiltration in calcareous soils. Communications in Soil Science and Plant Analysis, 1590–1601. https://doi.org/10.1080/00103624.2020.1791153 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.ddc | 630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales | spa |
dc.subject.lemb | INFILTRACION DEL SUELO | spa |
dc.subject.lemb | Soil infiltration | eng |
dc.subject.lemb | USO DE LA TIERRA | spa |
dc.subject.lemb | Land use | eng |
dc.subject.lemb | HIDROLOGIA-MODELOS MATEMATICOS | spa |
dc.subject.lemb | Hidrology - mathematical models | eng |
dc.subject.proposal | Sensoramiento remoto | spa |
dc.subject.proposal | Propiedades físicas del suelo | spa |
dc.subject.proposal | Hidrodinámica del suelo | spa |
dc.subject.proposal | Modelo de elevación digital | spa |
dc.subject.proposal | Cobertura y uso del suelo | spa |
dc.subject.proposal | Modelación espacial | spa |
dc.subject.proposal | Análisis de impactos | spa |
dc.subject.proposal | Remote sensing | eng |
dc.subject.proposal | Soil physical properties | eng |
dc.subject.proposal | Soil hydrodynamics | eng |
dc.subject.proposal | Digital elevation model | eng |
dc.subject.proposal | Land cover and use | eng |
dc.subject.proposal | Spatial modeling | eng |
dc.subject.proposal | Impact analysis | eng |
dc.title | Predicción de la infiltración en el suelo mediante la integración de sensores remotos e inferencia espacial en una microcuenca andina | spa |
dc.title.translated | Prediction of soil infiltration through the integration of remote sensors and spatial inference in an Andean micro-watershed | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1016087397.2024.pdf
- Tamaño:
- 5.03 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Geomática
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: