Desarrollo de estrategias biológicas para el manejo del tamo de arroz con fines de biofertilización en el departamento del Tolima

dc.contributor.advisorUribe Vélez, Daniel
dc.contributor.authorCruz Ramírez, Carlos Alberto
dc.contributor.cvlacCarlos Alberto Cruz Ramírez [0001084968]spa
dc.contributor.orcidCruz Ramírez, Carlos Alberto [0000000314949914]spa
dc.contributor.researchgroupMicrobiología Agrícolaspa
dc.coverage.countryColombia
dc.coverage.regionTolima
dc.date.accessioned2024-08-01T20:08:40Z
dc.date.available2024-08-01T20:08:40Z
dc.date.issued2024
dc.descriptionilustraciones, diagramas, fotografías, tablasspa
dc.description.abstractLa práctica más empleada para el manejo de los residuos del cultivo de arroz es la quema a campo abierto, lo que no solo altera el ecosistema suelo en todos sus componentes, sino que produce cantidades considerables de gases de efecto invernadero y pérdidas significativas de nutrientes valiosos para el establecimiento de nuevos ciclos de cultivo. No obstante, la pérdida progresiva de materia orgánica en los suelos del trópico y la baja tasa de asimilación de fertilizantes principalmente nitrogenados, vulneran la sostenibilidad del cultivo. Bajo este contexto, la biodegradación del tamo de arroz in situ resulta ser la estrategia más acertada desde el punto de vista ecológico, económico y de sostenibilidad del cultivo a largo plazo. Sin embargo, su alto contenido de ligninas y sílice, alta relación carbono:nitrógeno, así como las constantes fluctuaciones en las condiciones climáticas hacen de este proceso poco eficiente y rentable en campo. Por tanto, se desarrollaron estrategias para optimizar la biodegradación del tamo de arroz in situ mediante el desarrollo de coinóculos microbianos con potencial hidrolítico, y de biocontrol, como mecanismo de fertilización agrícola. Se determinó la actividad hidrolítica y oxidativa de cepas de Trichoderma spp. comerciales y nativas, y de bacterias aerobias formadoras de endospora (BAFE) pertenecientes al género Bacillus aisladas de suelos arroceros sobre medios sólidos diferenciales. Posteriormente, se estableció la compatibilidad entre los microorganismos seleccionados para el establecimiento de mezclas microbianas. Se ejecutaron fermentaciones en estado sumergido y sólido empleando tamo de arroz como única fuente de energía para cepas individuales y/o en mezclas, estableciendo las cinéticas de actividades enzimáticas, crecimiento bacteriano, respiración, así como la producción de amonio y reducción de peso seco del tamo residual al final del periodo de incubación. Los mejores aislamientos de Bacillus y hongos fueron identificados por biología molecular. El consorcio microbiano con la mayor respuesta de biodegradación del tamo de arroz fue evaluado bajo condiciones de fermentación sólida del tamo de arroz, ajustando la relación C:N del residuo vegetal mediante la adición de urea. Se estimaron parámetros de respiración microbiana (C-CO2), producción de biomasa microbiana de carbono, así como porcentaje de reducción de fibras y proteína del tamo de arroz, y actividades enzimáticas extracelulares de interés. Posteriormente, se estableció el efecto de suelo enmendado con tamo de arroz pre-tratado biológicamente, sobre la actividad de promotores de crecimiento vegetal (PCV) en arroz, bajo condiciones de invernadero y campo. Este trabajo aporta evidencia del potencial de mezclas microbianas Bacillus - Trichoderma para la degradación de tamo de arroz enriquecido con urea hasta una relación C:N<30, y el efecto positivo de esta enmienda sobre la actividad de rizobacterias PCV y plantas de arroz. Los efectos conjuntos se tradujeron en plantas de arroz de mayor longitud y peso seco, mayor rendimiento de cultivo, y menor incidencia de fitopatógenos convencionales del cultivo. Nuestros resultados además aportan a la sostenibilidad del cultivo y minimizan el impacto ecológico y ambiental que suponen las prácticas agronómicas tradicionales de fertilización y quema del tamo a campo abierto, otorgando mayor competitividad al cultivo de arroz en Colombia (Texto tomado de la fuente).spa
dc.description.abstractThe most widely used practice for managing rice crop residues is open-field burning, which alters the entire soil ecosystem and produces considerable amounts of greenhouse gases and significant losses of valuable nutrients for the establishment of new crop cycles. However, the progressive loss of organic matter in tropical soils and the low rate of fertilizer assimilation, mainly nitrogenous, threaten the sustainability of rice crops. Consequently, the biodegradation of rice straw in situ turns out to be the most appropriate and long-term strategy from an ecological, economic, and sustainability perspective. However, its high lignin and silica content, high carbon-to-nitrogen ratio, and constant weather fluctuations make this process inefficient and unprofitable in the field. Therefore, bio-based strategies were developed to optimize the biodegradation of N-enriched rice straw in situ through the development of microbial consortia. The hydrolytic and oxidative activities of Trichoderma spp. strains were determined by commercial and native aerobic endospore-forming bacteria (AEFB) belonging to the genus Bacillus isolated from rice soils on differential agar media plates. Subsequently, the compatibility between the selected microorganisms was established. Submerged and solid-state fermentations were carried out using rice straw as the only carbon and nitrogen source for individual or mixture strains. The kinetics of enzymatic activities, bacterial growth, respiration, ammonia production, and rice straw dry weight reduction were assessed at the end of the incubation period. The best microorganisms were identified by molecular biology. The microbial consortium with the highest rice straw biodegradation profile was evaluated under solid-state fermentation, adjusting the C-to-N ratio of the plant residue by adding urea. Parameters of microbial respiration (C-CO2), microbial carbon biomass, percentage reduction of fiber and protein content from rice straw, and extracellular enzymatic activities were estimated. Subsequently, the effect of soil amended with biologically pre-treated rice straw on rice plant growth under greenhouse and field conditions was established. This work provides evidence of the potential of Bacillus-Trichoderma mixtures for optimization of urea-enriched rice straw biodegradation to a middle C:N ratio (≤35): Moreover, positive effects of this amendment on rice PGPR activity were identified. Noteworthy, the joint effects translated into rice plants of greater length and dry weight, a higher crop yield, and a lower incidence of conventional phytopathogens in the crop. Our results also contribute to the sustainability of the crop and minimize the ecological and environmental impact of traditional agronomic practices like fertilization and rice straw burning, making rice cultivation more profitable in Colombia.eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ciencias - Biologíaspa
dc.description.researchareaBiodiversidad y conservación; Biotecnología Agrícolaspa
dc.format.extentxviii, 226 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86677
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Biologíaspa
dc.relation.referencesAbaide, E. R., Tres, M. V., Zabot, G. L., & Mazutti, M. A., 2019. Reasons for processing of rice coproducts: reality and expectations. Biomass and Bioenergy, 120, pp.240–256.spa
dc.relation.referencesAbril, D., Navarro, E. & Abril, A., 2009. La paja de arroz: consecuencias de su manejo y alternativas de aprovechamiento. Revista Agronomía U. Caldas, 17(2), pp.69–79.spa
dc.relation.referencesAmin, M. et al., 2005. Comparative response of diverse rice varieties to green manuring (Sesbania aculeata). Journal of Research Science, 16(1), pp.39–43.spa
dc.relation.referencesAndersson, P. & Berggren, D., 2005. Amino acids, total organic and inorganic nitrogen in forest floor soil solution at low and high nitrogen input. Water, Air, and Soil Pollution, 162, pp.369–384.spa
dc.relation.referencesAndreae, M. O. & Merlet, P., 2001. Emission of trace gases and aerosols from biomass burning. Global Biogeochemical Cycles, 15(4), pp.955–966.spa
dc.relation.referencesAnwar, A., Saleemuddin, M., 1998. Alkaline proteases: a review. Bioresource Technology, 64, pp.175-183.spa
dc.relation.referencesBae, H. D. et al., 1997. Effect of silica on the colonization of rice straw by ruminal bacteria. Animal Feed Science and Technology, 65, pp.165–181.spa
dc.relation.referencesBak, J. S. et al., 2009. Fungal pretreatment of lignocellulose by Phanerochaete chrysosporium to produce ethanol from rice straw. Biotechnology and Bioengineering, 104(3), pp.471–482.spa
dc.relation.referencesBalasubramanian, V. et al., 1998. On-farm adaptation of knowledge-intensive nitrogen management technologies for rice systems. Nutrient Cycling in Agroecosystems, 53(1), pp.59–69.spa
dc.relation.referencesBaraznenok, V. A. et al., 1999. Characterization of neutral xylanases from Chaetomium cellulolyticum and their biobleaching effect on eucalyptus pulp. Enzyme and Microbial Technology, 25, pp.651–659.spa
dc.relation.referencesBelal, E. B. & El-Mahrouk, M. E., 2010. Solid-state fermentation of rice straw residues for its use as growing medium in ornamental nurseries. Acta Astronautica, 67(9), pp.1081– 1089.spa
dc.relation.referencesBeltran, M. et al., 2012. Actividad fosfatasa y microorganismos solubilizadores y mineralizadores de fosfato en suelos arroceros de Tolima y Meta. In D. U. Velez & L. M. Melgarejo, eds. Ecología de microorganismos rizosféricos asociados a cultivos de arroz de Tolima y Meta. Bogotá: Editorial Universidad Nacional de Colombia., pp. 69–88.spa
dc.relation.referencesBernal, G., Illanes, A., Ciampi, L., 2002. Isolation and partial purification of a metabolite from a mutant strain of Bacillus sp. with antibiotic activity against plant pathogenic agents. Electronic Journal of Biotechnology, 5, pp.12–20.spa
dc.relation.referencesBerthrong, S., Buckley, D. & Drinkwater, L., 2013. Agricultural Management and Labile Carbon Additions Affect Soil Microbial Community Structure and Interact with Carbon and Nitrogen Cycling. Microbial Ecology, 66(1), pp.158–170.spa
dc.relation.referencesBhattacharyya, P. et al., 2012. Effects of rice straw and nitrogen fertilization on greenhouse gas emissions and carbon storage in tropical flooded soil planted with rice. Soil and Tillage Research, 124, pp.119–130.spa
dc.relation.referencesBinod, P. et al., 2010. Bioethanol production from rice straw: an overview. Bioresource Technology, 101(13), pp.4767–4774.spa
dc.relation.referencesBourgaize, D., Jewell, T.R., Buiser, R.G., 2000. Biotechnology: demystifying the concepts. San Francisco, CA. Benjamin/Cummings, Inc.spa
dc.relation.referencesBronick, C. J., Lal, R., 2005. Soil structure and management: a review. Geoderma. 124(1-2), pp.3-22.spa
dc.relation.referencesCai–Yun, S., Qing–Tao, S., Shu–Tao, X., Xiau–Yan, S., Xiu–Lan, C., Yu–Zhong, Z., 2006. Broad-spectrum antimicrobial activity and high stability of trichokonins from Trichoderma koningii SMF2 against plant pathogens. FEMS Microbiology Letters, 260, pp.119-125.spa
dc.relation.referencesCandela, M. E., Egea-Gilabert, C., Ezziyyani, M., Requena, M. E., 2007. Biological control of Phytophtora root of pepper using Trichoderma harzianum and Streptomyces rochei in combination. Journal of Phytopathology, 155, pp.342-349.spa
dc.relation.referencesCardona, C. A., 2009. Biocombustibles en Colombia: contextos latinoamericano y mundial. Revista de ingeniería UNIANDES, 29, pp.109–120.spa
dc.relation.referencesCastilla, L. A., 2012. Manejo productivo de los residuos de la cosecha de arroz. Revista Arroz, 60(500), pp.10–17.spa
dc.relation.referencesCastilla-Lozano, L. A., Vanegas, J., Rodriguez, J., Uribe-Vélez, D. 2012. Evaluación de la fertilidad en suelos de zonas arroceras de Tolima y Meta. En Ecología de microorganismos rizosféricos asociados a cultivos de arroz de Tolima y Meta. Editorial Universidad Nacional de Colombia. Primera Edición. Capítulo 2.spa
dc.relation.referencesCastilla, L. A. et al., 2010. Cambio climático y producción de arroz. Revista Arroz, 58(489), pp.4–11.spa
dc.relation.referencesChandra, M. et al., 2009. Development of a mutant of Trichoderma citrinoviride for enhanced production of cellulases. Bioresource Technology, 100, pp.1659–1662.spa
dc.relation.referencesChang, J., van Veen, J. A., Tian, C., Kuramae, E. E., 2022. A review on the impact of domestication of the rhizosphere of grain crops and a perspective on the potential role of the rhizosphere microbial community for sustainable rice crop production. Science of the Total Environment. 842. Elsevier B.V.spa
dc.relation.referencesChen, H. et al., 2009. Biodegradability of dissolved organic matter derived from rice straw. Soil Science, 174(3), pp.143–150.spa
dc.relation.referencesChoudhury, A., Kennedy, I. R., 2004. Prospects and potentials for systems of biological nitrogen fixation in sustainable rice production. Biology and Fertility of Soils, 39(4), pp.219- 227.spa
dc.relation.referencesChu, H. et al., 2007. Soil microbial biomass, dehydrogenase activity, bacterial community structure in response to long-term fertilizer management. Soil Biology and Biochemistry, 39(11), pp.2971–2976.spa
dc.relation.referencesConnor, N. et al., 2010. Ecology of speciation in the genus Bacillus. Applied and Environmental Microbiology, 76(5), pp.1349–1358.spa
dc.relation.referencesCooper, R. M., Wood, R. K. S., 1980. Cell wall degrading enzymes of vascular wilt fungi. III. Possible involvement of endo-pectin lyase in Verticillium wilt of tomato. Physiol. Plant Pathol, 16, pp.285-300.spa
dc.relation.referencesCotes, A., 2001. Utilización combinada de técnicas de pregerminación controlada de semillas y del agente de control biológico Trichoderma sp. para el control de patógenos radicales. En: I curso taller internacional control biológico. Programa nacional de manejo integrado de plagas. Corpoica. Bogotá. pp.137-141.spa
dc.relation.referencesDevkota, K. P. et al., 2013. Growth and yield of rice (Oryza sativa L.) under resource conservation technologies in the irrigated drylands of Central Asia. Field Crops Research, 149, pp.115–126.spa
dc.relation.referencesDelgado, J., Rincon, A. & Benitez, T., 2002. Aspartyl protease from Trichoderma harzianum CECT 2413: cloning and characterization. Microbiology, 148, pp.1305–1315.spa
dc.relation.referencesDepartamento Administrativo Nacional de Estadística (DANE). https://www.dane.gov.co/index.php/estadisticas-por-tema/agropecuario/encuesta-de- arroz-mecanizado/encuesta-nacional-de-arroz-mecanizado-enam-historicos (2022) Acceso 20 agosto 2022.spa
dc.relation.referencesDeshpande, V., Lachke, C., Mishra, S., Keskar, S., Rao, M., 1986. Mode of action and properties of xylanase and -xylosidase from Neurospora crassa. Biotechnology Bioengineering, 28, pp.1832-1837.spa
dc.relation.referencesDevevre, O. C. & Horwath, W. R., 2000. Decomposition of rice straw and microbial carbon use efficiency under different soil temperatures and moistures. Soil Biology & Biochemistry, 32, pp.1773–1785.spa
dc.relation.referencesDobermann, B. A. & Fairhurst, T. H., 2000. Rice: nutrient disorders & nutrient management First edit. T. S. Chee, ed., Philippines: International Plant Nutrition Institute.spa
dc.relation.referencesDobermann, B. A. & Fairhurst, T. H., 2002. Rice straw management. Better Crops International, 16, pp.7–11.spa
dc.relation.referencesEspinal, C. F., Martinez, H. J. & Acevedo, J., 2005. La cadena de arroz en Colombia: Una mirada de su estructura global y dinámica 1991-2005., Bogotá, Colombia.spa
dc.relation.referencesEun, J. S. et al., 2006. Exogenous enzymes added to untreated or ammoniated rice straw: effects on in vitro fermentation characteristics and degradability. Animal Feed Science and Technology, 131, pp.86–101.spa
dc.relation.referencesFang, X. et al., 2008. Cellulase and hemicellulase production by Acremonium cellulolyticus for hydrolysis of biomass. Journal of Biotechnology, 136S, pp.S290–S344.spa
dc.relation.referencesFedearroz, 2012. Arroz: 60 años, Edición Especial. Revista Arroz, 60(496), pp.12–23.spa
dc.relation.referencesFillingham, I. J., Kroon, P. A., Williamson, G., Gilbert, H. J., Hazlewood, G. P., 1999. A modular cinnamoyl ester hydrolase from the anaerobic fungus Piromyces equi acts synergistically with xylanase and is part of a multiprotein cellulose-binding cellulase- hemicellulase complex. Biochemistry Journal, 343, pp.215-224.spa
dc.relation.referencesFontaine, S. & Barot, S., 2005. Size and functional diversity of microbe populations control plant persistence and long-term soil carbon accumulation. Ecology Letters, 8(10), pp.1075–1087.spa
dc.relation.referencesFood and Agriculture Organization (FAO): FAOSTAT. http://www.fao.org/statistics/co (2022). Acceso 20 agosto 2022.spa
dc.relation.referencesFranco, C. J., Flórez, A. M. & Ochoa, M. C., 2008. Biocombustibles en Colombia. Revista de Dinámica de Sistemas, 4(2), pp.109–133.spa
dc.relation.referencesFujitani, Y. et al., 2020. Mid carbon (C6+-C29+) in refractory black carbon aerosols is a potential tracer of open burning of rice straw: insights from atmospheric observation and emission source studies. Atmospheric Environment, 238.spa
dc.relation.referencesFukuda, H., Kondo, A. & Tamalampudi, S., 2008. Bioenergy: Sustainable fuels from biomass by yeast and fungal whole-cell biocatalysts. Biochemical Engineering Journal, 44(1), pp.2–12.spa
dc.relation.referencesGadde, B., Menke, C. & Wassmann, R., 2009. Rice straw as a renewable energy source in India, Thailand, and the Philippines: overall potential and limitations for energy contribution and greenhouse gas mitigation. Biomass and Bioenergy, 33(11), pp.1532– 1546.spa
dc.relation.referencesGarces, G., Ospina, J., 2009. Estrategias para el aprovechamiento de los residuos de cosecha del arroz. Bogotá. Fedearroz. 217, 4-5.spa
dc.relation.referencesGärdenäs, A. I. et al., 2011. Knowledge gaps in soil carbon and nitrogen interactions – From molecular to global scale. Soil Biology and Biochemistry, 43(4), pp.702–717.spa
dc.relation.referencesGaspar, A., Cosson, T., Roques, C., Thonart, P., 1997. Study on the production of a xylanolytic complex from Penicillium canescens. Applied Biochemistry and Biotechnology, 67, pp.45-58.spa
dc.relation.referencesGenckal, H., Tari, C., 2006. Alkaline protease production from alkalophilic Bacillus sp. isolated from natural habitats. Enzyme and Microbial Technology, 39, pp.703–710.spa
dc.relation.referencesGeisseler, D., Scow, K. 2014. Long term effects of mineral fertilizers on soil microorganism: a review. Soil Biology and Biochemestry. 75, pp. 54-63.spa
dc.relation.referencesGerhardt, K. E., Huang, X. D., Glick, B. R., Greenberg, B. M., 2009. Phytoremediation and rhizoremediation of organic soil contaminants: potential and challenges. Plant Science. 176(1), pp.20–30.spa
dc.relation.referencesGunina, A., Kuzyakov, Y., 2015. Sugars in soil and sweets for microorganisms: review of origin, content, composition, and fate. Soil Biology and Biochemistry, 90, pp.87–100.spa
dc.relation.referencesGutiérrez-Rojas, I. et al., 2012. Estimación de poblaciones de microorganismos lignolíticos y celulolíticos, y actividad β-glucosidasa en agroecosistemas de arroz. En Ecología de microorganismos rizosféricos asociados a cultivos de arroz de Tolima y Meta. Editorial Universidad Nacional de Colombia. Primera Edición. Capítulo 5.spa
dc.relation.referencesHajji, M. et al., 2010. Gene cloning and expression of a detergent stable alkaline protease from Aspergillus clavatus ES1. Process Biochemistry, 45(10), pp.1746–1752.spa
dc.relation.referencesHan, W. & He, M., 2010a. Short-term effects of exogenous protease application on soil fertility with rice straw incorporation. European Journal of Soil Biology, 46(2), pp.144–150.spa
dc.relation.referencesHan, W. & He, M., 2010b. The application of exogenous cellulase to improve soil fertility and plant growth due to acceleration of straw decomposition. Bioresource Technology, 101(10), pp.3724–3731.spa
dc.relation.referencesHatamoto, M. et al., 2008. Eukaryotic communities associated with the decomposition of rice straw compost in a Japanese rice paddy field estimated by DGGE analysis. Biology and Fertility of Soils, 44(3), pp.527–532.spa
dc.relation.referencesHernandez-Salas, J. M. et al., 2009. Comparative hydrolysis and fermentation of sugarcane and agave bagasse. Bioresource Technology, 100, pp.1238–1245.spa
dc.relation.referencesHideno, A. et al., 2011. Production and characterization of cellulases and hemicellulases by Acremonium cellulolyticus using rice straw subjected to various pretreatments as the carbon source. Enzyme and Microbial Technology, 48(2), pp.162–168.spa
dc.relation.referencesHou, X. D. et al., 2012. Novel renewable ionic liquids as highly effective solvents for pretreatment of rice straw biomass by selective removal of lignin. Biotechnology and Bioengineering, 109(10), pp.2484–2493.spa
dc.relation.referencesHowell, C. R., 2003. Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Disease, 87, pp.4-10.spa
dc.relation.referencesIto, K., Ogasawara, H., Sugimoto, T., Ishikawa, T., 1992. Purification and properties of acid stable xylanase from Aspergillus kawachii. Bioscience Biotechnology and Biochemistry, 56, pp.547-550.spa
dc.relation.referencesJackson, L.E., Burger, M., Cavagnaro, T.R., 2008. Roots, nitrogen transformation, and ecosystem services. Annual Review of Plant Biology, 59(1), pp.341-363.spa
dc.relation.referencesJisha, N.V. et al., 2013. Versatility of microbial proteases. Advances in Enzyme Research, 01(03), pp.39–51.spa
dc.relation.referencesJorquera, M. A. et al., 2011. Identification of β-propeller phytase-encoding genes in culturable Paenibacillus and Bacillus spp. from the rhizosphere of pasture plants on volcanic soils. FEMS Microbiology Ecology, 75(1), pp.163–172.spa
dc.relation.referencesKadam, K. L., Forrest, L. H. & Jacobson, W. A., 2000. Rice straw as a lignocellulosic resource: collection, processing, transportation, and environmental aspects. Biomass and Bioenergy, 18(5), pp.369–389.spa
dc.relation.referencesKaewpradit, W. et al., 2009. Mixing groundnut residues and rice straw to improve rice yield and N use efficiency. Field Crops Research, 110(2), pp.130–138.spa
dc.relation.referencesKausar, H. et al., 2010. Development of compatible lignocellulolytic fungal consortium for rapid composting of rice straw. International Biodeterioration & Biodegradation, 64(7), pp.594–600.spa
dc.relation.referencesKennedy, I., Choudhury, A.T. & Kecskes, M., 2004. Non-symbiotic bacterial diazotrophs in crop-farming systems: can their potential for plant growth promotion be better exploited? Soil Biology and Biochemistry, 36(8), pp.1229–1244.spa
dc.relation.referencesKennedy, A. C., Smith, K. L., 1995. Soil microbial diversity and the sustainability of agricultural soils. Plant and Soil, 170(1), pp.75-86.spa
dc.relation.referencesKimura, M., Murase, J. & Lu, Y., 2004. Carbon cycling in rice field ecosystems in the context of input, decomposition and translocation of organic materials and the fates of their end products (CO2 and CH4). Soil Biology and Biochemistry, 36(9), pp.1399–1416.spa
dc.relation.referencesKirkby, C. A. et al., 2014. Nutrient availability limits carbon sequestration in arable soils. Soil Biology and Biochemistry, 68, pp.402–409.spa
dc.relation.referencesKloepper, J. W., Schroth, M. N., 1981. Plant growth-promoting rhizobacteria and plant growth under gnotobiotic conditions. Phytopathology, 71(6), pp.642–644.spa
dc.relation.referencesKogo, T., et al., 2017. Production of rice straw hydrolysis enzymes by the fungi Trichoderma reesei and Humicola insolens using rice straw as a carbon source. Bioresource Technology, pp.67–73.spa
dc.relation.referencesKotasthane, A. et al., 2015. In-vitro antagonism of Trichoderma spp. against Sclerotium rolfsii and Rhizoctonia solani and their response towards growth of cucumber, bottle gourd and bitter gourd. European Journal of Plant Pathology, 141(3), pp.523–543.spa
dc.relation.referencesKumar, N. N., Deobagkar, D. N., 1996. Multifunctional glucanases. Biotechnology Advances, 14, pp.1-15.spa
dc.relation.referencesKumar, R., Singh, S. & Singh, O., 2008. Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol, 35, pp.377–391.spa
dc.relation.referencesKuzyakov, Y., 2002. Review: factors affecting rhizosphere priming effects. Journal of Plant Nutrition and Soil Science, 165(4), pp.382–396.spa
dc.relation.referencesKuzyakov, Y., 2010. Priming effects: Interactions between living and dead organic matter. Soil Biology and Biochemistry, 42(9), pp.1363–1371.spa
dc.relation.referencesLadha, J. K., Pathak, H., Krupnik, T. J., Six, J., van Kessel, C. (2005). Efficiency of fertilizer nitrogen in cereal production: retrospects and prospects. Advances in Agronomy, 87(05), pp.85–156.spa
dc.relation.referencesLewis, J. A.; Lumsden, R. D., 2001. Biocontrol of damping-off greenhouse-grown crops caused by Rhizoctonia solani with a formulation of Trichoderma spp. Crop Protection, 20, pp.49-56.spa
dc.relation.referencesLi, X. X. et al., 2021. Performance and microbial community dynamics during rice straw composting using urea or protein hydrolysate as a nitrogen source: a comparative study. Waste Management, 135, 130–139.spa
dc.relation.referencesLian, L.H., Tian, B.Y., Xiong, R., Zhu, M.Z., and Xu, J.L., 2007. Proteases from Bacillus: a new insight into the mechanism of action for rhizobacterial suppression of nematode populations. Letters in Applied Microbiology, 45, pp.262–269.spa
dc.relation.referencesLiesack, W., Schnell, S., Revsbech, N.P., 2000. Microbiology of flooded rice paddies. FEMS Microbiology Reviews, 24(5), pp.625-645.spa
dc.relation.referencesLohnis, F., 1926. Nitrogen avalilability of green manures. Soil Science, 22(4), pp.253– 290.spa
dc.relation.referencesLu, J. & Zhou, P., 2011. Optimization of microwave assisted FeCl3 pretreatment conditions of rice straw and utilization of Trichoderma viride and Bacillus pumilus for production of reducing sugars. Bioresource Technology, 102(13), pp.6966–6971.spa
dc.relation.referencesLu, Y., Watanabe, A. & Kimura, M., 2003. Carbon dynamics of rhizodeposits, root- and shoot-residues in a rice soil. Soil Biology & Biochemistry, 35, pp.1223–1230.spa
dc.relation.referencesLutzen, N. W. et al., 1983. Cellulases and their application in the conversion of lignocellulose to fermentable sugars. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 300(1100), pp.283–291.spa
dc.relation.referencesLynd, L. R. et al., 2002. Microbial cellulose utilization: fundamentals and biotechnology microbial cellulose utilization. Microbiol. Mol. Biol. Rev., 66(3), pp.506–577.spa
dc.relation.referencesMan, L. H. & Ha, N.N., 2006. Effect of decomposed rice straw at different times on rice yield. Omonrice, 14, pp.58–63.spa
dc.relation.referencesMandal, K. G. et al., 2004. Rice residue- management options and effects on soil properties and crop productivity. Food, Agriculture & Environment, 2(1), pp.224–231.spa
dc.relation.referencesMandic-Mulec, I. & Prosser, J. I., 2011. Endospore-forming soil bacteria. In N. A. Logan & P. Vos, eds. Endospore-forming Soil Bacteria, Soil Biology. Soil Biology. Berlin, Heidelberg: Springer Berlin Heidelberg.spa
dc.relation.referencesMarentes, F. et al., 2012. Evaluación en campo de microorganismos promotores del crecimiento y celulolíticos. In Ecología de microorganismos rizosféricos asociados a cultivos de arroz de Tolima y Meta. Bogotá: Editorial Universidad Nacional de Colombia.spa
dc.relation.referencesMarschner, P., Crowley, D., Rengel, Z., 2011. Rhizosphere interactions between microorganisms and plants govern iron and phosphorus acquisition along the root axis model and research methods. Soil Biology and Biochemistry. 43(5), pp.883–894.spa
dc.relation.referencesMartínez, Á. T., Ruiz-Dueñas, F. J., Martínez, M. J., del Río, J. C., Gutiérrez, A., 2009. Enzymatic delignification of plant cell wall: from nature to mill. Current Opinion in Biotechnology, 20(3), 348–357.spa
dc.relation.referencesMcSpadden Gardener, B. B., 2004. Ecology of Bacillus and Paenibacillus spp. in agricultural systems. Phytophatology, 94, pp.1252-1258.spa
dc.relation.referencesMocali, S. et al., 2008. Diversity of heterotrophic aerobic cultivable microbial communities of soils treated with fumigants and dynamics of metabolic, microbial, and mineralization quotients. Biology and Fertility of Soils, 44(4), pp.557–569.spa
dc.relation.referencesNamboodiri, M. M. T. et al., 2022. Solid state fermentation of rice straw using Penicillium citrinum for chitosan production and application as nanobiosorbent. Bioresource Technology Reports, 18.spa
dc.relation.referencesNaseby, D. C., Pascual, J. A., Lynch, J. M., 2000. Effect of biocontrol strains of Trichoderma on plant growth, Pythium ultimum populations, soil microbial communities and soil enzyme activities. Journal of Applied Microbiology, 88(1), pp.161–169.spa
dc.relation.referencesNorby, R. J. & Cotrufo, M. F., 1998. A question of litter quality. Nature, 396, pp.12–13.spa
dc.relation.referencesPaulitz, T., Belanger, R., 2001. Biological control in greenhouse systems. Annual Review of Phytopathology, 39, pp.103-133.spa
dc.relation.referencesPhadtare, S., Rao, M. & Deshpande, V., 1997. A serine alkaline protease from the fungus Conidiobolus coronatus with a distinctly different structure than the serine protease subtilisin Carlsberg. Arch Microbiol, 166, pp.414–417.spa
dc.relation.referencesPhongpan, S., Mosier, A. R., 2003. Effect of rice straw management on nitrogen balance and residual effect of urea-N in an annual lowland rice cropping sequence. Biology and Fertility of Soils, 37(2), pp.102–107.spa
dc.relation.referencesPonnamperuma, F. N., 1984. Straw as source of nutrients for wetland rice. In Organic matter and rice. International rice. Research Institute Ed. pp. 117-130. Los Baños Philipinas.spa
dc.relation.referencesPooniya, V. et al., 2012. Enhancing soil nutrient dynamics and productivity of Basmati rice through residue incorporation and zinc fertilization. European Journal of Agronomy, 41: pp.28–37.spa
dc.relation.referencesPowlson, D. S. et al., 2008. Carbon sequestration in European soils through straw incorporation: limitations and alternatives. Waste Management, 28, pp.741–746.spa
dc.relation.referencesRaina, D., Kumar, V., Saran, S., 2022. A critical review on exploitation of agroindustrial biomass as substrates for the therapeutic microbial enzymes production and implemented protein purification techniques. Chemosphere, 294.spa
dc.relation.referencesRamírez, C. A., Kloepper, J. W., 2010. Plant growth promotion by Bacillus amyloliquefaciens FZB45 depends on inoculum rate and P-related soil properties. Biol Fertil Soils, 46, pp.835–844.spa
dc.relation.referencesRobertson, G. P. & Vitousek, P. M., 2009. Nitrogen in agriculture: balancing the cost of an essential resource. Annual Review of Environment and Resources, 34(1), pp.97–125.spa
dc.relation.referencesRodriguez, H., Fraga, R., 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology Advance, 17(4-5), pp.319-339.spa
dc.relation.referencesSanchez, C., 2009. Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnology Advances, 27(2), pp.185–194.spa
dc.relation.referencesSarkar, N., Ghosh, S. K., Bannerjee, S., & Aikat, K., 2012. Bioethanol production from agricultural wastes: an overview. Renewable Energy, 37(1), pp. 19–27.spa
dc.relation.referencesSchallmey, M., Singh, A., Ward, O. P., 2004. Developments in the use of Bacillus species for industrial production. Canadian Journal of Microbiology. 50(1), pp. 1–17.spa
dc.relation.referencesSchulein, M., 1988. Cellulases of Trichoderma reesei. In Methods in enzymology. WoodWA, Abelson JN, editors. New York: Academic Press; 160, pp.234–42.spa
dc.relation.referencesSchuster, A., Schmoll, M., 2010. Biology and biotechnology of Trichoderma. Applied Microbiology and Biotechnology, 87(3), 787–799.spa
dc.relation.referencesScow, K. M., 1997. Soil microbial communities and carbon flow in agroecosystems. In Ecology in Agriculture. L.E. Jackson Ed. (pp. 367-413). San Diego, California. USA, Academic Press.spa
dc.relation.referencesShi-ping, L. et al., 2007. Effect of interplanting with zero tillage and straw manure on rice growth and rice quality. Rice Science, 14(3), pp.204–210.spa
dc.relation.referencesSu, P., Brookes, P. C., He, Y., Wu, J., Xu, J., 2016. An evaluation of a microbial inoculum in promoting organic C decomposition in a paddy soil following straw incorporation. Journal of Soils and Sediments, 16(6), 1776–1786.spa
dc.relation.referencesThuille, A., Laufer, J., Höhl, C., Gleixner, G., 2015. Carbon quality affects the nitrogen partitioning between plants and soil microorganisms. Soil Biology and Biochemistry, 266– 274.spa
dc.relation.referencesToan, N. S. et al., 2022. Effects of burning rice straw residue on-field on soil organic carbon pools: environment-friendly approach from a conventional rice paddy in central Vietnam. Chemosphere, 294.spa
dc.relation.referencesVan Soest, P.J., 2006. Rice straw, the role of silica and treatments to improve quality. Animal Feed Science and Technology, 130, pp.137–171.spa
dc.relation.referencesVanegas, J., Camelo, C., Rodriguez, J., Melgarejo, L.M., Uribe, D., 2012. Abundancia de diazótrofos, actividad nitrogenasa y proteasa en cultivos arroceros de los departamentos del Tolima y Meta. En Ecología de microorganismos rizosféricos asociados a cultivos de arroz de Tolima y Meta. Editorial Universidad Nacional de Colombia. Primera Edición. Capítulo 3.spa
dc.relation.referencesVallejo, M., Bonilla, C., Castilla, L., 2008. Evaluación de bacterias fijadoras de nitrógeno-líneas interespecíficas de arroz en Typic haplustalfHapl. Acta Agronómica, 57(1), pp. 43-49.spa
dc.relation.referencesvan Dyk, J. S., Sakka, M., Sakka, K., Pletschke, B. I., 2009. The cellulolytic and hemi- cellulolytic system of Bacillus licheniformis SVD1 and the evidence for production of a large multi-enzyme complex. Enzyme and Microbial Technology, 45(5), pp.372–378.spa
dc.relation.referencesVial, L. K., Molesworth, A., & Lefroy, R. D. B., 2020. Balancing rice and non-rice crops: managing the risks from soil constraints in Mainland Southeast Asian rice systems. In Field Crops Research, 246.spa
dc.relation.referencesWagner, G. H., Wolf, D. C., 1999. Carbon transformation and soil organic matter formation. In Principles and Applications of Soil Microbiology. D.M. Sylvia, Fuhrmann J.J., Hartel P.G., & D.A. Zuberer Eds. New Jersey: Prentice Hall, Inc.spa
dc.relation.referencesWalker, T. W. & Street, J. E., 2003. Rice fertilization, Rice Fertilization Mississippi Agricultural & Forestry Experiment Station.spa
dc.relation.referencesWilson, C. A., Wood, T. M., 1992. The anaerobic fungus Neocallimastrix frontalis: isolation and properties of a cellulosome-type enzyme fraction with the capacity to solubilize hydrogen-bond-ordered cellulose. Applied Microbiology and Biotechnology, 37, pp.125- 129.spa
dc.relation.referencesXu, G., Fan, X., Miller, A. J., 2012. Plant nitrogen assimilation and use efficiency. Annual Review of Plant Biology, 63, pp.153–182.spa
dc.relation.referencesZang, H., Wang, J., Kuzyakov, Y., 2016. N fertilization decreases soil organic matter decomposition in the rhizosphere. Applied Soil Ecology, 108, pp.47–53.spa
dc.relation.referencesZhang, Q. et al., 2009. Two-stage co-hydrolysis of rice straw by Trichoderma reesei ZM4-F3 and Pseudomonas aeruginosa BSZ-07. Biomass and Bioenergy, 33(10), pp.1464– 1468.spa
dc.relation.referencesZhang, Q. Z., Cai, W. M. (2008). Enzymatic hydrolysis of alkali-pretreated rice straw by Trichoderma reesei ZM4-F3. Biomass and Bioenergy, 32(12), pp.1130–1135.spa
dc.relation.referencesZhou, J. et al., 2008. Identification and purification of the main components of cellulases from a mutant strain of Trichoderma viride T 100-14. Bioresource Technology, 99, pp.6826– 6833.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc500 - Ciencias naturales y matemáticasspa
dc.subject.ddc630 - Agricultura y tecnologías relacionadasspa
dc.subject.ddc570 - Biologíaspa
dc.subject.ddc570 - Biología::572 - Bioquímicaspa
dc.subject.lembFERTILIZANTES ORGANICOSspa
dc.subject.lembOrganic fertilizerseng
dc.subject.lembPRODUCCION VEGETALspa
dc.subject.lembPlant productioneng
dc.subject.proposalTamo de arrozspa
dc.subject.proposalActividad hidrolíticaspa
dc.subject.proposalAntagonismospa
dc.subject.proposalRelación C:Nspa
dc.subject.proposalBAFEspa
dc.subject.proposalTrichodermaspa
dc.subject.proposalPromoción de crecimiento vegetalspa
dc.subject.proposalRice Straweng
dc.subject.proposalHydrolitic activityeng
dc.subject.proposalCarbon to nitrogen ratioeng
dc.subject.proposalAerobic endospore forming batería - AEFBeng
dc.subject.proposalTrichoderma fungieng
dc.subject.proposalPlant growth promotioneng
dc.titleDesarrollo de estrategias biológicas para el manejo del tamo de arroz con fines de biofertilización en el departamento del Tolimaspa
dc.title.translatedDevelopment of biological strategies for rice straw management as biofertilizer at Tolima ́s departmenteng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentResponsables políticosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
80259449.2024.pdf
Tamaño:
5.83 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de doctorado en Ciencias-Biología

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: