Tratamiento de crudos pesados por sonicación con el uso de iniciadores radicalarios

dc.contributor.advisorDepartamento de Ingeniería Química y Ambientalspa
dc.contributor.advisorBoyaca Mendivelso, Luis Alejandrospa
dc.contributor.authorDaza Charry, David Alejandrospa
dc.contributor.researchgroupGrupo de Investigación en Procesos Químicos y Bioquímicosspa
dc.date.accessioned2020-08-04T21:17:36Zspa
dc.date.available2020-08-04T21:17:36Zspa
dc.date.issued2020-07-31spa
dc.description.abstractIn this investigation, a heavy crude oil ultrasonic treatment with the use of selected thermal initiators was evaluated in order to upgrade the heavy crude oil transportation properties and fractional composition through the cavitation energy generated by the system. The proposed treatment was conducted in two main steps. The first one involved the ultrasonic preparation and stability evaluation of heavy crude oil-in-water emulsions to generate high uniformity in their droplet size distribution and viscosity reductions in comparison with the base heavy crude oil, which were employed as the treatment medium for the use of persulfate initiators in the petroleum upgrading process. The main results of this step showed viscosity reductions up to 98% (500s-1 25°C) in comparison with the base heavy crude oil, droplet diameters of 4μm and volumetric stabilities up to 90% over 10 days for the emulsions (60/40) (O/W) prepared with concentrations of 2.5% of the surfactant merpol HCS, using ultrasonic amplitudes and induction times up to 70% and 12min, respectively, that leads to an energy consumption of 574.6 kJ per kg of processed crude oil. After the definition of the treatment medium, the properties of the crude oil, such as viscosity, residue, distillates and asphaltene content, were measured after several ultrasonic treatments (ultrasonic induction times and amplitude of 5 to 30min and 80%, respectively) at 60°C and atmospheric pressure, with the use of the initiators potassium persulfate and ammonium persulfate, the chain transfer agent n-dodecyl mercaptan and the hydrogen donors cyclohexane and decahydronaphthalene in order to identify possible upgrading changes in the crude oil. The main results of this study showed that despite of the slight changes generated in the distillates fraction by the ultrasonic treatments, it is possible to achieve high viscosity, asphaltene and coke reductions up to 65%, 42% and 37%, respectively, for the treated crude oils with the initiator potassium persulphate 0.5wt.%) and the hydrogen donor decahydronaphthalene (5.0wt.%) at ultrasonic induction times of 5min (energy consumption of 259.9 kJ per kg of crude oil), which shows the potential of the technology in transportation and processing applications of heavy crude oils.spa
dc.description.abstractEn esta investigación se realizó la evaluación de una metodología de tratamiento de petróleos pesados por inducción ultrasónica, que buscó mejorar las propiedades fraccionales y de transporte de un crudo pesado de estudio por medio del efecto de cavitación generado por el sistema y la incorporación de iniciadores. La evaluación de la metodología de tratamiento se dividió en dos etapas principales. La primera consistió en la preparación y evaluación de la estabilidad de emulsiones de crudo-en-agua con ultrasonido, donde se buscó generar uniformidad en la distribución de diámetro de gota y reducciones de viscosidad respecto al crudo de estudio, que permitieran la incorporación de iniciadores radicalarios hidrosolubles de tipo persulfato en el medio para evaluar su desempeño en el mejoramiento del petróleo; los principales resultados de esta etapa, permitieron obtener emulsiones con reducciones de viscosidad de hasta un 98% (500s-1 25°C) respecto al crudo original, diámetros de gota promedio del orden de 4μm y estabilidades volumétricas del 90% por más de 10 días para emulsiones (60/40) (O/W) preparadas con el surfactante merpol HCS a concentraciones de 2.5%v/v, utilizando amplitudes sonoras del 70% y tiempos totales de exposición ultrasónica de 12min, equivalente a un consumo energético de 574.6 kJ por kg de crudo procesado. Posterior a la definición del medio de tratamiento, las propiedades del crudo de estudio tales como su viscosidad, contenido de residuo y destilables por termogravimetría, y contenido de asfaltenos, entre otros, fueron evaluados tras ser sometido a exposiciones sonoras entre 5 a 30min (80% de amplitud), a 60°C y presión atmosférica, incorporando los iniciadores persulfato de potasio y persulfato de amonio, el agente de transferencia de cadena n-dodecil mercaptano y los donores de hidrógeno ciclohexano y decahidronaftaleno al medio, en búsqueda de índices de mejoramiento. Los resultados principales de esta etapa permitieron establecer que, si bien solo se evidencian cambios leves en la fracción destilable del crudo a partir de los sistemas de tratamiento evaluados, es posible alcanzar reducciones de viscosidad, asfaltenos y coque de hasta un 65%, 42% y 37%, respectivamente, para crudos tratados con el iniciador persulfato de potasio (0.5%p/p) y el donor de hidrógeno decahidronaftaleno (5.0%p/p) a tiempos de exposición sonora de 5min, (consumo energético de 259.9kJ por kg de crudo procesado), que demuestra el potencial de la implementación de la tecnología tanto en posibles aplicaciones de transporte como en la reducción de fracciones pesadas del petróleo.spa
dc.description.degreelevelMaestríaspa
dc.format.extent243spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77918
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Químicaspa
dc.relation.referencesAbismaı̈l B. et al. (1999). Emulsification by ultrasound: Drop size distribution and stability. Ultrasonics Sonochemistry, 6(1), 75-83. https://doi.org/10.1016/S1350-4177(98)00027-3spa
dc.relation.referencesAGOLLI, A., Brunelle, P., & Fischer, A. (2014). Method of designing a heavy crude oil treatment device (United States Patent N.o US20140314628A1). https://patents.google.com/patent/US20140314628A1/en?oq=2014%2f0314628spa
dc.relation.referencesAsemani, M., & Rabbani, A. R. (2016). Oil-oil correlation by FTIR spectroscopy of asphaltene samples. Geosciences Journal, 20(2), 273-283. https://doi.org/10.1007/s12303-015-0042-1spa
dc.relation.referencesAshrafizadeh, S. N., & Kamran, M. (2010). Emulsification of heavy crude oil in water for pipeline transportation. Journal of Petroleum Science and Engineering, 71(3), 205-211. https://doi.org/10.1016/j.petrol.2010.02.005spa
dc.relation.referencesAvvaru B. et al. (2018). Current knowledge and potential applications of cavitation technologies for the petroleum industry. Ultrasonics Sonochemistry, 42, 493-507. https://doi.org/10.1016/j.ultsonch.2017.12.010spa
dc.relation.referencesBarbara H, S. (2005). Organic Molecules. En Infrared Spectroscopy: Fundamentals and Applications (pp. 71-93). John Wiley & Sons, Ltd. https://doi.org/10.1002/0470011149.ch4spa
dc.relation.referencesBates, D. M. (2006). Improvements to viscosity reduction means in oil products (World Intellectual Property Organization Patent N.o WO2006104462A1). https://patents.google.com/patent/WO2006104462A1/en?oq=6%2c544%2c411spa
dc.relation.referencesBohlin Instruments Ltd. (1994). A Basic Introduction To Rheology, Bohlin CVOR User Manual.spa
dc.relation.referencesBP plc. (2019). BP Statistical Review of World Energy (N.o 68). BP plc. https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.htmlspa
dc.relation.referencesCastañeda, L. C., Muñoz, J. A. D., & Ancheyta, J. (2014). Current situation of emerging technologies for upgrading of heavy oils. Catalysis Today, 220-222, 248-273. https://doi.org/10.1016/j.cattod.2013.05.016spa
dc.relation.referencesChakma, A., & Berruti, F. (1993). The Effects of Ultrasonic Treatment On the Viscosity of Athabasca Bitumen And Bitumen-solvent Mixtures. Journal of Canadian Petroleum Technology, 32(05). https://doi.org/10.2118/93-05-04spa
dc.relation.referencesCullen, M. (2006). Treatment of crude oil fractions, fossil fuels, and products thereof with sonic energy (United States Patent N.o US7081196B2). https://patents.google.com/patent/US7081196B2/en?oq=7%2c081%2c196spa
dc.relation.referencesDunn, K., & Yen, T. F. (2001). A plausible reaction pathway of asphaltene under ultrasound. Fuel Processing Technology, 73(1), 59-71. https://doi.org/10.1016/S0378-3820(01)00194-1spa
dc.relation.referencesEcopetrol. (2015). Nuevas oportunidades para la industria química, Refinería de Cartagena. CCIQ XXVIII, Bogotá.spa
dc.relation.referencesFriedrich Menges. (2016). Spectragryph, optical spectroscopy software. https://www.effemm2.de/spectragryph/Spectragryphspa
dc.relation.referencesGarcía Barneto, A., Carmona, J. A., & Barrón, A. (2015). Thermogravimetric Monitoring of Crude Oil and Its Cuts in an Oil Refinery. Energy & Fuels, 29(4), 2250-2260. https://doi.org/10.1021/ef5028795spa
dc.relation.referencesGaweł, B., Eftekhardadkhah, M., & Øye, G. (2014). Elemental Composition and Fourier Transform Infrared Spectroscopy Analysis of Crude Oils and Their Fractions. Energy & Fuels, 28(2), 997-1003. https://doi.org/10.1021/ef402286yspa
dc.relation.referencesGopinath, R., Dalai, A. K., & Adjaye, J. (2006). Effects of Ultrasound Treatment on the Upgradation of Heavy Gas Oil. Energy & Fuels, 20(1), 271-277. https://doi.org/10.1021/ef050231xspa
dc.relation.referencesGregoli, A. A., Olah, A. M., Hamshar, J. A., & Rimmer, D. P. (1992). Converting heavy hydrocarbons into lighter hydrocarbons using ultrasonic reactor (United States Patent N.o US5110443A). https://patents.google.com/patent/US5110443A/en?oq=5%2c110%2c443spa
dc.relation.referencesGunnerman, R. W. (2007). Conversion of petroleum resid to usable oils with ultrasound (United States Patent N.o US7300566B2). https://patents.google.com/patent/US7300566B2/en?oq=7%2c300%2c566spa
dc.relation.referencesHart, A. (2014). A review of technologies for transporting heavy crude oil and bitumen via pipelines. Journal of Petroleum Exploration and Production Technology, 4(3), 327-336. https://doi.org/10.1007/s13202-013-0086-6spa
dc.relation.referencesHasan, S. W., Ghannam, M. T., & Esmail, N. (2010). Heavy crude oil viscosity reduction and rheology for pipeline transportation. Fuel, 89(5), 1095-1100. https://doi.org/10.1016/j.fuel.2009.12.021spa
dc.relation.referencesHoshyargar, V., & Ashrafizadeh, S. N. (2013). Optimization of Flow Parameters of Heavy Crude Oil-in-Water Emulsions through Pipelines. Industrial & Engineering Chemistry Research, 52(4), 1600-1611. https://doi.org/10.1021/ie302993mspa
dc.relation.referencesHuang, W.-S. (1981). Viscosity reduction process (United States Patent N.o US4298455A). https://patents.google.com/patent/US4298455A/en?oq=4%2c298%2c455spa
dc.relation.referencesHuc, A.-Y. (2010). Heavy Crude Oils: From Geology to Upgrading: an Overview. Editions TECHNIP. https://books.google.com.co/books?id=_gsri7-F9vkCspa
dc.relation.referencesHussein Alboudwarej, et al. (2006). La importancia del petróleo pesado. Schlumberger, Otoño 2006, 38-59.spa
dc.relation.referencesIslam, M. R. (1995). Potential of Ultrasonic Generators for Use in Oil Wells and Heavy Crude Oil/Bitumen Transportation Facilities. En E. Y. Sheu & O. C. Mullins (Eds.), Asphaltenes: Fundamentals and Applications (pp. 191-218). Springer US. https://doi.org/10.1007/978-1-4757-9293-5_7spa
dc.relation.referencesKaushik P. et al. (2012). Ultrasound cavitation technique for up-gradation of vacuum residue. Fuel Processing Technology, 93(1), 73-77. https://doi.org/10.1016/j.fuproc.2011.09.005spa
dc.relation.referencesKentish, S. E. (2017). Chapter 1 Engineering Principles of Ultrasound Technology. En D. Bermudez-Aguirre (Ed.), Ultrasound: Advances for Food Processing and Preservation (pp. 1-13). Academic Press. https://doi.org/10.1016/B978-0-12-804581-7.00001-4spa
dc.relation.referencesKokal, S. L. (2005). Crude Oil Emulsions: A State-Of-The-Art Review. SPE Production & Facilities, 20(01), 5-13. https://doi.org/10.2118/77497-PAspa
dc.relation.referencesKopsch, H. (1995). Thermal Methods in Petroleum Analysis. John Wiley & Sons, Ltd. https://www.wiley.com/en-us/Thermal+Methods+in+Petroleum+Analysis-p-9783527615148spa
dc.relation.referencesLangevin D. et al. (2004). Crude Oil Emulsion Properties and Their Application to Heavy Oil Transportation. Oil & Gas Science and Technology, 59(5), 511-521. https://doi.org/10.2516/ogst:2004036spa
dc.relation.referencesLin, J. R., & Yen, T. F. (1993). An upgrading process through cavitation and surfactant. Energy & Fuels, 7(1), 111-118. https://doi.org/10.1021/ef00037a018spa
dc.relation.referencesLott, R. K. (2016). Ultrasonic cavitation reactor for processing hydrocarbons and methods of use thereof (United States Patent N.o US20160046878A1). https://patents.google.com/patent/US20160046878A1/en?oq=2016%2f0046878spa
dc.relation.referencesMartínez, A. (2018, abril 24). La contribución del petróleo al desarrollo de Colombia. Mirada a las regiones productoras. Foro La República 100 años de petróleo en Colombia, Bogotá - Fedesarrollo. http://hdl.handle.net/11445/3562spa
dc.relation.referencesMartínez-Palou R. et al. (2011). Transportation of heavy and extra-heavy crude oil by pipeline: A review. Journal of Petroleum Science and Engineering, 75(3), 274-282. https://doi.org/10.1016/j.petrol.2010.11.020spa
dc.relation.referencesMartínez-Palou R. et al. (2013). Demulsification of heavy crude oil-in-water emulsions: A comparative study between microwave and thermal heating. Fuel, 113, 407-414. https://doi.org/10.1016/j.fuel.2013.05.094spa
dc.relation.referencesMazyar, O. A., & Agrawal, G. (2014). Upgrading heavy oil and bitumen with an initiator (United States Patent N.o US8916042B2). https://patents.google.com/patent/US8916042B2/en?oq=8916042spa
dc.relation.referencesMinenergía. (2018). Reservas. Ministerio de Minas y Energía. https://www.minenergia.gov.co/reservasspa
dc.relation.referencesMinenergía - UPME. (2013). Cadena del Petróleo. UPME. http://www1.upme.gov.co/Hidrocarburos/publicaciones/CadenadelPetroleo_sp.pdfspa
dc.relation.referencesMousavi S. et al. (2012). Effect of ultrasonic irradiation on rheological properties of asphaltenic crude oils. Petroleum Science, 9(1), 82-88. https://doi.org/10.1007/s12182-012-0186-9spa
dc.relation.referencesNBS, API. (1936). NATIONAL STANDARD PETROLEUM OIL TABLES (N.o C410). NBS, API.spa
dc.relation.referencesPeroxyChem. (2014). Potassium persulfate TDS. http://www.peroxychem.com/chemistries/persulfates/products/potassium-persulfate/technical-documentationspa
dc.relation.referencesPeroxyChem. (2017). Ammonium persulfate TDS. http://www.peroxychem.com/chemistries/persulfates/products/ammonium-persulfate/technical-documentationspa
dc.relation.referencesPeroxyChem. (2018). Persulfates Technical Information. http://www.peroxychem.com/chemistries/persulfates/persulfates-technical-informationspa
dc.relation.referencesPortafolio. (2019, mayo 13). Suben reservas de crudo, pero bajan las de gas natural. https://www.portafolio.co/economia/reservas-de-petroleo-en-colombia-suben-de-5-7-a-6-2-anos-529499spa
dc.relation.referencesRana M. S. et al. (2007). A review of recent advances on process technologies for upgrading of heavy oils and residua. Fuel, 86(9), 1216-1231. https://doi.org/10.1016/j.fuel.2006.08.004spa
dc.relation.referencesRiley B. J. et al. (2016). An FTIR method for the analysis of crude and heavy fuel oil asphaltenes to assist in oil fingerprinting. Forensic Science International, 266, 555-564. https://doi.org/10.1016/j.forsciint.2016.07.018spa
dc.relation.referencesSawarkar A.N. et al. (2009). Use of ultrasound in petroleum residue upgradation. The Canadian Journal of Chemical Engineering, 87(3), 329-342. https://doi.org/10.1002/cjce.20169spa
dc.relation.referencesSemana. (2018, noviembre 14). Colombia se adaptó al mercado de los crudos pesados. https://www.semana.com/contenidos-editoriales/hidrocarburos-son-el-futuro/articulo/colombia-se-adapto-al-mercado-de-los-crudos-pesados/590038spa
dc.relation.referencesSpeight, J. G. (2004). Petroleum Asphaltenes - Part 1: Asphaltenes, Resins and the Structure of Petroleum. Oil & Gas Science and Technology, 59(5), 467-477. https://doi.org/10.2516/ogst:2004032spa
dc.relation.referencesSpeight, J. G. (2014). The Chemistry and Technology of Petroleum (5.a ed.). CRC Press. https://doi.org/10.1201/b16559spa
dc.relation.referencesTaheri-Shakib, J., Shekarifard, A., & Naderi, H. (2017). The experimental investigation of effect of microwave and ultrasonic waves on the key characteristics of heavy crude oil. Journal of Analytical and Applied Pyrolysis, 128, 92-101. https://doi.org/10.1016/j.jaap.2017.10.021spa
dc.relation.referencesVaradaraj, R. (2003). Viscosity reduction of oils by sonic treatment (United States Patent N.o US6544411B2). https://patents.google.com/patent/US6544411B2/en?oq=6544411spa
dc.relation.referencesYang Z. et al. (2013). Upgrading vacuum residuum by combined sonication and treatment with a hydrogen donor. Chemistry and Technology of Fuels and Oils, 48(6), 426-435. https://doi.org/10.1007/s10553-013-0391-2spa
dc.relation.referencesZolfaghari R. et al. (2016). Demulsification techniques of water-in-oil and oil-in-water emulsions in petroleum industry. Separation and Purification Technology, 170, 377-407. https://doi.org/10.1016/j.seppur.2016.06.026spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afinesspa
dc.subject.ddc660 - Ingeniería químicaspa
dc.subject.proposalheavy crude oil upgradingeng
dc.subject.proposalultrasonic treatmenteng
dc.subject.proposalcrude oil-in-water emulsionseng
dc.subject.proposaliniciadoresspa
dc.subject.proposalasfaltenosspa
dc.subject.proposalcoquespa
dc.subject.proposalviscosidadspa
dc.titleTratamiento de crudos pesados por sonicación con el uso de iniciadores radicalariosspa
dc.typeDocumento de trabajospa
dc.type.coarhttp://purl.org/coar/resource_type/c_8042spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/workingPaperspa
dc.type.redcolhttp://purl.org/redcol/resource_type/WPspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1020778108.2020.pdf
Tamaño:
10.21 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.9 KB
Formato:
Item-specific license agreed upon to submission
Descripción: