Tratamiento de crudos pesados por sonicación con el uso de iniciadores radicalarios
dc.contributor.advisor | Departamento de Ingeniería Química y Ambiental | spa |
dc.contributor.advisor | Boyaca Mendivelso, Luis Alejandro | spa |
dc.contributor.author | Daza Charry, David Alejandro | spa |
dc.contributor.researchgroup | Grupo de Investigación en Procesos Químicos y Bioquímicos | spa |
dc.date.accessioned | 2020-08-04T21:17:36Z | spa |
dc.date.available | 2020-08-04T21:17:36Z | spa |
dc.date.issued | 2020-07-31 | spa |
dc.description.abstract | In this investigation, a heavy crude oil ultrasonic treatment with the use of selected thermal initiators was evaluated in order to upgrade the heavy crude oil transportation properties and fractional composition through the cavitation energy generated by the system. The proposed treatment was conducted in two main steps. The first one involved the ultrasonic preparation and stability evaluation of heavy crude oil-in-water emulsions to generate high uniformity in their droplet size distribution and viscosity reductions in comparison with the base heavy crude oil, which were employed as the treatment medium for the use of persulfate initiators in the petroleum upgrading process. The main results of this step showed viscosity reductions up to 98% (500s-1 25°C) in comparison with the base heavy crude oil, droplet diameters of 4μm and volumetric stabilities up to 90% over 10 days for the emulsions (60/40) (O/W) prepared with concentrations of 2.5% of the surfactant merpol HCS, using ultrasonic amplitudes and induction times up to 70% and 12min, respectively, that leads to an energy consumption of 574.6 kJ per kg of processed crude oil. After the definition of the treatment medium, the properties of the crude oil, such as viscosity, residue, distillates and asphaltene content, were measured after several ultrasonic treatments (ultrasonic induction times and amplitude of 5 to 30min and 80%, respectively) at 60°C and atmospheric pressure, with the use of the initiators potassium persulfate and ammonium persulfate, the chain transfer agent n-dodecyl mercaptan and the hydrogen donors cyclohexane and decahydronaphthalene in order to identify possible upgrading changes in the crude oil. The main results of this study showed that despite of the slight changes generated in the distillates fraction by the ultrasonic treatments, it is possible to achieve high viscosity, asphaltene and coke reductions up to 65%, 42% and 37%, respectively, for the treated crude oils with the initiator potassium persulphate 0.5wt.%) and the hydrogen donor decahydronaphthalene (5.0wt.%) at ultrasonic induction times of 5min (energy consumption of 259.9 kJ per kg of crude oil), which shows the potential of the technology in transportation and processing applications of heavy crude oils. | spa |
dc.description.abstract | En esta investigación se realizó la evaluación de una metodología de tratamiento de petróleos pesados por inducción ultrasónica, que buscó mejorar las propiedades fraccionales y de transporte de un crudo pesado de estudio por medio del efecto de cavitación generado por el sistema y la incorporación de iniciadores. La evaluación de la metodología de tratamiento se dividió en dos etapas principales. La primera consistió en la preparación y evaluación de la estabilidad de emulsiones de crudo-en-agua con ultrasonido, donde se buscó generar uniformidad en la distribución de diámetro de gota y reducciones de viscosidad respecto al crudo de estudio, que permitieran la incorporación de iniciadores radicalarios hidrosolubles de tipo persulfato en el medio para evaluar su desempeño en el mejoramiento del petróleo; los principales resultados de esta etapa, permitieron obtener emulsiones con reducciones de viscosidad de hasta un 98% (500s-1 25°C) respecto al crudo original, diámetros de gota promedio del orden de 4μm y estabilidades volumétricas del 90% por más de 10 días para emulsiones (60/40) (O/W) preparadas con el surfactante merpol HCS a concentraciones de 2.5%v/v, utilizando amplitudes sonoras del 70% y tiempos totales de exposición ultrasónica de 12min, equivalente a un consumo energético de 574.6 kJ por kg de crudo procesado. Posterior a la definición del medio de tratamiento, las propiedades del crudo de estudio tales como su viscosidad, contenido de residuo y destilables por termogravimetría, y contenido de asfaltenos, entre otros, fueron evaluados tras ser sometido a exposiciones sonoras entre 5 a 30min (80% de amplitud), a 60°C y presión atmosférica, incorporando los iniciadores persulfato de potasio y persulfato de amonio, el agente de transferencia de cadena n-dodecil mercaptano y los donores de hidrógeno ciclohexano y decahidronaftaleno al medio, en búsqueda de índices de mejoramiento. Los resultados principales de esta etapa permitieron establecer que, si bien solo se evidencian cambios leves en la fracción destilable del crudo a partir de los sistemas de tratamiento evaluados, es posible alcanzar reducciones de viscosidad, asfaltenos y coque de hasta un 65%, 42% y 37%, respectivamente, para crudos tratados con el iniciador persulfato de potasio (0.5%p/p) y el donor de hidrógeno decahidronaftaleno (5.0%p/p) a tiempos de exposición sonora de 5min, (consumo energético de 259.9kJ por kg de crudo procesado), que demuestra el potencial de la implementación de la tecnología tanto en posibles aplicaciones de transporte como en la reducción de fracciones pesadas del petróleo. | spa |
dc.description.degreelevel | Maestría | spa |
dc.format.extent | 243 | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/77918 | |
dc.language.iso | spa | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.program | Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Química | spa |
dc.relation.references | Abismaı̈l B. et al. (1999). Emulsification by ultrasound: Drop size distribution and stability. Ultrasonics Sonochemistry, 6(1), 75-83. https://doi.org/10.1016/S1350-4177(98)00027-3 | spa |
dc.relation.references | AGOLLI, A., Brunelle, P., & Fischer, A. (2014). Method of designing a heavy crude oil treatment device (United States Patent N.o US20140314628A1). https://patents.google.com/patent/US20140314628A1/en?oq=2014%2f0314628 | spa |
dc.relation.references | Asemani, M., & Rabbani, A. R. (2016). Oil-oil correlation by FTIR spectroscopy of asphaltene samples. Geosciences Journal, 20(2), 273-283. https://doi.org/10.1007/s12303-015-0042-1 | spa |
dc.relation.references | Ashrafizadeh, S. N., & Kamran, M. (2010). Emulsification of heavy crude oil in water for pipeline transportation. Journal of Petroleum Science and Engineering, 71(3), 205-211. https://doi.org/10.1016/j.petrol.2010.02.005 | spa |
dc.relation.references | Avvaru B. et al. (2018). Current knowledge and potential applications of cavitation technologies for the petroleum industry. Ultrasonics Sonochemistry, 42, 493-507. https://doi.org/10.1016/j.ultsonch.2017.12.010 | spa |
dc.relation.references | Barbara H, S. (2005). Organic Molecules. En Infrared Spectroscopy: Fundamentals and Applications (pp. 71-93). John Wiley & Sons, Ltd. https://doi.org/10.1002/0470011149.ch4 | spa |
dc.relation.references | Bates, D. M. (2006). Improvements to viscosity reduction means in oil products (World Intellectual Property Organization Patent N.o WO2006104462A1). https://patents.google.com/patent/WO2006104462A1/en?oq=6%2c544%2c411 | spa |
dc.relation.references | Bohlin Instruments Ltd. (1994). A Basic Introduction To Rheology, Bohlin CVOR User Manual. | spa |
dc.relation.references | BP plc. (2019). BP Statistical Review of World Energy (N.o 68). BP plc. https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html | spa |
dc.relation.references | Castañeda, L. C., Muñoz, J. A. D., & Ancheyta, J. (2014). Current situation of emerging technologies for upgrading of heavy oils. Catalysis Today, 220-222, 248-273. https://doi.org/10.1016/j.cattod.2013.05.016 | spa |
dc.relation.references | Chakma, A., & Berruti, F. (1993). The Effects of Ultrasonic Treatment On the Viscosity of Athabasca Bitumen And Bitumen-solvent Mixtures. Journal of Canadian Petroleum Technology, 32(05). https://doi.org/10.2118/93-05-04 | spa |
dc.relation.references | Cullen, M. (2006). Treatment of crude oil fractions, fossil fuels, and products thereof with sonic energy (United States Patent N.o US7081196B2). https://patents.google.com/patent/US7081196B2/en?oq=7%2c081%2c196 | spa |
dc.relation.references | Dunn, K., & Yen, T. F. (2001). A plausible reaction pathway of asphaltene under ultrasound. Fuel Processing Technology, 73(1), 59-71. https://doi.org/10.1016/S0378-3820(01)00194-1 | spa |
dc.relation.references | Ecopetrol. (2015). Nuevas oportunidades para la industria química, Refinería de Cartagena. CCIQ XXVIII, Bogotá. | spa |
dc.relation.references | Friedrich Menges. (2016). Spectragryph, optical spectroscopy software. https://www.effemm2.de/spectragryph/Spectragryph | spa |
dc.relation.references | García Barneto, A., Carmona, J. A., & Barrón, A. (2015). Thermogravimetric Monitoring of Crude Oil and Its Cuts in an Oil Refinery. Energy & Fuels, 29(4), 2250-2260. https://doi.org/10.1021/ef5028795 | spa |
dc.relation.references | Gaweł, B., Eftekhardadkhah, M., & Øye, G. (2014). Elemental Composition and Fourier Transform Infrared Spectroscopy Analysis of Crude Oils and Their Fractions. Energy & Fuels, 28(2), 997-1003. https://doi.org/10.1021/ef402286y | spa |
dc.relation.references | Gopinath, R., Dalai, A. K., & Adjaye, J. (2006). Effects of Ultrasound Treatment on the Upgradation of Heavy Gas Oil. Energy & Fuels, 20(1), 271-277. https://doi.org/10.1021/ef050231x | spa |
dc.relation.references | Gregoli, A. A., Olah, A. M., Hamshar, J. A., & Rimmer, D. P. (1992). Converting heavy hydrocarbons into lighter hydrocarbons using ultrasonic reactor (United States Patent N.o US5110443A). https://patents.google.com/patent/US5110443A/en?oq=5%2c110%2c443 | spa |
dc.relation.references | Gunnerman, R. W. (2007). Conversion of petroleum resid to usable oils with ultrasound (United States Patent N.o US7300566B2). https://patents.google.com/patent/US7300566B2/en?oq=7%2c300%2c566 | spa |
dc.relation.references | Hart, A. (2014). A review of technologies for transporting heavy crude oil and bitumen via pipelines. Journal of Petroleum Exploration and Production Technology, 4(3), 327-336. https://doi.org/10.1007/s13202-013-0086-6 | spa |
dc.relation.references | Hasan, S. W., Ghannam, M. T., & Esmail, N. (2010). Heavy crude oil viscosity reduction and rheology for pipeline transportation. Fuel, 89(5), 1095-1100. https://doi.org/10.1016/j.fuel.2009.12.021 | spa |
dc.relation.references | Hoshyargar, V., & Ashrafizadeh, S. N. (2013). Optimization of Flow Parameters of Heavy Crude Oil-in-Water Emulsions through Pipelines. Industrial & Engineering Chemistry Research, 52(4), 1600-1611. https://doi.org/10.1021/ie302993m | spa |
dc.relation.references | Huang, W.-S. (1981). Viscosity reduction process (United States Patent N.o US4298455A). https://patents.google.com/patent/US4298455A/en?oq=4%2c298%2c455 | spa |
dc.relation.references | Huc, A.-Y. (2010). Heavy Crude Oils: From Geology to Upgrading: an Overview. Editions TECHNIP. https://books.google.com.co/books?id=_gsri7-F9vkC | spa |
dc.relation.references | Hussein Alboudwarej, et al. (2006). La importancia del petróleo pesado. Schlumberger, Otoño 2006, 38-59. | spa |
dc.relation.references | Islam, M. R. (1995). Potential of Ultrasonic Generators for Use in Oil Wells and Heavy Crude Oil/Bitumen Transportation Facilities. En E. Y. Sheu & O. C. Mullins (Eds.), Asphaltenes: Fundamentals and Applications (pp. 191-218). Springer US. https://doi.org/10.1007/978-1-4757-9293-5_7 | spa |
dc.relation.references | Kaushik P. et al. (2012). Ultrasound cavitation technique for up-gradation of vacuum residue. Fuel Processing Technology, 93(1), 73-77. https://doi.org/10.1016/j.fuproc.2011.09.005 | spa |
dc.relation.references | Kentish, S. E. (2017). Chapter 1 Engineering Principles of Ultrasound Technology. En D. Bermudez-Aguirre (Ed.), Ultrasound: Advances for Food Processing and Preservation (pp. 1-13). Academic Press. https://doi.org/10.1016/B978-0-12-804581-7.00001-4 | spa |
dc.relation.references | Kokal, S. L. (2005). Crude Oil Emulsions: A State-Of-The-Art Review. SPE Production & Facilities, 20(01), 5-13. https://doi.org/10.2118/77497-PA | spa |
dc.relation.references | Kopsch, H. (1995). Thermal Methods in Petroleum Analysis. John Wiley & Sons, Ltd. https://www.wiley.com/en-us/Thermal+Methods+in+Petroleum+Analysis-p-9783527615148 | spa |
dc.relation.references | Langevin D. et al. (2004). Crude Oil Emulsion Properties and Their Application to Heavy Oil Transportation. Oil & Gas Science and Technology, 59(5), 511-521. https://doi.org/10.2516/ogst:2004036 | spa |
dc.relation.references | Lin, J. R., & Yen, T. F. (1993). An upgrading process through cavitation and surfactant. Energy & Fuels, 7(1), 111-118. https://doi.org/10.1021/ef00037a018 | spa |
dc.relation.references | Lott, R. K. (2016). Ultrasonic cavitation reactor for processing hydrocarbons and methods of use thereof (United States Patent N.o US20160046878A1). https://patents.google.com/patent/US20160046878A1/en?oq=2016%2f0046878 | spa |
dc.relation.references | Martínez, A. (2018, abril 24). La contribución del petróleo al desarrollo de Colombia. Mirada a las regiones productoras. Foro La República 100 años de petróleo en Colombia, Bogotá - Fedesarrollo. http://hdl.handle.net/11445/3562 | spa |
dc.relation.references | Martínez-Palou R. et al. (2011). Transportation of heavy and extra-heavy crude oil by pipeline: A review. Journal of Petroleum Science and Engineering, 75(3), 274-282. https://doi.org/10.1016/j.petrol.2010.11.020 | spa |
dc.relation.references | Martínez-Palou R. et al. (2013). Demulsification of heavy crude oil-in-water emulsions: A comparative study between microwave and thermal heating. Fuel, 113, 407-414. https://doi.org/10.1016/j.fuel.2013.05.094 | spa |
dc.relation.references | Mazyar, O. A., & Agrawal, G. (2014). Upgrading heavy oil and bitumen with an initiator (United States Patent N.o US8916042B2). https://patents.google.com/patent/US8916042B2/en?oq=8916042 | spa |
dc.relation.references | Minenergía. (2018). Reservas. Ministerio de Minas y Energía. https://www.minenergia.gov.co/reservas | spa |
dc.relation.references | Minenergía - UPME. (2013). Cadena del Petróleo. UPME. http://www1.upme.gov.co/Hidrocarburos/publicaciones/CadenadelPetroleo_sp.pdf | spa |
dc.relation.references | Mousavi S. et al. (2012). Effect of ultrasonic irradiation on rheological properties of asphaltenic crude oils. Petroleum Science, 9(1), 82-88. https://doi.org/10.1007/s12182-012-0186-9 | spa |
dc.relation.references | NBS, API. (1936). NATIONAL STANDARD PETROLEUM OIL TABLES (N.o C410). NBS, API. | spa |
dc.relation.references | PeroxyChem. (2014). Potassium persulfate TDS. http://www.peroxychem.com/chemistries/persulfates/products/potassium-persulfate/technical-documentation | spa |
dc.relation.references | PeroxyChem. (2017). Ammonium persulfate TDS. http://www.peroxychem.com/chemistries/persulfates/products/ammonium-persulfate/technical-documentation | spa |
dc.relation.references | PeroxyChem. (2018). Persulfates Technical Information. http://www.peroxychem.com/chemistries/persulfates/persulfates-technical-information | spa |
dc.relation.references | Portafolio. (2019, mayo 13). Suben reservas de crudo, pero bajan las de gas natural. https://www.portafolio.co/economia/reservas-de-petroleo-en-colombia-suben-de-5-7-a-6-2-anos-529499 | spa |
dc.relation.references | Rana M. S. et al. (2007). A review of recent advances on process technologies for upgrading of heavy oils and residua. Fuel, 86(9), 1216-1231. https://doi.org/10.1016/j.fuel.2006.08.004 | spa |
dc.relation.references | Riley B. J. et al. (2016). An FTIR method for the analysis of crude and heavy fuel oil asphaltenes to assist in oil fingerprinting. Forensic Science International, 266, 555-564. https://doi.org/10.1016/j.forsciint.2016.07.018 | spa |
dc.relation.references | Sawarkar A.N. et al. (2009). Use of ultrasound in petroleum residue upgradation. The Canadian Journal of Chemical Engineering, 87(3), 329-342. https://doi.org/10.1002/cjce.20169 | spa |
dc.relation.references | Semana. (2018, noviembre 14). Colombia se adaptó al mercado de los crudos pesados. https://www.semana.com/contenidos-editoriales/hidrocarburos-son-el-futuro/articulo/colombia-se-adapto-al-mercado-de-los-crudos-pesados/590038 | spa |
dc.relation.references | Speight, J. G. (2004). Petroleum Asphaltenes - Part 1: Asphaltenes, Resins and the Structure of Petroleum. Oil & Gas Science and Technology, 59(5), 467-477. https://doi.org/10.2516/ogst:2004032 | spa |
dc.relation.references | Speight, J. G. (2014). The Chemistry and Technology of Petroleum (5.a ed.). CRC Press. https://doi.org/10.1201/b16559 | spa |
dc.relation.references | Taheri-Shakib, J., Shekarifard, A., & Naderi, H. (2017). The experimental investigation of effect of microwave and ultrasonic waves on the key characteristics of heavy crude oil. Journal of Analytical and Applied Pyrolysis, 128, 92-101. https://doi.org/10.1016/j.jaap.2017.10.021 | spa |
dc.relation.references | Varadaraj, R. (2003). Viscosity reduction of oils by sonic treatment (United States Patent N.o US6544411B2). https://patents.google.com/patent/US6544411B2/en?oq=6544411 | spa |
dc.relation.references | Yang Z. et al. (2013). Upgrading vacuum residuum by combined sonication and treatment with a hydrogen donor. Chemistry and Technology of Fuels and Oils, 48(6), 426-435. https://doi.org/10.1007/s10553-013-0391-2 | spa |
dc.relation.references | Zolfaghari R. et al. (2016). Demulsification techniques of water-in-oil and oil-in-water emulsions in petroleum industry. Separation and Purification Technology, 170, 377-407. https://doi.org/10.1016/j.seppur.2016.06.026 | spa |
dc.rights | Derechos reservados - Universidad Nacional de Colombia | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
dc.rights.spa | Acceso abierto | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines | spa |
dc.subject.ddc | 660 - Ingeniería química | spa |
dc.subject.proposal | heavy crude oil upgrading | eng |
dc.subject.proposal | ultrasonic treatment | eng |
dc.subject.proposal | crude oil-in-water emulsions | eng |
dc.subject.proposal | iniciadores | spa |
dc.subject.proposal | asfaltenos | spa |
dc.subject.proposal | coque | spa |
dc.subject.proposal | viscosidad | spa |
dc.title | Tratamiento de crudos pesados por sonicación con el uso de iniciadores radicalarios | spa |
dc.type | Documento de trabajo | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_8042 | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/workingPaper | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/WP | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |