Estudio de efectos competitivos en manganitas tipo La(1-x)Dy(x)Mn(1-y)Zn(y)O(3)

dc.contributor.advisorMendoza Barón, Gladys Aminta
dc.contributor.advisorSalazar Jaramillo, Daniel
dc.contributor.authorLópez Toro, José Fernando
dc.contributor.researchgroupMateriales Magnéticos y Nanoestructurasspa
dc.date.accessioned2022-08-24T19:38:45Z
dc.date.available2022-08-24T19:38:45Z
dc.date.issued2021
dc.descriptionilustraciones, tablasspa
dc.description.abstractEn este trabajo se reporta un estudio sistemático de la estructura y propiedades magnéticas por sustitución simultánea en los sitios A y B de manganitas La(1-x)Dy(x)Mn(1-y)Zn(y)O(3) policristalinas. Los dopajes son realizados con Dy y Zn en los sitios La y Mn, respectivamente. Las sustituciones se realizaron en el rango 0.00 - 0.10 para ambos sitios. Se discuten varios efectos competitivos para explicar las propiedades físicas que conducen a la coexistencia de fases a alta temperatura: clústers ferromagnéticas (FM) en una matriz paramagnética (PM). En todas las muestras se observa, además una transición FM-PM en un rango de temperatura 130 - 190 K. Se observó que el exceso de oxígeno promueve el cambio de un estado fundamental antiferromagnético del LaMnO(3) no estequiométrico a un estado ferromagnético. Por su parte, la sustitución de Zn cambia la valencia de una cantidad correspondiente de iones Mn de 3+ a 4+ y por tanto, reduce en el material la distorsión ortorrómbica de Jahn-Teller e induce interacciones ferromagnéticas de doble intercambio. Al mismo tiempo, la dilución de Zn de la red de Mn debilita localmente el magnetismo e induce desorden en las cadenas Mn-O-Mn. El Dy con un radio significativamente menor que el La, por un lado incrementa también la distorsión ortorrómbica de la estructura de la perovskita y, por tanto, reduce las interacciones ferromagnéticas entre Mn(3+) y Mn(4+); por otra parte introduce desorden magnético en el plano MnO, lo cual localiza los electrones eg, induciendo la formación de clústers FM de doble intercambio Mn(3+) - Mn(4+) La coexistencia de fases FM-PM de alta temperatura fue estudiada a partir de la magnetización y localmente a partir de medidas de resonancia paramagnética electrónica (EPR). El estudio de la conductividad eléctrica aportó a la comprensión del intercambio eléctrico en este sistema de fases magnéticas coexistentes, evidenciando un comportamiento conocido como “cuello de botella”, debido a la localización de electrones eg en torno a los pares Mn(3+) y Mn(4+). Los resultados experimentales fueron evaluados en el rango T>Tc, empleando el modelo de Curie -Weiss para temperaturas T>T* (en donde el inverso de la susceptibilidad χ^(-1) vs T deja de ser lineal). El modelo de Heisenberg efectivo se usó para evaluar la región no lineal del inverso de la susceptibilidad χ^(-1) vs T mediante una expansión a alta temperatura y un modelo de salto adiabático de pequeños polarones fue empleado para evaluar la conductividad a alta temperatura lo cual permite conectar las propiedades eléctricas y magnéticas del material. (Texto tomado de la fuente)spa
dc.description.abstractThis work reports on systematic studies of structural and magnetic properties by simultaneous substitution in the A and B sites of polycrystalline manganites La(1-x)Dy(x)Mn(1-y)Zn(y)O(3). Dy and Zn doping is performed at the La and Mn sites respectively, in the range 0.0 - 0.1. Although there exist already many substitution studies in perovskite manganites, the simultaneous substitution experiments on both La and Mn sites in the low-doped regime are not so common and provide important insight into the subtle balance of various effects acting on crystal structure and magnetism. Several competing effects are discussed to explain the physical properties: Oxygen excess drives the antiferromagnetic ground state of stoichiometric LaMnO(3) into a ferromagnetic state. Zn substitution changes the valence of a corresponding amount of Mn ions from 3+ to 4+ and, hence, reduces the orthorhombic Jahn-Teller distortion and induces ferromagnetic double-exchange interactions. At the same time the Zn dilution of the Mn lattice locally weakens magnetism and induces disorder in the Mn-O-Mn chains. Dy with significantly smaller radius than La strengthens the orthorhombic distortion of the perovskite structure and, thus, reduces ferromagnetic interactions between Mn(3+) and Mn(4+). At the same time, the large magnetic moment of Dy randomly polarizes the magnetic Mn lattice in favour of ferromagnetism. The formation of local ferromagnetic clusters due to substitution is discussed. The FM-PM phases coexistence at high temperature is globally studied by magnetization measurements and locally by electronic paramagnetic resonance (EPR) measurements. The study of electrical conductivity exchange in this system evidences the named "bottleneck" behavior, due to the movements of e_g electrons from the Mn(3+) and Mn(4+) pairs to the net. The experimental results are carried out in the temperature range T> Tc. The Curie-Weiss model is used at temperatures T> T* (where the inverse of susceptibility χ^(-1) vs T is linear). The effective Heisenberg model is used to evaluate the non-linear region of the inverse of susceptibility χ^(-1) vs T ( T< T*) , i.e. by means of a high temperature expansion series. Finally, an adiabatic jump model of small polarons is used to evaluate the conductivity at high temperature which allows to connect the electrical properties and magnetic properties.eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ciencias - Físicaspa
dc.description.researchareaMagnetismospa
dc.format.extent161 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82077
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Físicaspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Físicaspa
dc.relation.referencesT. Kimura, R. Kumai, Y. Okimoto, Y. Tomioka y Y. Tokura, «Variation of charge-orbital correlation with Cr doping in manganites,» PHYSICAL REVIEW B, vol. 62, nº 22, pp. 15021-15025, 2000.spa
dc.relation.referencesH. Sakai, K. Ito, R. Kumai y Y. Tokur, «Fe-doping-induced evolution of charge-orbital ordering in a bicritical-state manganite,» PHYSICAL REVIEW B, vol. 76, pp. 551122-1 a 551122-7, 2007spa
dc.relation.referencesS. Ueno, A. Shimono, H. Nakano y N. Kamegashira, «A structural consideration of the defect in LaMnO3 phase around,» Ceramics International, vol. 31, pp. 257-259, 2005.spa
dc.relation.referencesJ. A. M. V. Roosmalen, E. H. P. Cordfunke, R. B. Helmholdt y H. W. Zandbergen, «The Defect Chemistry of LaMnO3±δ: 2. Structural Aspects of LaMnO3+δ,» J. solid-st. Chem., vol. 110, nº 100, 1994.spa
dc.relation.referencesJ. Goodenough y J. Longo, Crystallographic and Magnetic Properties of Perovskites and Perovskite-Related Compounds., Berlin: Springer, 1970.spa
dc.relation.referencesJ. B. MacChesney, H. J. Williams, J. F. Potter y R. C. Sherwood, «Magnetic Study of the Manganate Phases: CaMnO3, Ca4Mn3O10, Ca3Mn2O7, Ca2MnO4,» Phys. Rev., vol. 164, nº 779, 1967spa
dc.relation.referencesC. N. R. Rao y A. Arulraj, «An Infrared Spectroscopic Study of the Insulator+Metal Transition and Charge-Ordering in Rare Earth Manganates, Ln1-xAxMnO3 (Ln 5Rare Earth, A 5Ca, Sr, Pb),» Journal of Solid State Chemistry, vol. 145, pp. 557-563, 1999spa
dc.relation.referencesV. Gupta, B. Raina, S. Verma y K. K. Bamzai, AIP Conference Proceedings, vol. 1953, p. 050010, 2018spa
dc.relation.referencesS. Banik, N. Banu y I. Das, «Evolution from non-Griffiths phase to Griffiths phase: Giant enhancement of magnetoresistance in nanocrystalline (La0.4Y0.6)0.7Ca0.3MnO3 compound,» Journal of Alloys and Compounds, vol. 745, pp. 753-760, 2018spa
dc.relation.referencesM. Dhahri, A. Zaidi, K. Cherif, J. Dhahri y E. Hlil, «Effect of indium substitution on structural, magnetic and magnetocaloric properties of La0.5Sm0.1Sr0.4Mn1-xInxO3 (0<x<0.1) manganites,» Journal of Alloys and Compounds, vol. 691, pp. 578-586, 2017spa
dc.relation.referencesF. Khammassi, J. F. Lopez, W. Chérif, A. Mendoza, S. Lanceros-Mendez, D. Salazar y M. Dammak, J. Phys. D, vol. 54, p. 175001, 2021spa
dc.relation.referencesH. Aliaga, M. T. Causa, M. Tovar, A. Butera, B. Alascio, D. Vega, G. Leyva, G. Polla y P. König, J. Phys. Condens. Matter, vol. 15(2), pp. 249-258, 2003spa
dc.relation.referencesA. Kamakar, S. Majumdar, S. Kundu, T. K. Nath y S. Giri, J. Phys. Condens. Matter, vol. 24, p. 126003, 2012spa
dc.relation.referencesI. Solovyev, N. Hamada y K. Terakura, «Crucial Role of the Lattice Distortion in the Magnetism of LaMnO3,» Physical Review Letters, vol. 76, nº 25, p. 4825, 1996spa
dc.relation.referencesJ. Blasco, C. Ritter, J. García, J. M. de Teresa, J. Pérez-Cacho y R. Ibarra, «Phys. Rev. B,» vol. 62, p. 5609, 2000spa
dc.relation.referencesE. O. Wollan y W. C. Koehler, «Neutron Diffraction Study of the Magnetic Properties of the Seriesof Perovskite-Type Compounds L(1-x)La, xCa]MnO3» Physical Review, vol. 100, p. 545, 1955spa
dc.relation.referencesR. von Helmolt, J. Weeker, B. Holzapfel, L. Schultz y K. Samwer, «Giant Negative Magnetoresistance in Perovskitelike La2/3Ba1/3MnO Ferromagnetic Films,» Physical review letter, vol. 71, nº 14, p. 2331, 1993spa
dc.relation.referencesA. Moreo, S. Yunoki y E. Dagotto, «Phase Separation Scenario for Manganese Oxides and Related Materials,» Science, vol. 283, nº 5410, pp. 2034-2040, 1999spa
dc.relation.referencesP. Schiffer, A. O. Ramirez, W. Bao y A. -W. Cheong, «Low Temperature Magnetoresistance and the Magnetic Phase Diagram of La1-xCaxMnO3,» Physical Review Letters, vol. 75, nº 18, p. 336, 1995spa
dc.relation.referencesS. Blundell, «Magnetism in Condensed Matter,» de Magnetism in Condensed Matter, Oxford, Oxford University Press, 2001spa
dc.relation.referencesH. A. Jahn y E. Teller, «Stability of polyatomic molecules in degenerate electronic states - I—Orbital degeneracy,» Proceedings of the Royal Society A, vol. 161, nº 905, pp. 220-235, 1937spa
dc.relation.referencesP. W. Anderson, Hasegawa y H., «Considerations on double exchange,» Physical review, vol. 100, p. 675, 1955spa
dc.relation.referencesC. Zener, «Interaction between the d-Shells in the Transition Metals.,» Phys. Rev., vol. 81, pp. 403-405, 1951spa
dc.relation.referencesP. G. de Gennes, «Effect of double exchange in magnetic crystals,» Phys. Rev., vol. 118, p. 141, 1960spa
dc.relation.referencesE. Dagotto, Nanoscale phase separation and colossal magnetoresistance, Berlin: Springer Verlag, 2003spa
dc.relation.referencesR. Allub y B. Alascio, «Effect of disorder on the magnetic and transport properties of La1−xSrxMnO3,» Solid State Communications, vol. 99, nº 9, pp. 613-617, 1996spa
dc.relation.referencesJ. M. D. Coey y M. Viret, «Mixed-Valence Manganites,» Advances in Physics, vol. 48, nº 2, pp. 167- 293, 1999spa
dc.relation.referencesE. Bouzaiene, A. H. Dhahrib, J. Dhahria, E. K. Hlilc y A. Bajahzard, J. Magn. Magn. Mater., vol. 491, p. 165540, 2019spa
dc.relation.referencesR. B. Griffiths, «Nonanalytic Behavior Above the Critical Point in a Random Ising Ferromagnet,» 17, vol. 23, p. 17, 1969spa
dc.relation.referencesS. Guo, D. P. Young, R. T. Macaluso, D. A. Browne, N. L. Henderson, J. Y. Chan, L. L. Henry y J. F. DiTusa, Phys. Rev. Lett., vol. 100, p. 017209, 2008spa
dc.relation.referencesS. Ubaid-Kassis, V. T. y A. Schroeder, Phys. Rev. Lett., vol. 104, p. 066402, 2010spa
dc.relation.referencesN. Marcano, P. A. Algarabel y J. Rodríguez Fernández, Phys Rev. B: Condens. Matter. Phys, vol. 88, p. 214429, 2013spa
dc.relation.referencesS. M. Zhou, Y. Li, Y. Q. Guo, J. Y. Zhao, C. X. y L. Shi, J. Appl. Phys., vol. 114, p. 163903, 2013spa
dc.relation.referencesA. Karmakar, S. Majumdar, S. Kundu, T. Nath y S. Giri, «Observation of Griffiths phase in antiferromagnetic La0:32Eu0:68MnO3,» J. Phys.: Condens. Matter, vol. 24, p. 126003, 2012spa
dc.relation.referencesF. Issaoui, M. Bejar, E. Dhahri, M. Bekri, P. Lachkar y E. Hlil, «Crystal, spinglass,Griffithsphasesandmagneticaloricproperties of the Sr1.5Nd 0.5MnO4 compound,» Physica B, vol. 414, pp. 42-49, 2013spa
dc.relation.referencesT. Oguchi, «A theory of antiferromagnetism II,» Prog. Theor. Phys, vol. 13, nº 2, pp. 148-160, 1955spa
dc.relation.referencesJ. S. Smart, Effective field theories of magnetism, Philadelphis: Saunders, 1966spa
dc.relation.referencesM. T. Causa, M. Tovar, A. Caneiro, F. Prado, G. Ibañez, C. A. Ramos, A. Butera, B. Alascio, X. Obradors, S. Piñol, F. Rivadulla, C. Vázquez-Vázquez, M. A. Quintela, J. Rivas, Y. Tokura y S. B. Osseroff, «High-temperature spin dynamics in CMR manganites: ESR and magnetization,» Phys. Rev. B, vol. 58, p. 3233, 1988spa
dc.relation.referencesB. C. Guha, «Magnetic Properties of Some Paramagnetic Crystals at Low Temperatures,» Proc. Roy. Society, vol. A206, p. 353, 1951spa
dc.relation.referencesJ. Gammel, W. Marshall y L. Morgan, Proc. Roy. Society, vol. A275, p. 257, 1963spa
dc.relation.referencesG. Wood y P. Rushbrooke, «On the Curie points and high temperature susceptibilities of Heisenberg model ferromagnetics,» Molecular Physics: An International Journal at the Interface Between Chemistry and Physics, vol. 1:3, pp. 257-283, 1958spa
dc.relation.referencesR. J. Schmidt H.-J. Lohmann A., Physical Rev B, vol. 84, p. 104443, 2011spa
dc.relation.referencesJ. Lohmann, A. Schmidt y H.-J. Richter, Physical Rev. B, vol. 89, p. 014415, 2014spa
dc.relation.referencesA. Shengelaya, H. K.-M. Zhao y K. A. Müller, «EPR Evidence of Jahn-Teller Polaron Formation in La1-xCaxMnO3+y,» PHYSICAL REVIEW LETTERS, vol. 77, nº 26, p. 5296, 1996spa
dc.relation.referencesD. L. Ccahuana, E. Winkler, F. Prado, A. Butera, C. Ramos y M. T.M. Causa, «Magnetic phase coexistence in CMR manganites: ESR evidence,» Physica B, vol. 354, pp. 55-58, 2004spa
dc.relation.referencesS. B. Oseroff, M. Torikachvili, J. Singley, S. Ali, S.-W. Cheong y S. Schultz, «Evidence for collective spin dynamics above the ordering temperature in La1-xCaxMnO3+d,» Physical Review B, vol. 10, nº 53, p. 6522, 1996spa
dc.relation.referencesE. Dormann y V. Jaccarino, Phys. Lett, vol. 48A, p. 81, 1974spa
dc.relation.referencesM. Tovar, G. Alejandro, A. Butera, A. Caneiro, M. Causa, F. Prado y R. D. Sánchez, «ESR and magnetization in Jahn -Teller-distorted LaMnO3+d: Correlarion with crystal strucure,» vol. 60, nº 14, pp. 10-199, 1999spa
dc.relation.referencesY. Yamada, O. Hino y S. K. R. Nohdo, «Polaron Ordering in Low-Doping La1-x SrxMnO3,» Phys. Rev. Lett, vol. 77, nº 5, p. 904, 1996spa
dc.relation.referencesM. Jaime, P. Lin, S. Chun y M. B. Salamon, «Coexistence of localized and itinerant carriers near T C in calcium-doped manganites,» Phys. Rev B, vol. 60, nº 2, p. 1028, 1999spa
dc.relation.referencesA. Lanzara, N. L. Saini, M. Bruneli, F. Natali, A. Bianconi, P. G. Radaelli y S.-W. Cheong, «Crossover from Large to Small Polarons across the Metal-Isulator Transition in Manganites,» Phys. Rev. Lett, vol. 81, nº 4, pp. 878-881, 1998spa
dc.relation.referencesH. L. Ju, H.-C. Sohn y K. Krishnan, «Evidence for O2p Hole-Driven Conductivity in La1-xSrxMnO3 (0< x< 0.7) and La0.7Sr0.3MnOz Thin Films,» Phys. Rev. Lett, vol. 79, nº 17, p. 3230, 1997spa
dc.relation.referencesG. P. Radaelli, G. Iannone, M. Marezio, Y. H. Hwang, S. Cheong, D. j. Jorgensen y N. D. Argyriou, «Structural effects on the magnetic and transport properties of perovskite A1-xA´xMnO3 (x=0.25,0.30),» Phys. Rev. B, vol. 56, nº 8265, 1997spa
dc.relation.referencesS. Tan, S. Yue y Y. Zhang, «Jahn Teller distortion onduced by Mg/Zn substitution on Mn sites in the perovskite manganites,» Phys Let. A, vol. 319, pp. 530-538, 2003spa
dc.relation.referencesJ. Yang, X. Rong, D. Suter y Y. P. Sun, «Electron paramagnetic resonance investigation of the electron-dopedmanganite La1-xTexMnO3(0.1<x<0.2),» Phys. Chem. Chem. Phys, vol. 13, p. 16343–16348, 2011spa
dc.relation.referencesD. Emin y T. Holsten, «Studies of Small-Polaron Motion IV. Adiabatic Theory of the Hall Effect,» ANNALS OF PHYSICS), vol. 53, pp. 439-520, 1969spa
dc.relation.referencesB. I. Shklovskii y A. L. Efros, Electronic Properties of Doped Semiconductors, Berlin: Springer, 1984spa
dc.relation.referencesA. Biswas, S. Elizabeth, A. K. Raychaudhuri y H. Bhat, Phys. Rev. B, vol. 59, nº 5368, 1999spa
dc.relation.referencesN. F. Mott y E. A. Davies, Electron Processes in Non-Crystalline Materials, Oxford, 1979.spa
dc.relation.referencesH. Liu, H. L. Y. Zhang, Y. Chen, Y. Chen, L. Chen, X. Dong, K. Chen y Q. Li, «;agnetism and resistances os sligthly Dy doped LaMnO3 Solid Solutions,» J. Supercond. Nov. Magn., vol. 25, pp. 1049-1054, 2012spa
dc.relation.referencesS. Xu, W. Tong, J. Fan, J. Gao, C. Zha y Y. Zhang, «Influence of doped Dy on magnetic and electronic properties in La0.67-xDyxSr0.33MnO3,» J. Magn. Magn. Matter, vol. 288, pp. 92-105, 2005spa
dc.relation.referencesC. Mitra, P. Raychaudhury, S. K. Dhar, A. K. Nigam, R. Pinto y S. M. Pattalwar, J. Magn. Magn. Mater., vol. 192, p. 130, 1999spa
dc.relation.referencesA. Shahee, K. Singh, R. J. Coudhary y N. P. Lalla, «Evidence of ferromagnetic short-range correlations in cubic La1-xSrxMnO3-d (x=0.80 ; 0.85) above antiferromagnetic ordering,» Ohys. Status solidi B, vol. 252, nº 8, pp. 1832-1838, 2015spa
dc.relation.referencesV. S. Amaral, J. Araujo, Y. G. Pogorelov, J. B. Sousa, P. B. V. J. N. L. d. S. J. M. B. Tavares, A. A. C. S. Lorenco y P. A. Algarabel, «Anomalous low-field magnetizacion in La2/3Ca1/3MnO3 near critical point: Stable CLsters?,» Journal of Applied Phys., vol. 83, nº 11, pp. 7154-7156, 1998spa
dc.relation.referencesR. Kamel, A. Tozri, E. Dhari y E. K. Hlil, «Anomalous behavior above the CUrie temperature in (Nd1-xGdx)0.55Sr0.45MnO3 (x= 0.1, 0.2, 0.3 and 0.5),» The royal Society of Chemistry, vol. 9, p. 27541, 2019spa
dc.relation.referencesK. Yadagiri, R. S. A. T. Nithya y K. Sethupathi, «Evidence for ferromagnetic clusters at room temperature in Dy and Mn site co-subsituted compunds Dy0.55Sr0.45Mn1-xFexO3,» Joural of Alloys and Compounds, vol. 792, pp. 411-477, 2019spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc530 - Físicaspa
dc.subject.proposalEfectos competitivosspa
dc.subject.proposalManganitasspa
dc.subject.proposalPerovskitaspa
dc.subject.proposalDistorsión ortorrómbicaspa
dc.subject.proposalDistorsión Jahn-Tellerspa
dc.subject.proposalClúster ferromagnéticospa
dc.subject.proposalFases magnéticas coexistentesspa
dc.subject.proposalConductividad por pequeños polaronesspa
dc.subject.proposalResonancia paramagnética electrónicaspa
dc.subject.proposalCuello de botellaspa
dc.subject.proposalExceso de oxígenospa
dc.subject.proposalModelo de Curie-Weissspa
dc.subject.proposalExpansión de alta temperaturaspa
dc.titleEstudio de efectos competitivos en manganitas tipo La(1-x)Dy(x)Mn(1-y)Zn(y)O(3)spa
dc.title.translatedStudy of competitive effects on manganites type La(1-x)Dy(x)Mn(1-y)Zn(y)O(3)eng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
75101357.2021.pdf
Tamaño:
6.86 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ciencias - Física

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción: