Un método para resumen y clasificación de comentarios de tiendas de aplicaciones (IOs y Android) sobre Claro APP empleando técnicas de machine learning
dc.contributor.advisor | Espinosa Bedoya, Albeiro | |
dc.contributor.author | Mejía Rodríguez, Daniel Santiago | |
dc.contributor.orcid | Mejia Rodriguez, Daniel Santiago [0000-0002-0350-2941] | spa |
dc.contributor.researchgroup | Calidad de Software | spa |
dc.date.accessioned | 2024-06-11T16:58:58Z | |
dc.date.available | 2024-06-11T16:58:58Z | |
dc.date.issued | 2024-01-26 | |
dc.description | Ilustraciones, gráficos | spa |
dc.description.abstract | En los últimos años, el análisis cualitativo de texto ha adquirido una importancia significativa, especialmente con el auge de técnicas de machine learning, en particular, el aprendizaje profundo. Este crecimiento se ha visto impulsado por la capacidad de procesamiento en tarjetas gráficas. Una fuente valiosa de información gratuita para este análisis son los comentarios de tiendas de aplicaciones, donde los usuarios comparten sus opiniones sobre aplicaciones y marcas. Sin embargo, estos comentarios presentan un desafío debido a su estructura poco compleja, lo que dificulta el rendimiento de algoritmos simples de aprendizaje automático. En este estudio, se abordó este desafío al buscar una forma simple pero confiable de extraer información de los comentarios en las tiendas de aplicaciones de Google y Mac, específicamente sobre la aplicación de Claro. El objetivo era obtener un resumen para cada comentario, identificando la idea central (como quejas de facturación) y el sentimiento expresado (positivo, negativo o neutro). Para lograr esto, se llevó a cabo una revisión sistemática de la literatura para identificar las mejores técnicas de resumen y análisis de sentimientos en comentarios. Se seleccionó Chat GPT como una alternativa viable y se implementó un código en Python que integraba funciones de resumen y análisis de sentimientos utilizando la API de Open AI y la versión Chat GPT 3.5 Turbo. Los resultados demostraron que esta alternativa es una herramienta eficaz, logrando una precisión del 96.00% en el resumen de texto y un 93.80% de exactitud en el análisis de sentimientos. Esto posiciona esta solución al mismo nivel que otras opciones reportadas, pero con ventajas significativas en términos de requisitos computacionales y mantenimiento. Esta primera iteración del estudio abre la posibilidad de explorar otras herramientas de grandes modelos de lenguaje (LLM) y evaluar su desempeño en tareas de análisis cuantitativo de la información contenida en los comentarios de las tiendas de aplicaciones. (Tomado de la fuente) | spa |
dc.description.abstract | In recent years, qualitative text analysis has achieved a significant importance, particularly with the rise of machine learning techniques, especially deep learning. This growth has been driven by the processing capabilities of graphics cards. A valuable source of free information for this analysis is application store comments, where users share their opinions on applications and brands. However, these comments pose a challenge due to their uncomplicated structure, making it difficult for simple machine learning algorithms to perform well. In this study, this challenge was addressed by seeking a simple yet reliable way to extract information from comments on Google and Mac application stores, specifically regarding the Claro application. The goal was to obtain a summary for each comment, identifying the central idea (such as billing complaints) and the expressed sentiment (positive, negative, or neutral). To achieve this, a systematic literature review was conducted to identify the best techniques for summarizing and analyzing sentiments in comments. Chat GPT was selected as a viable alternative, and a Python code was implemented that integrated functions for summarizing and sentiment analysis using the OpenAI API and Chat GPT 3.5 Turbo version. The results demonstrated that this alternative is an effective tool, achieving a 96.00% accuracy in text summarization and a 93.80% accuracy in sentiment analysis. This positions this solution at the same level as other reported options but with significant advantages in terms of computational requirements and maintenance. This first iteration of the study opens the possibility to explore other large language model (LLM) tools and evaluate their performance in quantitative analysis tasks of information contained in application store comments. | eng |
dc.description.curriculararea | Ingeniería De Sistemas E Informática.Sede Medellín | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ingeniería - Analítica | spa |
dc.format.extent | 57 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/86224 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | spa |
dc.publisher.faculty | Facultad de Minas | spa |
dc.publisher.place | Medellín, Colombia | spa |
dc.publisher.program | Medellín - Minas - Maestría en Ingeniería - Analítica | spa |
dc.relation.indexed | LaReferencia | spa |
dc.relation.references | Afsharizadeh, M., Ebrahimpour-Komleh, H., & Bagheri, A. (2018). Query-oriented text summarization using sentence extraction technique. 2018 4th international conference on web research (ICWR), | spa |
dc.relation.references | Aggarwal, C. C. (2022). Text summarization Machine Learning for Text. In (pp. 393-418). Springer. | spa |
dc.relation.references | Ain, Q. T., Ali, M., Riaz, A., Noureen, A., Kamran, M., Hayat, B., & Rehman, A. (2017). Sentiment analysis using deep learning techniques: a review. International Journal of Advanced Computer Science and Applications, 8(6). | spa |
dc.relation.references | Al-Hagree, S., & Al-Gaphari, G. (2022a). Arabic Sentiment Analysis Based Machine Learning for Measuring User Satisfaction with Banking Services' Mobile Applications: Comparative Study. 2022 2nd International Conference on Emerging Smart Technologies and Applications (eSmarTA), | spa |
dc.relation.references | Al-Hagree, S., & Al-Gaphari, G. (2022b). Arabic sentiment analysis on mobile applications using Levenshtein distance algorithm and naive Bayes. 2022 2nd International Conference on Emerging Smart Technologies and Applications (eSmarTA), | spa |
dc.relation.references | Alghamdi, S. A., Alahmari, S. M., Haq, M. A., Kumar, A., Revathy, G., & Yonbawi, S. R. (2022). Sentiment analysis using machine learning: Progress in the machine intelligence for data science. Sustainable Energy Technologies and Assessments, 53, 102557. | spa |
dc.relation.references | Alsaqer, A. F., & Sasi, S. (2017). Movie review summarization and sentiment analysis using rapidminer. 2017 International Conference on Networks & Advances in Computational Technologies (NetACT), | spa |
dc.relation.references | Archana, A., & Sunitha, C. (2013). An overview of document summarization techniques. International Journal on Advanced Computer Theory and Engineering, P, 113-118. | spa |
dc.relation.references | Aue, A., Corston-Oliver, S., Gamon, M., & Ringger, E. (2005). Pulse: Mining customer opinions from free text. Advances in Intelligent Data Analysis VI: 6th International Symposium on Intelligent Data Analysis, IDA 2005, Madrid, Spain, September 8-10, 2005. Proceedings 6, | spa |
dc.relation.references | Bar-Haim, R., Dinur, E., Feldman, R., Fresko, M., & Goldstein, G. (2011). Identifying and following expert investors in stock microblogs. Proceedings of the conference on empirical methods in natural language processing | spa |
dc.relation.references | Berry, M. J., & Linoff, G. S. (2004). Data mining techniques: for marketing, sales, and customer relationship management. John Wiley & Sons | spa |
dc.relation.references | Bhardwaj, A. (2019, 19th July 2019). Using Sentiment Analysis to Build Customer Loyalty. Oodles AI. https://artificialintelligence.oodles.io/blogs/sentiment-analysis-customer-loyalty/ | spa |
dc.relation.references | Bing, L., Chen, X., Gao, S., Li, P., Ren, Z., Yan, R., & Zhao, D. (2019). Abstractive text summarization by incorporating reader comments. Proceedings of the AAAI Conference on Artificial Intelligence, | spa |
dc.relation.references | Bollen, J., & Mao, H. (2011). Twitter mood as a stock market predictor. Computer, 44(10), 91-94 | spa |
dc.relation.references | Btoush, M. H., Diab, N. F., & Alzubi, K. N. (2015). Arabic Text Summarization from Reader's Perspective. Research Journal of Applied Sciences, Engineering and Technology, 10(6), 680-687 | spa |
dc.relation.references | Bussler, F. (2020). Will The Latest AI Kill Coding? Towards Data Science. Retrieved 22/10/2023 from https://towardsdatascience.com/will-gpt-3-kill-coding-630e4518c04d | spa |
dc.relation.references | Castellanos, M., Dayal, U., Hsu, M., Ghosh, R., Dekhil, M., Lu, Y., Zhang, L., & Schreiman, M. (2011). LCI: a social channel analysis platform for live customer intelligence. Proceedings of the 2011 ACM SIGMOD International Conference on Management of data | spa |
dc.relation.references | Chen, B., Zhu, L., Kifer, D., & Lee, D. (2010). What is an opinion about? exploring political standpoints using opinion scoring model. Proceedings of the AAAI Conference on Artificial Intelligence | spa |
dc.relation.references | Chen, M. S., Liu, C. Y., & Tseng, C. Y. (2015). Incrests: Towards real-time incremental short text summarization on comment streams from social network services. IEEE Transactions on Knowledge and Data Engineering, 27(11), 2986-3000 | spa |
dc.relation.references | Cheng, J., Hu, M., & Liu, B. (2005). Opinion observer: analyzing and comparing opinions on the web. Proceedings of the 14th international conference on World Wide Web | spa |
dc.relation.references | Chengzhang, X., & Dan, L. (2018). Chinese text summarization algorithm based on word2vec. Journal of Physics: Conference Series | spa |
dc.relation.references | Dave, K., Lawrence, S., & Pennock, D. M. (2003). Mining the peanut gallery: Opinion extraction and semantic classification of product reviews. Proceedings of the 12th international conference on World Wide Web | spa |
dc.relation.references | Deo, S., & Banik, D. (2022). Text Summarization using Textrank and Lexrank through Latent Semantic analysis. 2022 OITS International Conference on Information Technology (OCIT) | spa |
dc.relation.references | Di Rosa, E., & Durante, A. (2016). App2check extension for sentiment analysis of amazon products reviews. Semantic Web Challenges: Third SemWebEval Challenge at ESWC 2016, Heraklion, Crete, Greece, May 29-June 2, 2016, Revised Selected Papers 3 | spa |
dc.relation.references | Doğan, E., & Kaya, B. (2019). Text summarization in social networks by using deep learning. 2019 1st International Informatics and Software Engineering Conference (UBMYK) | spa |
dc.relation.references | Dudhankar, V., Sen, N., Langde, A., & Kupade, V. (2022). GOOGLE PLAYSTORE REVIEW SENTIMENT ANALYSIS. International Research Journal of Modernization in Engineering Technology and Science, 04 | spa |
dc.relation.references | El-Kassas, W. S., Salama, C. R., Rafea, A. A., & Mohamed, H. K. (2021). Automatic text summarization: A comprehensive survey. Expert Systems with Applications, 165, 113679 | spa |
dc.relation.references | Fang, F., Zhou, Y., Ying, S., & Li, Z. (2023). A study of the ping an health app based on user reviews with sentiment analysis. International Journal of Environmental Research and Public Health, 20(2), 1591 | spa |
dc.relation.references | Fattahila, A. A., Amorokhman, F. I., Auditama, K. M., Wijaya, K. A., & Romadhony, A. (2021). Indonesian Digital Wallet Sentiment Analysis Using CNN And LSTM Method. 2021 International Conference on Artificial Intelligence and Big Data Analytics | spa |
dc.relation.references | Ganapathy, S., Ranganathan, C., & Sankaranarayanan, B. (2004). Visualization strategies and tools for enhancing customer relationship management. Communications of the ACM, 47(11), 92-99 | spa |
dc.relation.references | Groh, G., & Hauffa, J. (2011). Characterizing social relations via nlp-based sentiment analysis. Proceedings of the International AAAI Conference on Web and Social Media | spa |
dc.relation.references | Hajhmida, M. B., & Oueslati, O. (2021). Predicting mobile application breakout using sentiment analysis of Facebook posts. Journal of Information Science, 47(4), 502-516 | spa |
dc.relation.references | Handani, S. W., Saputra, D. I. S., Arino, R. M., & Ramadhan, G. F. A. (2019). Sentiment analysis for go-jek on google play store. Journal of Physics: Conference Series | spa |
dc.relation.references | Herliana, A., Alamsyah, D. P., & Tjoe, T. F. (2022). Comparison of the K-Nearest Neighbor and Decision Tree algorithm to the Sentiment Analysis of Investment Applications Users in Indonesia. 2022 Seventh International Conference on Informatics and Computing (ICIC) | spa |
dc.relation.references | Hovy, E., & Lin, C.-Y. (1998). Automated text summarization and the SUMMARIST system | spa |
dc.relation.references | Hu, M., & Liu, B. (2004). Mining opinion features in customer reviews. AAAI | spa |
dc.relation.references | Huang, C.-C., & Tseng, T.-L. B. (2007). Rough set-based approach to feature selection in customer relationship management. Omega, 35(4), 365-383 | spa |
dc.relation.references | Javad, H. H. S., Raj, R. G., & Tofighy, S. M. (2013). AHP techniques for Persian text summarization. Malaysian Journal of Computer Science, 26(1), 1-8 | spa |
dc.relation.references | Kang, Y., Cai, Z., Tan, C.-W., Huang, Q., & Liu, H. (2020). Natural language processing (NLP) in management research: A literature review. Journal of Management Analytics, 7(2), 139-172 | spa |
dc.relation.references | Kim, I. C., Le, D. X., & Thomas, G. R. (2012). Identifying" comment-on" citation data in online biomedical articles using SVM-based text summarization technique. Proceedings on the International Conference on Artificial Intelligence (ICAI) | spa |
dc.relation.references | Kim, I. C., Le, D. X., & Thomas, G. R. (2014). Automated method for extracting “citation sentences” from online biomedical articles using SVM-based text summarization technique. 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC) | spa |
dc.relation.references | Kumar, Y., Kaur, K., & Kaur, S. (2021). Study of automatic text summarization approaches in different languages. Artificial Intelligence Review, 54(8), 5897-5929. | spa |
dc.relation.references | Li, Y., Lin, H., Wang, M., & Xiang, G. (2016). Social Media Processing: 5th National Conference, SMP 2016, Nanchang, China, October 29–30, 2016, Proceedings (Vol. 669). Springer. | spa |
dc.relation.references | Liang, T.-P., Li, X., Yang, C.-T., & Wang, M. (2015). What in consumer reviews affects the sales of mobile apps: A multifacet sentiment analysis approach. International Journal of Electronic Commerce, 20(2), 236-260 | spa |
dc.relation.references | Lin, C.-Y. (1999). Training a selection function for extraction. Proceedings of the eighth international conference on Information and knowledge management | spa |
dc.relation.references | Liu, Y., Han, T., Ma, S., Zhang, J., Yang, Y., Tian, J., He, H., Li, A., He, M., & Liu, Z. (2023). Summary of ChatGPT-Related Research and Perspective Towards the Future of Large Language Models. Meta-Radiology, 100017. | spa |
dc.relation.references | Liu, Y., Loh, H. T., & Zhan, J. (2009). Gather customer concerns from online product reviews–A text summarization approach. Expert Systems with Applications, 36(2), 2107-2115. | spa |
dc.relation.references | Lubbad, M. (2023). GPT-4 Parameters: Unlimited guide NLP’s Game-Changer. Medium. Retrieved 22/10/2023 from https://medium.com/@mlubbad/the-ultimate-guide-to-gpt-4-parameters-everything-you-need-to-know-about-nlps-game-changer-109b8767855a#4cf9 | spa |
dc.relation.references | Mahesh, B. (2020). Machine learning algorithms-a review. International Journal of Science and Research (IJSR).[Internet], 9, 381-386 | spa |
dc.relation.references | Masrury, R. A., & Alamsyah, A. (2019). Analyzing tourism mobile applications perceived quality using sentiment analysis and topic modeling. 2019 7th international conference on information and communication technology (ICoICT) | spa |
dc.relation.references | McGlohon, M., Glance, N., & Reiter, Z. (2010). Star quality: Aggregating reviews to rank products and merchants. Proceedings of the International AAAI Conference on Web and Social Media | spa |
dc.relation.references | Meena, S. M., Ramkumar, M. P., Asmitha, R. E., & Emil Selvan, S. R. (2020). Text summarization using text frequency ranking sentence prediction. 2020 4th International Conference on Computer, Communication and Signal Processing (ICCCSP) | spa |
dc.relation.references | Mitchell, T. M. (1999). Machine learning and data mining. Communications of the ACM, 42(11), 30-36. | spa |
dc.relation.references | Mohammad, S. M. (2012). From once upon a time to happily ever after: Tracking emotions in mail and books. Decision Support Systems, 53(4), 730-741. | spa |
dc.relation.references | Moreo, A., Romero, M., Castro, J., & Zurita, J. M. (2012). Lexicon-based comments-oriented news sentiment analyzer system. Expert Systems with Applications, 39(10), 9166-9180. | spa |
dc.relation.references | Nanli, Z., Ping, Z., Weiguo, L., & Meng, C. (2012). Sentiment analysis: A literature review. 2012 International Symposium on Management of Technology (ISMOT) | spa |
dc.relation.references | Pilliang, M., Akbar, H., & Firmansyah, G. (2022). Sentiment Analysis for Super Applications in Indonesia: A Case Study of Gov2Go App. 2022 3rd International Conference on Electrical Engineering and Informatics (ICon EEI) | spa |
dc.relation.references | Popescu, A. M., & Etzioni, O. (2007). Extracting product features and opinions from reviews. Natural language processing and text mining, 9-28. | spa |
dc.relation.references | Pratama, B. T., Utami, E., & Sunyoto, A. (2019). A comparison of the use of several different resources on lexicon based Indonesian sentiment analysis on app review dataset. 2019 International Conference of Artificial Intelligence and Information Technology (ICAIIT) | spa |
dc.relation.references | Pratmanto, D., Rousyati, R., Wati, F. F., Widodo, A. E., Suleman, S., & Wijianto, R. (2020). App Review Sentiment Analysis Shopee Application In Google Play Store Using Naive Bayes Algorithm. Journal of Physics: Conference Series | spa |
dc.relation.references | Radev, D. R., Jing, H., Styś, M., & Tam, D. (2004). Centroid-based summarization of multiple documents. Information Processing & Management, 40(6), 919-938. | spa |
dc.relation.references | Semaan, S. (2018). ¿Qué es Scopus? ¿Y para qué sirve? Retrieved 15/07/2023 from https://bibliosjd.org/2018/01/24/scopus-que-es-para-que-sirve | spa |
dc.relation.references | Serrano-Guerrero, J., Olivas, J. A., Romero, F. P., & Herrera-Viedma, E. (2015). Sentiment analysis: A review and comparative analysis of web services. Information Sciences, 311, 18-38 | spa |
dc.relation.references | Sheik, R., & Nirmala, S. J. (2021). Deep learning techniques for legal text summarization. 2021 IEEE 8th Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON) | spa |
dc.relation.references | Siğirci, İ. O., Özgür, H., Oluk, A., Uz, H., Çetiner, E., Oktay, H. U., & Erdemir, K. (2020). Sentiment analysis of Turkish reviews on google play store. 2020 5th International Conference on Computer Science and Engineering (UBMK) | spa |
dc.relation.references | Spärck Jones, K. (2007). Automatic summarising: The state of the art. Information Processing & Management, 43(6), 1449-1481 | spa |
dc.relation.references | Styawati, S., Nurkholis, A., Aldino, A. A., Samsugi, S., Suryati, E., & Cahyono, R. P. (2022). Sentiment analysis on online transportation reviews using Word2Vec text embedding model feature extraction and support vector machine (SVM) algorithm. 2021 International Seminar on Machine Learning, Optimization, and Data Science (ISMODE) | spa |
dc.relation.references | Tabone, W., & De Winter, J. (2023). Using ChatGPT for human–computer interaction research: A primer. Manuscript submitted for publication. | spa |
dc.relation.references | Terol, M. (2023). Chat GPT: cómo usar este chat de inteligencia artificial. Blog Think Big. Retrieved 22/10/23 from https://blogthinkbig.com/chat-gpt | spa |
dc.relation.references | Tumasjan, A., Sprenger, T., Sandner, P., & Welpe, I. (2010). Predicting elections with twitter: What 140 characters reveal about political sentiment. Proceedings of the international AAAI conference on web and social media | spa |
dc.relation.references | Turney, P. D. (2002). Thumbs up or thumbs down? Semantic orientation applied to unsupervised classification of reviews. arXiv preprint cs/0212032 | spa |
dc.relation.references | Wankhade, M., Rao, A. C. S., & Kulkarni, C. (2022). A survey on sentiment analysis methods, applications, and challenges. Artificial Intelligence Review, 55(7), 5731-5780 | spa |
dc.relation.references | Widiantoro, A. D., Wibowo, A., & Harnadi, B. (2021). User Sentiment Analysis in the Fintech OVO Review Based on the Lexicon Method. 2021 Sixth International Conference on Informatics and Computing (ICIC), | spa |
dc.relation.references | Xu, B., Lin, H., Hao, H., Yang, Z., Wang, J., & Zhang, S. (2016). Generating user-oriented text summarization based on social networks using topic models. Social Media Processing: 5th National Conference, SMP 2016, Nanchang, China, October 29–30, 2016, Proceedings | spa |
dc.relation.references | Yadav, D., Desai, J., & Yadav, A. K. (2022). Automatic Text Summarization Methods: A Comprehensive Review. arXiv preprint arXiv:2204.01849 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Reconocimiento 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería | spa |
dc.subject.ddc | 000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores | spa |
dc.subject.ddc | 000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación | spa |
dc.subject.ddc | 000 - Ciencias de la computación, información y obras generales::006 - Métodos especiales de computación | spa |
dc.subject.lemb | Aprendizaje automático (Inteligencia artificial) | |
dc.subject.lemb | Inteligencia artificial | |
dc.subject.lemb | Aplicaciones analíticas | |
dc.subject.lemb | Procesamiento de datos en línea | |
dc.subject.lemb | Investigación cualitativa | |
dc.subject.proposal | Chat GPT | spa |
dc.subject.proposal | Análisis de sentimientos | spa |
dc.subject.proposal | Resumen de texto | spa |
dc.subject.proposal | Tiendas de aplicaciones | spa |
dc.subject.proposal | Chat GPT | eng |
dc.subject.proposal | Machine Learning | eng |
dc.subject.proposal | Sentiment analysis | eng |
dc.subject.proposal | Text summarization | eng |
dc.subject.proposal | Application Stores | eng |
dc.title | Un método para resumen y clasificación de comentarios de tiendas de aplicaciones (IOs y Android) sobre Claro APP empleando técnicas de machine learning | spa |
dc.title.translated | A method for summarizing and classifying reviews from application stores (iOS and Android) about the Claro app using machine learning techniques | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1040754672.2024.pdf
- Tamaño:
- 832.52 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Analítica
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: