Un método para resumen y clasificación de comentarios de tiendas de aplicaciones (IOs y Android) sobre Claro APP empleando técnicas de machine learning

dc.contributor.advisorEspinosa Bedoya, Albeiro
dc.contributor.authorMejía Rodríguez, Daniel Santiago
dc.contributor.orcidMejia Rodriguez, Daniel Santiago [0000-0002-0350-2941]spa
dc.contributor.researchgroupCalidad de Softwarespa
dc.date.accessioned2024-06-11T16:58:58Z
dc.date.available2024-06-11T16:58:58Z
dc.date.issued2024-01-26
dc.descriptionIlustraciones, gráficosspa
dc.description.abstractEn los últimos años, el análisis cualitativo de texto ha adquirido una importancia significativa, especialmente con el auge de técnicas de machine learning, en particular, el aprendizaje profundo. Este crecimiento se ha visto impulsado por la capacidad de procesamiento en tarjetas gráficas. Una fuente valiosa de información gratuita para este análisis son los comentarios de tiendas de aplicaciones, donde los usuarios comparten sus opiniones sobre aplicaciones y marcas. Sin embargo, estos comentarios presentan un desafío debido a su estructura poco compleja, lo que dificulta el rendimiento de algoritmos simples de aprendizaje automático. En este estudio, se abordó este desafío al buscar una forma simple pero confiable de extraer información de los comentarios en las tiendas de aplicaciones de Google y Mac, específicamente sobre la aplicación de Claro. El objetivo era obtener un resumen para cada comentario, identificando la idea central (como quejas de facturación) y el sentimiento expresado (positivo, negativo o neutro). Para lograr esto, se llevó a cabo una revisión sistemática de la literatura para identificar las mejores técnicas de resumen y análisis de sentimientos en comentarios. Se seleccionó Chat GPT como una alternativa viable y se implementó un código en Python que integraba funciones de resumen y análisis de sentimientos utilizando la API de Open AI y la versión Chat GPT 3.5 Turbo. Los resultados demostraron que esta alternativa es una herramienta eficaz, logrando una precisión del 96.00% en el resumen de texto y un 93.80% de exactitud en el análisis de sentimientos. Esto posiciona esta solución al mismo nivel que otras opciones reportadas, pero con ventajas significativas en términos de requisitos computacionales y mantenimiento. Esta primera iteración del estudio abre la posibilidad de explorar otras herramientas de grandes modelos de lenguaje (LLM) y evaluar su desempeño en tareas de análisis cuantitativo de la información contenida en los comentarios de las tiendas de aplicaciones. (Tomado de la fuente)spa
dc.description.abstractIn recent years, qualitative text analysis has achieved a significant importance, particularly with the rise of machine learning techniques, especially deep learning. This growth has been driven by the processing capabilities of graphics cards. A valuable source of free information for this analysis is application store comments, where users share their opinions on applications and brands. However, these comments pose a challenge due to their uncomplicated structure, making it difficult for simple machine learning algorithms to perform well. In this study, this challenge was addressed by seeking a simple yet reliable way to extract information from comments on Google and Mac application stores, specifically regarding the Claro application. The goal was to obtain a summary for each comment, identifying the central idea (such as billing complaints) and the expressed sentiment (positive, negative, or neutral). To achieve this, a systematic literature review was conducted to identify the best techniques for summarizing and analyzing sentiments in comments. Chat GPT was selected as a viable alternative, and a Python code was implemented that integrated functions for summarizing and sentiment analysis using the OpenAI API and Chat GPT 3.5 Turbo version. The results demonstrated that this alternative is an effective tool, achieving a 96.00% accuracy in text summarization and a 93.80% accuracy in sentiment analysis. This positions this solution at the same level as other reported options but with significant advantages in terms of computational requirements and maintenance. This first iteration of the study opens the possibility to explore other large language model (LLM) tools and evaluate their performance in quantitative analysis tasks of information contained in application store comments.eng
dc.description.curricularareaIngeniería De Sistemas E Informática.Sede Medellínspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Analíticaspa
dc.format.extent57 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86224
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Analíticaspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAfsharizadeh, M., Ebrahimpour-Komleh, H., & Bagheri, A. (2018). Query-oriented text summarization using sentence extraction technique. 2018 4th international conference on web research (ICWR),spa
dc.relation.referencesAggarwal, C. C. (2022). Text summarization Machine Learning for Text. In (pp. 393-418). Springer.spa
dc.relation.referencesAin, Q. T., Ali, M., Riaz, A., Noureen, A., Kamran, M., Hayat, B., & Rehman, A. (2017). Sentiment analysis using deep learning techniques: a review. International Journal of Advanced Computer Science and Applications, 8(6).spa
dc.relation.referencesAl-Hagree, S., & Al-Gaphari, G. (2022a). Arabic Sentiment Analysis Based Machine Learning for Measuring User Satisfaction with Banking Services' Mobile Applications: Comparative Study. 2022 2nd International Conference on Emerging Smart Technologies and Applications (eSmarTA),spa
dc.relation.referencesAl-Hagree, S., & Al-Gaphari, G. (2022b). Arabic sentiment analysis on mobile applications using Levenshtein distance algorithm and naive Bayes. 2022 2nd International Conference on Emerging Smart Technologies and Applications (eSmarTA),spa
dc.relation.referencesAlghamdi, S. A., Alahmari, S. M., Haq, M. A., Kumar, A., Revathy, G., & Yonbawi, S. R. (2022). Sentiment analysis using machine learning: Progress in the machine intelligence for data science. Sustainable Energy Technologies and Assessments, 53, 102557.spa
dc.relation.referencesAlsaqer, A. F., & Sasi, S. (2017). Movie review summarization and sentiment analysis using rapidminer. 2017 International Conference on Networks & Advances in Computational Technologies (NetACT),spa
dc.relation.referencesArchana, A., & Sunitha, C. (2013). An overview of document summarization techniques. International Journal on Advanced Computer Theory and Engineering, P, 113-118.spa
dc.relation.referencesAue, A., Corston-Oliver, S., Gamon, M., & Ringger, E. (2005). Pulse: Mining customer opinions from free text. Advances in Intelligent Data Analysis VI: 6th International Symposium on Intelligent Data Analysis, IDA 2005, Madrid, Spain, September 8-10, 2005. Proceedings 6,spa
dc.relation.referencesBar-Haim, R., Dinur, E., Feldman, R., Fresko, M., & Goldstein, G. (2011). Identifying and following expert investors in stock microblogs. Proceedings of the conference on empirical methods in natural language processingspa
dc.relation.referencesBerry, M. J., & Linoff, G. S. (2004). Data mining techniques: for marketing, sales, and customer relationship management. John Wiley & Sonsspa
dc.relation.referencesBhardwaj, A. (2019, 19th July 2019). Using Sentiment Analysis to Build Customer Loyalty. Oodles AI. https://artificialintelligence.oodles.io/blogs/sentiment-analysis-customer-loyalty/spa
dc.relation.referencesBing, L., Chen, X., Gao, S., Li, P., Ren, Z., Yan, R., & Zhao, D. (2019). Abstractive text summarization by incorporating reader comments. Proceedings of the AAAI Conference on Artificial Intelligence,spa
dc.relation.referencesBollen, J., & Mao, H. (2011). Twitter mood as a stock market predictor. Computer, 44(10), 91-94spa
dc.relation.referencesBtoush, M. H., Diab, N. F., & Alzubi, K. N. (2015). Arabic Text Summarization from Reader's Perspective. Research Journal of Applied Sciences, Engineering and Technology, 10(6), 680-687spa
dc.relation.referencesBussler, F. (2020). Will The Latest AI Kill Coding? Towards Data Science. Retrieved 22/10/2023 from https://towardsdatascience.com/will-gpt-3-kill-coding-630e4518c04dspa
dc.relation.referencesCastellanos, M., Dayal, U., Hsu, M., Ghosh, R., Dekhil, M., Lu, Y., Zhang, L., & Schreiman, M. (2011). LCI: a social channel analysis platform for live customer intelligence. Proceedings of the 2011 ACM SIGMOD International Conference on Management of dataspa
dc.relation.referencesChen, B., Zhu, L., Kifer, D., & Lee, D. (2010). What is an opinion about? exploring political standpoints using opinion scoring model. Proceedings of the AAAI Conference on Artificial Intelligencespa
dc.relation.referencesChen, M. S., Liu, C. Y., & Tseng, C. Y. (2015). Incrests: Towards real-time incremental short text summarization on comment streams from social network services. IEEE Transactions on Knowledge and Data Engineering, 27(11), 2986-3000spa
dc.relation.referencesCheng, J., Hu, M., & Liu, B. (2005). Opinion observer: analyzing and comparing opinions on the web. Proceedings of the 14th international conference on World Wide Webspa
dc.relation.referencesChengzhang, X., & Dan, L. (2018). Chinese text summarization algorithm based on word2vec. Journal of Physics: Conference Seriesspa
dc.relation.referencesDave, K., Lawrence, S., & Pennock, D. M. (2003). Mining the peanut gallery: Opinion extraction and semantic classification of product reviews. Proceedings of the 12th international conference on World Wide Webspa
dc.relation.referencesDeo, S., & Banik, D. (2022). Text Summarization using Textrank and Lexrank through Latent Semantic analysis. 2022 OITS International Conference on Information Technology (OCIT)spa
dc.relation.referencesDi Rosa, E., & Durante, A. (2016). App2check extension for sentiment analysis of amazon products reviews. Semantic Web Challenges: Third SemWebEval Challenge at ESWC 2016, Heraklion, Crete, Greece, May 29-June 2, 2016, Revised Selected Papers 3spa
dc.relation.referencesDoğan, E., & Kaya, B. (2019). Text summarization in social networks by using deep learning. 2019 1st International Informatics and Software Engineering Conference (UBMYK)spa
dc.relation.referencesDudhankar, V., Sen, N., Langde, A., & Kupade, V. (2022). GOOGLE PLAYSTORE REVIEW SENTIMENT ANALYSIS. International Research Journal of Modernization in Engineering Technology and Science, 04spa
dc.relation.referencesEl-Kassas, W. S., Salama, C. R., Rafea, A. A., & Mohamed, H. K. (2021). Automatic text summarization: A comprehensive survey. Expert Systems with Applications, 165, 113679spa
dc.relation.referencesFang, F., Zhou, Y., Ying, S., & Li, Z. (2023). A study of the ping an health app based on user reviews with sentiment analysis. International Journal of Environmental Research and Public Health, 20(2), 1591spa
dc.relation.referencesFattahila, A. A., Amorokhman, F. I., Auditama, K. M., Wijaya, K. A., & Romadhony, A. (2021). Indonesian Digital Wallet Sentiment Analysis Using CNN And LSTM Method. 2021 International Conference on Artificial Intelligence and Big Data Analyticsspa
dc.relation.referencesGanapathy, S., Ranganathan, C., & Sankaranarayanan, B. (2004). Visualization strategies and tools for enhancing customer relationship management. Communications of the ACM, 47(11), 92-99spa
dc.relation.referencesGroh, G., & Hauffa, J. (2011). Characterizing social relations via nlp-based sentiment analysis. Proceedings of the International AAAI Conference on Web and Social Mediaspa
dc.relation.referencesHajhmida, M. B., & Oueslati, O. (2021). Predicting mobile application breakout using sentiment analysis of Facebook posts. Journal of Information Science, 47(4), 502-516spa
dc.relation.referencesHandani, S. W., Saputra, D. I. S., Arino, R. M., & Ramadhan, G. F. A. (2019). Sentiment analysis for go-jek on google play store. Journal of Physics: Conference Seriesspa
dc.relation.referencesHerliana, A., Alamsyah, D. P., & Tjoe, T. F. (2022). Comparison of the K-Nearest Neighbor and Decision Tree algorithm to the Sentiment Analysis of Investment Applications Users in Indonesia. 2022 Seventh International Conference on Informatics and Computing (ICIC)spa
dc.relation.referencesHovy, E., & Lin, C.-Y. (1998). Automated text summarization and the SUMMARIST systemspa
dc.relation.referencesHu, M., & Liu, B. (2004). Mining opinion features in customer reviews. AAAIspa
dc.relation.referencesHuang, C.-C., & Tseng, T.-L. B. (2007). Rough set-based approach to feature selection in customer relationship management. Omega, 35(4), 365-383spa
dc.relation.referencesJavad, H. H. S., Raj, R. G., & Tofighy, S. M. (2013). AHP techniques for Persian text summarization. Malaysian Journal of Computer Science, 26(1), 1-8spa
dc.relation.referencesKang, Y., Cai, Z., Tan, C.-W., Huang, Q., & Liu, H. (2020). Natural language processing (NLP) in management research: A literature review. Journal of Management Analytics, 7(2), 139-172spa
dc.relation.referencesKim, I. C., Le, D. X., & Thomas, G. R. (2012). Identifying" comment-on" citation data in online biomedical articles using SVM-based text summarization technique. Proceedings on the International Conference on Artificial Intelligence (ICAI)spa
dc.relation.referencesKim, I. C., Le, D. X., & Thomas, G. R. (2014). Automated method for extracting “citation sentences” from online biomedical articles using SVM-based text summarization technique. 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC)spa
dc.relation.referencesKumar, Y., Kaur, K., & Kaur, S. (2021). Study of automatic text summarization approaches in different languages. Artificial Intelligence Review, 54(8), 5897-5929.spa
dc.relation.referencesLi, Y., Lin, H., Wang, M., & Xiang, G. (2016). Social Media Processing: 5th National Conference, SMP 2016, Nanchang, China, October 29–30, 2016, Proceedings (Vol. 669). Springer.spa
dc.relation.referencesLiang, T.-P., Li, X., Yang, C.-T., & Wang, M. (2015). What in consumer reviews affects the sales of mobile apps: A multifacet sentiment analysis approach. International Journal of Electronic Commerce, 20(2), 236-260spa
dc.relation.referencesLin, C.-Y. (1999). Training a selection function for extraction. Proceedings of the eighth international conference on Information and knowledge managementspa
dc.relation.referencesLiu, Y., Han, T., Ma, S., Zhang, J., Yang, Y., Tian, J., He, H., Li, A., He, M., & Liu, Z. (2023). Summary of ChatGPT-Related Research and Perspective Towards the Future of Large Language Models. Meta-Radiology, 100017.spa
dc.relation.referencesLiu, Y., Loh, H. T., & Zhan, J. (2009). Gather customer concerns from online product reviews–A text summarization approach. Expert Systems with Applications, 36(2), 2107-2115.spa
dc.relation.referencesLubbad, M. (2023). GPT-4 Parameters: Unlimited guide NLP’s Game-Changer. Medium. Retrieved 22/10/2023 from https://medium.com/@mlubbad/the-ultimate-guide-to-gpt-4-parameters-everything-you-need-to-know-about-nlps-game-changer-109b8767855a#4cf9spa
dc.relation.referencesMahesh, B. (2020). Machine learning algorithms-a review. International Journal of Science and Research (IJSR).[Internet], 9, 381-386spa
dc.relation.referencesMasrury, R. A., & Alamsyah, A. (2019). Analyzing tourism mobile applications perceived quality using sentiment analysis and topic modeling. 2019 7th international conference on information and communication technology (ICoICT)spa
dc.relation.referencesMcGlohon, M., Glance, N., & Reiter, Z. (2010). Star quality: Aggregating reviews to rank products and merchants. Proceedings of the International AAAI Conference on Web and Social Mediaspa
dc.relation.referencesMeena, S. M., Ramkumar, M. P., Asmitha, R. E., & Emil Selvan, S. R. (2020). Text summarization using text frequency ranking sentence prediction. 2020 4th International Conference on Computer, Communication and Signal Processing (ICCCSP)spa
dc.relation.referencesMitchell, T. M. (1999). Machine learning and data mining. Communications of the ACM, 42(11), 30-36.spa
dc.relation.referencesMohammad, S. M. (2012). From once upon a time to happily ever after: Tracking emotions in mail and books. Decision Support Systems, 53(4), 730-741.spa
dc.relation.referencesMoreo, A., Romero, M., Castro, J., & Zurita, J. M. (2012). Lexicon-based comments-oriented news sentiment analyzer system. Expert Systems with Applications, 39(10), 9166-9180.spa
dc.relation.referencesNanli, Z., Ping, Z., Weiguo, L., & Meng, C. (2012). Sentiment analysis: A literature review. 2012 International Symposium on Management of Technology (ISMOT)spa
dc.relation.referencesPilliang, M., Akbar, H., & Firmansyah, G. (2022). Sentiment Analysis for Super Applications in Indonesia: A Case Study of Gov2Go App. 2022 3rd International Conference on Electrical Engineering and Informatics (ICon EEI)spa
dc.relation.referencesPopescu, A. M., & Etzioni, O. (2007). Extracting product features and opinions from reviews. Natural language processing and text mining, 9-28.spa
dc.relation.referencesPratama, B. T., Utami, E., & Sunyoto, A. (2019). A comparison of the use of several different resources on lexicon based Indonesian sentiment analysis on app review dataset. 2019 International Conference of Artificial Intelligence and Information Technology (ICAIIT)spa
dc.relation.referencesPratmanto, D., Rousyati, R., Wati, F. F., Widodo, A. E., Suleman, S., & Wijianto, R. (2020). App Review Sentiment Analysis Shopee Application In Google Play Store Using Naive Bayes Algorithm. Journal of Physics: Conference Seriesspa
dc.relation.referencesRadev, D. R., Jing, H., Styś, M., & Tam, D. (2004). Centroid-based summarization of multiple documents. Information Processing & Management, 40(6), 919-938.spa
dc.relation.referencesSemaan, S. (2018). ¿Qué es Scopus? ¿Y para qué sirve? Retrieved 15/07/2023 from https://bibliosjd.org/2018/01/24/scopus-que-es-para-que-sirvespa
dc.relation.referencesSerrano-Guerrero, J., Olivas, J. A., Romero, F. P., & Herrera-Viedma, E. (2015). Sentiment analysis: A review and comparative analysis of web services. Information Sciences, 311, 18-38spa
dc.relation.referencesSheik, R., & Nirmala, S. J. (2021). Deep learning techniques for legal text summarization. 2021 IEEE 8th Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON)spa
dc.relation.referencesSiğirci, İ. O., Özgür, H., Oluk, A., Uz, H., Çetiner, E., Oktay, H. U., & Erdemir, K. (2020). Sentiment analysis of Turkish reviews on google play store. 2020 5th International Conference on Computer Science and Engineering (UBMK)spa
dc.relation.referencesSpärck Jones, K. (2007). Automatic summarising: The state of the art. Information Processing & Management, 43(6), 1449-1481spa
dc.relation.referencesStyawati, S., Nurkholis, A., Aldino, A. A., Samsugi, S., Suryati, E., & Cahyono, R. P. (2022). Sentiment analysis on online transportation reviews using Word2Vec text embedding model feature extraction and support vector machine (SVM) algorithm. 2021 International Seminar on Machine Learning, Optimization, and Data Science (ISMODE)spa
dc.relation.referencesTabone, W., & De Winter, J. (2023). Using ChatGPT for human–computer interaction research: A primer. Manuscript submitted for publication.spa
dc.relation.referencesTerol, M. (2023). Chat GPT: cómo usar este chat de inteligencia artificial. Blog Think Big. Retrieved 22/10/23 from https://blogthinkbig.com/chat-gptspa
dc.relation.referencesTumasjan, A., Sprenger, T., Sandner, P., & Welpe, I. (2010). Predicting elections with twitter: What 140 characters reveal about political sentiment. Proceedings of the international AAAI conference on web and social mediaspa
dc.relation.referencesTurney, P. D. (2002). Thumbs up or thumbs down? Semantic orientation applied to unsupervised classification of reviews. arXiv preprint cs/0212032spa
dc.relation.referencesWankhade, M., Rao, A. C. S., & Kulkarni, C. (2022). A survey on sentiment analysis methods, applications, and challenges. Artificial Intelligence Review, 55(7), 5731-5780spa
dc.relation.referencesWidiantoro, A. D., Wibowo, A., & Harnadi, B. (2021). User Sentiment Analysis in the Fintech OVO Review Based on the Lexicon Method. 2021 Sixth International Conference on Informatics and Computing (ICIC),spa
dc.relation.referencesXu, B., Lin, H., Hao, H., Yang, Z., Wang, J., & Zhang, S. (2016). Generating user-oriented text summarization based on social networks using topic models. Social Media Processing: 5th National Conference, SMP 2016, Nanchang, China, October 29–30, 2016, Proceedingsspa
dc.relation.referencesYadav, D., Desai, J., & Yadav, A. K. (2022). Automatic Text Summarization Methods: A Comprehensive Review. arXiv preprint arXiv:2204.01849spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadoresspa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computaciónspa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::006 - Métodos especiales de computaciónspa
dc.subject.lembAprendizaje automático (Inteligencia artificial)
dc.subject.lembInteligencia artificial
dc.subject.lembAplicaciones analíticas
dc.subject.lembProcesamiento de datos en línea
dc.subject.lembInvestigación cualitativa
dc.subject.proposalChat GPTspa
dc.subject.proposalAnálisis de sentimientosspa
dc.subject.proposalResumen de textospa
dc.subject.proposalTiendas de aplicacionesspa
dc.subject.proposalChat GPTeng
dc.subject.proposalMachine Learningeng
dc.subject.proposalSentiment analysiseng
dc.subject.proposalText summarizationeng
dc.subject.proposalApplication Storeseng
dc.titleUn método para resumen y clasificación de comentarios de tiendas de aplicaciones (IOs y Android) sobre Claro APP empleando técnicas de machine learningspa
dc.title.translatedA method for summarizing and classifying reviews from application stores (iOS and Android) about the Claro app using machine learning techniqueseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1040754672.2024.pdf
Tamaño:
832.52 KB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Analítica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: