Monitoring urban air pollution using low-cost sensor devices

dc.contributor.advisorYris, Olaya Morales
dc.contributor.authorRios Martinez, Jenny Rocio
dc.contributor.researchgroupCiencias de la Decisionspa
dc.date.accessioned2024-02-13T18:22:10Z
dc.date.available2024-02-13T18:22:10Z
dc.date.issued2023-02-13
dc.descriptionIlustraciones, gráficas, tablasspa
dc.description.abstractThe study of urban air pollution holds paramount significance within the realms of environmental science and public health. Urban areas are epicenters of diverse human activities, industrial operations, and vehicular traffic, collectively contributing to elevated concentrations of air pollutants. As the use of LCS devices becomes more prevalent in citizen science initiatives, educational purposes, rise of information and awareness, it is crucial to establish their performance characteristics and evaluation metrics for air pollution monitoring. This thesis focuses on evaluating the performance of Low-cost sensors (LCS) in the monitoring of PM2.5 concentrations in outdoor urban environments in Colombia using data mining and machine learning models. The results show that the polynomial regression and Artificial Neural Networks models present a better enhancing in the accuracy and precision of the measurements of the different models of LCS used in this study compared with simple linear regression and other machine learning models. Lastly, the project endeavors to demonstrate the applicability of LCS devices for monitoring PM2.5 concentration in various transportation modes within the city of Medellin. This research contributes to the broader understanding of LCS devices' potential in enhancing air quality monitoring and their suitability for citizen-driven initiatives in regions lacking regulatory-grade instruments.
dc.description.abstractEl estudio de la contaminación del aire urbano tiene una importancia fundamental en los ámbitos de la ciencia ambiental y la salud pública. Las áreas urbanas son epicentros de diversas actividades humanas, operaciones industriales y tráfico vehicular, contribuyendo colectivamente a concentraciones elevadas de contaminantes atmosféricos. A medida que el uso de dispositivos LCS se vuelve más frecuente en iniciativas de ciencia ciudadana, con fines educativos, aumento de información y conciencia, es crucial establecer sus características de rendimiento y métricas de evaluación para el monitoreo de la contaminación del aire. Esta tesis se centra en evaluar el rendimiento de los sensores de bajo costo (LCS) en el monitoreo de las concentraciones de PM2.5 en entornos urbanos al aire libre en Colombia mediante la minería de datos y modelos de aprendizaje automático. Los resultados muestran que los modelos de regresión polinómica y redes neuronales artificiales mejoran la precisión y la exactitud de las mediciones de los diferentes modelos de LCS utilizados en este estudio en comparación con la regresión lineal simple y otros modelos de aprendizaje de máquinas. Por último, el proyecto pretende demostrar la aplicabilidad de los dispositivos LCS para monitorear la concentración de PM2.5 en diversos modos de transporte dentro de la ciudad de Medellín. Esta investigación contribuye a una comprensión más amplia del potencial de los dispositivos LCS para mejorar el monitoreo de la calidad del aire y su idoneidad para iniciativas impulsadas por ciudadanos en regiones que carecen de instrumentos de calidad regulatoria. (text tomado de la fuente)spa
dc.description.curricularareaÁrea Curricular de Ingeniería de Sistemas e Informáticaspa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingenieríaspa
dc.description.researchareaInvestigación de operacionesspa
dc.description.sponsorshipColciencias Convocatoria 727 doctorados nacionalesspa
dc.format.extent196 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85696
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Doctorado en Ingeniería - Sistemasspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAgarwal, A., Kaushik, A., Kumar, S., & Mishra, R. K. (2020). Comparative study on air quality status in Indian and Chinese cities before and during the COVID-19 lockdown period. Air Quality, Atmosphere & Health, 13(10), 1167–1178. https://doi.org/10.1007/s11869-020-00881-zspa
dc.relation.referencesAggarwal, C. C. (2015). Data Mining. Springer International Publishing. https://doi.org/10.1007/978-3-319-14142-8spa
dc.relation.referencesAlcaldía Mayor de Bogotá D.C., S. de A. (2022). Red de Monitoreo de Calidad del Aire de Bogotá—RMCAB. Secretaría Distrital de Ambiente. https://ambientebogota.gov.co/red-de-monitoreo-de-calidad-del-aire-de-bogota-rmcabspa
dc.relation.referencesAlfano, B., Barretta, L., Del Giudice, A., De Vito, S., Di Francia, G., Esposito, E., Formisano, F., Massera, E., Miglietta, M. L., & Polichetti, T. (2020). A Review of Low-Cost Particulate Matter Sensors from the Developers’ Perspectives. Sensors, 20(23), Article 23. https://doi.org/10.3390/s20236819spa
dc.relation.referencesAMVA. (2018). Plan de acción para la implementación del Plan Operacional para enfrentar Episodios de Contaminación Atmosférica (POECA) en el área Metropolitana del Valle de Aburrá. https://www.metropol.gov.co/ambiental/calidad-del-aire/Documents/POECA/Plan-de-Accion-POECA-2019.pdfspa
dc.relation.referencesAMVA. (2019). Condiciones especiales del valle de aburrá. https://www.metropol.gov.co:443/ambientales/calidad-del-aire/generalidades/condiciones-especialesspa
dc.relation.referencesAMVA. (2021). Ciudadanos Científicos. Programa local de ciencia, educación y tecnología. https://www.metropol.gov.co:443/ambiental/siata/Paginas/ciudadanos-cientificos.aspxspa
dc.relation.referencesAMVA. (2022). Encuesta origen destino. https://www.metropol.gov.co:443/observatorio/Paginas/encuestaorigendestino.aspxspa
dc.relation.referencesApte, J. S., Marshall, J. D., Cohen, A. J., & Brauer, M. (2015). Addressing Global Mortality from Ambient PM 2.5. Environmental Science & Technology, 49(13), 8057–8066. https://doi.org/10.1021/acs.est.5b01236spa
dc.relation.referencesÁrea Metropolitana del Valle de Aburrá. (2022). Encuesta de Origen—Destino. https://www.metropol.gov.co/observatorio/Paginas/encuestaorigendestino.aspxspa
dc.relation.referencesArfire, A., Marjovi, A., & Martinoli, A. (2016). Enhancing measurement quality through active sampling in mobile air quality monitoring sensor networks. 2016 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), 1022–1027. https://doi.org/10.1109/AIM.2016.7576904spa
dc.relation.referencesAstudillo, G. D., Garza-Castanon, L. E., & Minchala Avila, L. I. (2020). Design and Evaluation of a Reliable Low-Cost Atmospheric Pollution Station in Urban Environment. IEEE Access, 8, 51129–51144. https://doi.org/10.1109/ACCESS.2020.2980736spa
dc.relation.referencesAustin, E., Novosselov, I., Seto, E., & Yost, M. G. (2015). Laboratory Evaluation of the Shinyei PPD42NS Low-Cost Particulate Matter Sensor. PLOS ONE, 10(9), e0137789. https://doi.org/10.1371/journal.pone.0137789spa
dc.relation.referencesBadura, M., Batog, P., Drzeniecka-Osiadacz, A., & Modzel, P. (2019). Regression methods in the calibration of low-cost sensors for ambient particulate matter measurements. SN Applied Sciences, 1(6), 622. https://doi.org/10.1007/s42452-019-0630-1spa
dc.relation.referencesBai, L., Huang, L., Wang, Z., Ying, Q., Zheng, J., Shi, X., & Hu, J. (2020). Long-term field Evaluation of Low-cost Particulate Matter Sensors in Nanjing. Aerosol and Air Quality Research, 20(2), 242–253. https://doi.org/10.4209/aaqr.2018.11.0424spa
dc.relation.referencesBAM-1020 Continuous Particulate Monitor. (2021). Met One Instruments. https://metone.com/products/bam-1020/spa
dc.relation.referencesBarcelo-Ordinas, J. M., Doudou, M., Garcia-Vidal, J., & Badache, N. (2019). Self-calibration methods for uncontrolled environments in sensor networks: A reference survey. Ad Hoc Networks, 88, 142–159. https://doi.org/10.1016/j.adhoc.2019.01.008spa
dc.relation.referencesBáthory, C., Dobó, Z., Garami, A., Palotás, Á., & Tóth, P. (2022). Low-cost monitoring of atmospheric PM—development and testing. Journal of Environmental Management, 304, 114158. https://doi.org/10.1016/j.jenvman.2021.114158spa
dc.relation.referencesBenabbas, A., Geißelbrecht, M., Nikol, G. M., Mahr, L., Nähr, D., Steuer, S., Wiesemann, G., Müller, T., Nicklas, D., & Wieland, T. (2019). Measure particulate matter by yourself: Data-quality monitoring in a citizen science project. Journal of Sensors and Sensor Systems, 8(2), 317–328. https://doi.org/10.5194/jsss-8-317-2019spa
dc.relation.referencesBerghmans, P., Bleux, N., Panis, L. I., Mishra, V. K., Torfs, R., & Van Poppel, M. (2009). Exposure assessment of a cyclist to PM10 and ultrafine particles. Science of The Total Environment, 407(4), 1286–1298. https://doi.org/10.1016/j.scitotenv.2008.10.041spa
dc.relation.referencesBergmann, M. L., Andersen, Z. J., Amini, H., Khan, J., Lim, Y. H., Loft, S., Mehta, A., Westendorp, R. G., & Cole-Hunter, T. (2022). Ultrafine particle exposure for bicycle commutes in rush and non-rush hour traffic: A repeated measures study in Copenhagen, Denmark. Environmental Pollution, 294, 118631. https://doi.org/10.1016/j.envpol.2021.118631spa
dc.relation.referencesBoniardi, L., Borghi, F., Straccini, S., Fanti, G., Campagnolo, D., Campo, L., Olgiati, L., Lioi, S., Cattaneo, A., Spinazzè, A., Cavallo, D. M., & Fustinoni, S. (2021). Commuting by car, public transport, and bike: Exposure assessment and estimation of the inhaled dose of multiple airborne pollutants. Atmospheric Environment, 262, 118613. https://doi.org/10.1016/j.atmosenv.2021.118613spa
dc.relation.referencesBorghi, F., Fanti, G., Cattaneo, A., Campagnolo, D., Rovelli, S., Keller, M., Spinazzè, A., & Cavallo, D. M. (2020). Estimation of the inhaled dose of airborne pollutants during commuting: Case study and application for the general population. International Journal of Environmental Research and Public Health, 17(17), 1–14. Scopus. https://doi.org/10.3390/ijerph17176066spa
dc.relation.referencesBožilov, A., Tasić, V., Živković, N., Lazović, I., Blagojević, M., Mišić, N., & Topalović, D. (2022). Performance assessment of NOVA SDS011 low-cost PM sensor in various microenvironments. Environmental Monitoring and Assessment, 194(9), 595. https://doi.org/10.1007/s10661-022-10290-7spa
dc.relation.referencesBrunekreef, B., & Holgate, S. T. (2002). Air pollution and health. The Lancet, 360(9341), 1233–1242. https://doi.org/10.1016/S0140-6736(02)11274-8spa
dc.relation.referencesBuiles-Jaramillo, A., Gómez-Bedoya, J., Lopera-Uribe, S., & Fajardo-Castaño, V. (2020). Hotspots, daily cycles and average daily dose of PM2.5 in a cycling route in Medellin. Revista Facultad de Ingeniería Universidad de Antioquia, 96, 87–99. https://doi.org/10.17533/udea.redin.20191153 Bulot, F. M. J., Johnston, S. J., Basford, P. J., Easton, N. H. C., Apetroaie-Cristea, M., Foster, G. L., Morris, A. K. R., Cox, S. J., & Loxham, M. (2019). Long-term field comparison of multiple low-cost particulate matter sensors in an outdoor urban environment. Scientific Reports, 9(1), 7497. https://doi.org/10.1038/s41598-019-43716-3spa
dc.relation.referencesBurnett, R. T., Pope, C. A., Ezzati, M., Olives, C., Lim, S. S., Mehta, S., Shin, H. H., Singh, G., Hubbell, B., Brauer, M., Anderson, H. R., Smith, K. R., Balmes, J. R., Bruce, N. G., Kan, H., Laden, F., Prüss-Ustün, A., Turner, M. C., Gapstur, S. M., … Cohen, A. (2014). An Integrated Risk Function for Estimating the Global Burden of Disease Attributable to Ambient Fine Particulate Matter Exposure. Environmental Health Perspectives, 122(4), 397–403. https://doi.org/10.1289/ehp.1307049spa
dc.relation.referencesBulot, F. M. J., Johnston, S. J., Basford, P. J., Easton, N. H. C., Apetroaie-Cristea, M., Foster, G. L., Morris, A. K. R., Cox, S. J., & Loxham, M. (2019). Long-term field comparison of multiple low-cost particulate matter sensors in an outdoor urban environment. Scientific Reports, 9(1), 7497. https://doi.org/10.1038/s41598-019-43716-3spa
dc.relation.referencesBulot, F. M. J., Ossont, S. J., Morris, A. K. R., Basford, P. J., Easton, N. H. C., Mitchell, H. L., Foster, G. L., Cox, S. J., & Loxham, M. (2023). Characterisation and calibration of low-cost PM sensors at high temporal resolution to reference-grade performance. Heliyon, 9(5), e15943. https://doi.org/10.1016/j.heliyon.2023.e15943spa
dc.relation.referencesCamprodon, G., González, Ó., Barberán, V., Pérez, M., Smári, V., de Heras, M. Á., & Bizzotto, A. (2019). Smart Citizen Kit and Station: An open environmental monitoring system for citizen participation and scientific experimentation. HardwareX. https://doi.org/10.1016/j.ohx.2019.e00070spa
dc.relation.referencesCanAirIO. (2021). CanAirIO. Citizen Network for Monitoring Air Quality. https://canair.io/index.htmlspa
dc.relation.referencesCarvalho, H. (2017). The global burden of air pollution-associated deaths—How many are needed for countries to react? The Lancet Planetary Health, 1(5), e179. https://doi.org/10.1016/S2542-5196(17)30076-1spa
dc.relation.referencesCastell, N., Dauge, F. R., Schneider, P., Vogt, M., Lerner, U., Fishbain, B., Broday, D., & Bartonova, A. (2017). Can commercial low-cost sensor platforms contribute to air quality monitoring and exposure estimates? Environment International, 99, 293–302. https://doi.org/10.1016/j.envint.2016.12.007spa
dc.relation.referencesCavaliere, A., Carotenuto, F., Di Gennaro, F., Gioli, B., Gualtieri, G., Martelli, F., Matese, A., Toscano, P., Vagnoli, C., & Zaldei, A. (2018). Development of Low-Cost Air Quality Stations for Next Generation Monitoring Networks: Calibration and Validation of PM2.5 and PM10 Sensors. Sensors, 18(9), 2843. https://doi.org/10.3390/s18092843spa
dc.relation.referencesCepeda, M., Schoufour, J., Freak-Poli, R., Koolhaas, C. M., Dhana, K., Bramer, W. M., & Franco, O. H. (2017). Levels of ambient air pollution according to mode of transport: A systematic review. The Lancet Public Health, 2(1), e23–e34. https://doi.org/10.1016/S2468-2667(16)30021-4spa
dc.relation.referencesChen, C.-H., Wu, C.-D., Chiang, H.-C., Chu, D., Lee, K.-Y., Lin, W.-Y., Yeh, J.-I., Tsai, K.-W., & Guo, Y.-L. L. (2019). The effects of fine and coarse particulate matter on lung function among the elderly. Scientific Reports, 9(1), 14790. https://doi.org/10.1038/s41598-019-51307-5spa
dc.relation.referencesChen, H., Covert, I. C., Lundberg, S. M., & Lee, S.-I. (2023). Algorithms to estimate Shapley value feature attributions. Nature Machine Intelligence, 5(6), Article 6. https://doi.org/10.1038/s42256-023-00657-xspa
dc.relation.referencesChen, L.-J., Ho, Y.-H., Lee, H.-C., Wu, H.-C., Liu, H.-M., Hsieh, H.-H., Huang, Y.-T., & Lung, S.-C. C. (2017). An Open Framework for Participatory PM2.5 Monitoring in Smart Cities. IEEE Access, 5, 14441–14454. https://doi.org/10.1109/ACCESS.2017.2723919spa
dc.relation.referencesChen, Z., Barros, C. P., & Gil-Alana, L. A. (2016). The persistence of air pollution in four mega-cities of China. Habitat International, 56, 103–108. https://doi.org/10.1016/j.habitatint.2016.05.004spa
dc.relation.referencesClements, A., Duvall, R., & Dye, T. (2022). The Enhanced Air Sensor Guidebook. https://cfpub.epa.gov/si/si_public_record_Report.cfm?dirEntryId=356426&Lab=CEMMspa
dc.relation.referencesCohen, A. J., Brauer, M., Burnett, R., Anderson, H. R., Frostad, J., Estep, K., Balakrishnan, K., Brunekreef, B., Dandona, L., Dandona, R., Feigin, V., Freedman, G., Hubbell, B., Jobling, A., Kan, H., Knibbs, L., Liu, Y., Martin, R., Morawska, L., … Forouzanfar, M. H. (2017). Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the Global Burden of Diseases Study 2015. The Lancet, 389(10082), 1907–1918. https://doi.org/10.1016/S0140-6736(17)30505-6spa
dc.relation.referencesCole-Hunter, T., Jayaratne, R., Stewart, I., Hadaway, M., Morawska, L., & Solomon, C. (2013). Utility of an alternative bicycle commute route of lower proximity to motorised traffic in decreasing exposure to ultra-fine particles, respiratory symptoms and airway inflammation – a structured exposure experiment. Environmental Health, 12(1), 29. https://doi.org/10.1186/1476-069X-12-29spa
dc.relation.referencesCollier-Oxandale, A., Feenstra, B., Papapostolou, V., Zhang, H., Kuang, M., Der Boghossian, B., & Polidori, A. (2020). Field and laboratory performance evaluations of 28 gas-phase air quality sensors by the AQ-SPEC program. Atmospheric Environment, 220, 117092. https://doi.org/10.1016/j.atmosenv.2019.117092spa
dc.relation.referencesCommodore, A., Wilson, S., Muhammad, O., Svendsen, E., & Pearce, J. (2017). Community-based participatory research for the study of air pollution: A review of motivations, approaches, and outcomes. Environmental Monitoring and Assessment, 189(8), 378. https://doi.org/10.1007/s10661-017-6063-7spa
dc.relation.referencesCorreia, C., Martins, V., Cunha-Lopes, I., Faria, T., Diapouli, E., Eleftheriadis, K., & Almeida, S. M. (2020). Particle exposure and inhaled dose while commuting in Lisbon. Environmental Pollution, 257, 113547. https://doi.org/10.1016/j.envpol.2019.113547spa
dc.relation.referencesCrilley, L. R., Shaw, M., Pound, R., Kramer, L. J., Price, R., Young, S., Lewis, A. C., & Pope, F. D. (2018). Evaluation of a low-cost optical particle counter (Alphasense OPC-N2) for ambient air monitoring. Atmospheric Measurement Techniques, 11(2), 709–720. https://doi.org/10.5194/amt-11-709-2018spa
dc.relation.referencesCross, E. S., Williams, L. R., Lewis, D. K., Magoon, G. R., Onasch, T. B., Kaminsky, M. L., Worsnop, D. R., & Jayne, J. T. (2017). Use of electrochemical sensors for measurement of air pollution: Correcting interference response and validating measurements. Atmospheric Measurement Techniques, 10(9), 3575–3588. https://doi.org/10.5194/amt-10-3575-2017spa
dc.relation.referencesDavies, L., Fradera, R., Riesch, H., & Lakeman-Fraser, P. (2016). Surveying the citizen science landscape: An exploration of the design, delivery and impact of citizen science through the lens of the Open Air Laboratories (OPAL) programme. BMC Ecology, 16(S1), 17. https://doi.org/10.1186/s12898-016-0066-zspa
dc.relation.referencesDC1700-PM PM2.5/PM10 AQM. (2022). http://www.dylosproducts.com/dcpmaqm.htmlspa
dc.relation.referencesde Nazelle, A., Fruin, S., Westerdahl, D., Martinez, D., Ripoll, A., Kubesch, N., & Nieuwenhuijsen, M. (2012). A travel mode comparison of commuters’ exposures to air pollutants in Barcelona. Atmospheric Environment, 59, 151–159. https://doi.org/10.1016/j.atmosenv.2012.05.013spa
dc.relation.referencesde Nazelle, A., Seto, E., Donaire-Gonzalez, D., Mendez, M., Matamala, J., Nieuwenhuijsen, M. J., & Jerrett, M. (2013). Improving estimates of air pollution exposure through ubiquitous sensing technologies. Environmental Pollution, 176, 92–99. https://doi.org/10.1016/j.envpol.2012.12.032spa
dc.relation.referencesDelaney, D. G., Sperling, C. D., Adams, C. S., & Leung, B. (2008). Marine invasive species: Validation of citizen science and implications for national monitoring networks. Biological Invasions, 10(1), 117–128. https://doi.org/10.1007/s10530-007-9114-0spa
dc.relation.referencesDeng, Q., Deng, L., Miao, Y., Guo, X., & Li, Y. (2019). Particle deposition in the human lung: Health implications of particulate matter from different sources. Environmental Research, 169, 237–245. https://doi.org/10.1016/j.envres.2018.11.014spa
dc.relation.referencesDeng, Q., Lu, C., Norbäck, D., Bornehag, C.-G., Zhang, Y., Liu, W., Yuan, H., & Sundell, J. (2015). Early life exposure to ambient air pollution and childhood asthma in China. Environmental Research, 143, 83–92. https://doi.org/10.1016/j.envres.2015.09.032spa
dc.relation.referencesDuvall, R., Clements, A., Hagler, G., Kamal, A., Vasu Kilaru, Goodman, L., Frederick, S., Barkjohn, K. J., VonWald, D., Greene, D., & Dye, T. (2021). Performance Testing Protocols, Metrics, and Target Values for Fine Particulate Matter Air Sensors: Use in Ambient, Outdoor, Fixed Site, Non-Regulatory Supplemental and Informational Monitoring Applications (EPA/600/R-20/280). U.S. EPA Office of Research and Development.spa
dc.relation.referencesDylos Corporation. (2022, October 10). Dylos Corporation. Air quality monitoring innovation. http://www.dylosproducts.com/spa
dc.relation.referencesEAFIT. (2020). Informe Anual de Calidad de Aire 2020. https://www.metropol.gov.co/ambiental/calidad-del-aire/informes_red_calidaddeaire/Informe-Anual-Aire-2020.pdfspa
dc.relation.referencesEAFIT. (2021). Informe Anual de la Calidad de Aire 2021. https://www.metropol.gov.co/ambiental/calidad-del-aire/informes_red_calidaddeaire/Informe-Anual-Aire-2021.pdfspa
dc.relation.referencesEitzel, M. V., Cappadonna, J. L., Santos-Lang, C., Duerr, R. E., Virapongse, A., West, S. E., Kyba, C. C. M., Bowser, A., Cooper, C. B., Sforzi, A., Metcalfe, A. N., Harris, E. S., Thiel, M., Haklay, M., Ponciano, L., Roche, J., Ceccaroni, L., Shilling, F. M., Dörler, D., … Jiang, Q. (2017). Citizen Science Terminology Matters: Exploring Key Terms. Citizen Science: Theory and Practice, 2(1), 1. https://doi.org/10.5334/cstp.96spa
dc.relation.referencesEl Colombiano. (2023, April 27). Encuesta en Medellín y el Aburrá revela que se camina más, se usa mucho la moto y el transporte público pierde protagonismo. www.elcolombiano.com. https://www.elcolombiano.com/antioquia/resultados-encuesta-origen-destino-area-metropolitana-2023-HD21226562spa
dc.relation.referencesEPA. (2014). Air Quality Index. A Guide to Air Quality and your Health. U.S. Environmental Protection Agency. Office of Air Quality Planning and Standards. https://www3.epa.gov/airnow/aqi_brochure_02_14.pdfspa
dc.relation.referencesERG - King’s College London. (2017). Air Pollution Guide. http://www.londonair.org.uk/LondonAir/guide/WhatIsLAQN.aspxspa
dc.relation.referencesEuropean Environment Agency. (2021). Air quality standards—European Environment Agency [Page]. https://www.eea.europa.eu/themes/air/air-quality-concentrations/air-quality-standardsspa
dc.relation.referencesFanti, G., Borghi, F., Spinazzè, A., Rovelli, S., Campagnolo, D., Keller, M., Cattaneo, A., Cauda, E., & Cavallo, D. M. (2021). Features and Practicability of the Next-Generation Sensors and Monitors for Exposure Assessment to Airborne Pollutants: A Systematic Review. Sensors, 21(13), Article 13. https://doi.org/10.3390/s21134513spa
dc.relation.referencesFeenstra, B., Papapostolou, V., Hasheminassab, S., Zhang, H., Boghossian, B. D., Cocker, D., & Polidori, A. (2019). Performance evaluation of twelve low-cost PM2.5 sensors at an ambient air monitoring site. Atmospheric Environment, 216, 116946. https://doi.org/10.1016/j.atmosenv.2019.116946spa
dc.relation.referencesFerrer-Cid, P., Barcelo-Ordinas, J. M., Garcia-Vidal, J., Ripoll, A., & Viana, M. (2019). A Comparative Study of Calibration Methods for Low-Cost Ozone Sensors in IoT Platforms. IEEE Internet of Things Journal, 6(6), 9563–9571. https://doi.org/10.1109/JIOT.2019.2929594spa
dc.relation.referencesFerrer-Cid, P., Barcelo-Ordinas, J. M., Garcia-Vidal, J., Ripoll, A., & Viana, M. (2020). Multisensor Data Fusion Calibration in IoT Air Pollution Platforms. IEEE Internet of Things Journal, 7(4), 3124–3132. https://doi.org/10.1109/JIOT.2020.2965283spa
dc.relation.referencesFranco, J. F., Segura, J. F., & Mura, I. (2016). Air Pollution alongside Bike-Paths in Bogotá-Colombia. Frontiers in Environmental Science, 4. https://doi.org/10.3389/fenvs.2016.00077spa
dc.relation.referencesGao, M., Cao, J., & Seto, E. (2015). A distributed network of low-cost continuous reading sensors to measure spatiotemporal variations of PM2.5 in Xi’an, China. Environmental Pollution, 199, 56–65. https://doi.org/10.1016/j.envpol.2015.01.013spa
dc.relation.referencesGarcia, D., Parra, M. A., Gómez, D., Alzate, C. A., Herrera, L., & Hoyos Ortiz, C. D. (2018). Citizen Scientists of the Aburrá Valley: The results of an education, communication, and science strategy. 2018, ED54A-02.spa
dc.relation.referencesGoel, A., & Kumar, P. (2014). A review of fundamental drivers governing the emissions, dispersion and exposure to vehicle-emitted nanoparticles at signalised traffic intersections. Atmospheric Environment, 97, 316–331. https://doi.org/10.1016/j.atmosenv.2014.08.037spa
dc.relation.referencesGonzález, R. (2020, June 25). Arenas del Sahara afectan calidad del aire en el Valle de Aburrá. https://territoriossostenibles.com/cambio-climatico/arenas-del-sahara-afectan-calidad-del-aire-en-el-valle-de-aburra/spa
dc.relation.referencesGuevara, M., Tena, C., Soret, A., Serradell, K., Guzmán, D., Retama, A., Camacho, P., Jaimes-Palomera, M., & Mediavilla, A. (2017). An emission processing system for air quality modelling in the Mexico City metropolitan area: Evaluation and comparison of the MOBILE6.2-Mexico and MOVES-Mexico traffic emissions. Science of The Total Environment, 584–585, 882–900. https://doi.org/10.1016/j.scitotenv.2017.01.135spa
dc.relation.referencesGulia, S., Shiva Nagendra, S. M., Khare, M., & Khanna, I. (2015). Urban air quality management-A review. Atmospheric Pollution Research, 6(2), 286–304. https://doi.org/10.5094/APR.2015.033spa
dc.relation.referencesHabitatMap. (2023). Airbeam—User’s Guide. HabitatMap Is an Environmental Tech Org and Maker of AirBeam. https://www.habitatmap.org/airbeam/users-guidespa
dc.relation.referencesHagan, D. H., Isaacman-VanWertz, G., Franklin, J. P., Wallace, L. M. M., Kocar, B. D., Heald, C. L., & Kroll, J. H. (2018). Calibration and assessment of electrochemical air quality sensors by co-location with regulatory-grade instruments. Atmospheric Measurement Techniques, 11(1), 315–328. https://doi.org/10.5194/amt-11-315-2018spa
dc.relation.referencesVineis, P., Forastiere, F., Saldiva, P., Yorifuji, T., & Loomis, D. (2014). Outdoor Particulate Matter Exposure and Lung Cancer: A Systematic Review and Meta-Analysis. Environmental Health Perspectives. https://doi.org/10.1289/ehp.1408092spa
dc.relation.referencesHan, J., & Kamber, M. (2012). Data mining: Concepts and techniques (3rd ed). Elsevier.spa
dc.relation.referencesHankey, S., & Marshall, J. D. (2015). On-bicycle exposure to particulate air pollution: Particle number, black carbon, PM 2.5 , and particle size. Atmospheric Environment, 122, 65–73. https://doi.org/10.1016/j.atmosenv.2015.09.025spa
dc.relation.referencesHastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning. Springer New York. https://doi.org/10.1007/978-0-387-84858-7spa
dc.relation.referencesHeimann, I., Bright, V. B., McLeod, M. W., Mead, M. I., Popoola, O. A. M., Stewart, G. B., & Jones, R. L. (2015). Source attribution of air pollution by spatial scale separation using high spatial density networks of low cost air quality sensors. Atmospheric Environment, 113, 10–19. https://doi.org/10.1016/j.atmosenv.2015.04.057spa
dc.relation.referencesHermelin, M. (2007, August). Valle de Aburrá: ¿Quo vadis? Gestión y Ambiente, 10(2), 7–16.spa
dc.relation.referencesHernández, M. A., Ramírez, O., Benavides, J. A., & Franco, J. F. (2021). Urban cycling and air quality: Characterizing cyclist exposure to particulate-related pollution. Urban Climate, 36. Scopus. https://doi.org/10.1016/j.uclim.2020.100767spa
dc.relation.referencesHernández-Paniagua, I. Y., Andraca-Ayala, G. L., Diego-Ayala, U., Ruiz-Suarez, L. G., Zavala-Reyes, J. C., Cid-Juárez, S., Torre-Bouscoulet, L., Gochicoa-Rangel, L., Rosas-Pérez, I., & Jazcilevich, A. (2018). Personal Exposure to PM2.5 in the Megacity of Mexico: A Multi-Mode Transport Study. Atmosphere, 9(2), Article 2. https://doi.org/10.3390/atmos9020057spa
dc.relation.referencesHerrera-Mejía, L., & Hoyos, C. D. (2019). Characterization of the atmospheric boundary layer in a narrow tropical valley using remote-sensing and radiosonde observations and the WRF model: The Aburrá Valley case-study. Quarterly Journal of the Royal Meteorological Society, 145(723), 2641–2665. https://doi.org/10.1002/qj.3583spa
dc.relation.referencesHolstius, D. M., Pillarisetti, A., Smith, K. R., & Seto, E. (2014). Field calibrations of a low-cost aerosol sensor at a regulatory monitoring site in California. Atmospheric Measurement Techniques, 7(4), 1121–1131. https://doi.org/10.5194/amt-7-1121-2014spa
dc.relation.referencesHoyos, C. D., Herrera-Mejía, L., Roldán-Henao, N., & Isaza, A. (2020). Effects of fireworks on particulate matter concentration in a narrow valley: The case of the Medellín metropolitan area. Environmental Monitoring and Assessment, 192(1), 6. https://doi.org/10.1007/s10661-019-7838-9spa
dc.relation.referencesHu, K., Rahman, A., Bhrugubanda, H., & Sivaraman, V. (2017). HazeEst: Machine Learning Based Metropolitan Air Pollution Estimation From Fixed and Mobile Sensors. IEEE Sensors Journal, 17(11), 3517–3525. https://doi.org/10.1109/JSEN.2017.2690975spa
dc.relation.referencesHubbell, B. J., Kaufman, A., Rivers, L., Schulte, K., Hagler, G., Clougherty, J., Cascio, W., & Costa, D. (2018). Understanding social and behavioral drivers and impacts of air quality sensor use. Science of The Total Environment, 621, 886–894. https://doi.org/10.1016/j.scitotenv.2017.11.275spa
dc.relation.referencesInt Panis, L., de Geus, B., Vandenbulcke, G., Willems, H., Degraeuwe, B., Bleux, N., Mishra, V., Thomas, I., & Meeusen, R. (2010). Exposure to particulate matter in traffic: A comparison of cyclists and car passengers. Atmospheric Environment, 44(19), 2263–2270. https://doi.org/10.1016/j.atmosenv.2010.04.028spa
dc.relation.referencesJiang, Q., Kresin, F., Bregt, A. K., Kooistra, L., Pareschi, E., van Putten, E., Volten, H., & Wesseling, J. (2016). Citizen Sensing for Improved Urban Environmental Monitoring. Journal of Sensors, 2016, 1–9. https://doi.org/10.1155/2016/5656245spa
dc.relation.referencesJiao, W., Hagler, G., Williams, R., Sharpe, R., Brown, R., Garver, D., Judge, R., Caudill, M., Rickard, J., Davis, M., Weinstock, L., Zimmer-Dauphinee, S., & Buckley, K. (2016). Community Air Sensor Network (CAIRSENSE) project: Evaluation of low-costsensor performance in a suburban environment in the southeastern UnitedStates. Atmospheric Measurement Techniques, 9(11), 5281–5292. https://doi.org/10.5194/amt-9-5281-2016spa
dc.relation.referencesJovašević-Stojanović, M., Bartonova, A., Topalović, D., Lazović, I., Pokrić, B., & Ristovski, Z. (2015). On the use of small and cheaper sensors and devices for indicative citizen-based monitoring of respirable particulate matter. Environmental Pollution, 206, 696–704. https://doi.org/10.1016/j.envpol.2015.08.035spa
dc.relation.referencesKaneko, H. (2023). Interpretation of Machine Learning Models for Data Sets with Many Features Using Feature Importance. ACS Omega, 8(25), 23218–23225. https://doi.org/10.1021/acsomega.3c03722spa
dc.relation.referencesKang, Y., Aye, L., Ngo, T. D., & Zhou, J. (2022). Performance evaluation of low-cost air quality sensors: A review. Science of The Total Environment, 818, 151769. https://doi.org/10.1016/j.scitotenv.2021.151769spa
dc.relation.referencesKaragulian, F., Barbiere, M., Kotsev, A., Spinelle, L., Gerboles, M., Lagler, F., Redon, N., Crunaire, S., & Borowiak, A. (2019). Review of the Performance of Low-Cost Sensors for Air Quality Monitoring. Atmosphere, 10(9), 506. https://doi.org/10.3390/atmos10090506spa
dc.relation.referencesKaur, K., & Kelly, K. E. (2023). Laboratory evaluation of the Alphasense OPC-N3, and the Plantower PMS5003 and PMS6003 sensors. Journal of Aerosol Science, 171, 106181. https://doi.org/10.1016/j.jaerosci.2023.106181spa
dc.relation.referencesKelly, K. E., Whitaker, J., Petty, A., Widmer, C., Dybwad, A., Sleeth, D., Martin, R., & Butterfield, A. (2017). Ambient and laboratory evaluation of a low-cost particulate matter sensor. Environmental Pollution, 221, 491–500. https://doi.org/10.1016/j.envpol.2016.12.039spa
dc.relation.referencesKim, K.-H., Kabir, E., & Kabir, S. (2015). A review on the human health impact of airborne particulate matter. Environment International, 74, 136–143. https://doi.org/10.1016/j.envint.2014.10.005spa
dc.relation.referencesKobernus, M., Berre, A. J., Gonzalez, M., Liu, H.-Y., Rombouts, R., & Bartanova, A. (2015). A Practical Approach to an Integrated Citizens’ Observatory: The CITI-SENSE Framework. https://ceur-ws.org/Vol-1322/paper_1.pdfspa
dc.relation.referencesKosmidis, E., Syropoulou, P., Tekes, S., Schneider, P., Spyromitros-Xioufis, E., Riga, M., Charitidis, P., Moumtzidou, A., Papadopoulos, S., Vrochidis, S., & others. (2018). HackAIR: Towards raising awareness about air quality in Europe by developing a collective online platform. ISPRS International Journal of Geo-Information, 7(5), 187.spa
dc.relation.referencesKumar, P., Hama, S., Nogueira, T., Abbass, R. A., Brand, V. S., Andrade, M. de F., Asfaw, A., Aziz, K. H., Cao, S.-J., El-Gendy, A., Islam, S., Jeba, F., Khare, M., Mamuya, S. H., Martinez, J., Meng, M.-R., Morawska, L., Muula, A. S., Shiva Nagendra, S. M., … Salam, A. (2021). In-car particulate matter exposure across ten global cities. Science of The Total Environment, 750, 141395. https://doi.org/10.1016/j.scitotenv.2020.141395spa
dc.relation.referencesKumar, P., Morawska, L., Martani, C., Biskos, G., Neophytou, M., Di Sabatino, S., Bell, M., Norford, L., & Britter, R. (2015). The rise of low-cost sensing for managing air pollution in cities. Environment International, 75, 199–205. https://doi.org/10.1016/j.envint.2014.11.019spa
dc.relation.referencesKumar, P., Rivas, I., Singh, A. P., Ganesh, V. J., Ananya, M., & Frey, H. C. (2018). Dynamics of coarse and fine particle exposure in transport microenvironments. Npj Climate and Atmospheric Science, 1(1), 11. https://doi.org/10.1038/s41612-018-0023-yspa
dc.relation.referencesLandrigan, P. J., Fuller, R., Acosta, N. J. R., Adeyi, O., Arnold, R., Basu, N. (Nil), Baldé, A. B., Bertollini, R., Bose-O’Reilly, S., Boufford, J. I., Breysse, P. N., Chiles, T., Mahidol, C., Coll-Seck, A. M., Cropper, M. L., Fobil, J., Fuster, V., Greenstone, M., Haines, A., … Zhong, M. (2017). The Lancet Commission on pollution and health. The Lancet. https://doi.org/10.1016/S0140-6736(17)32345-0spa
dc.relation.referencesLevy Zamora, M., Xiong, F., Gentner, D., Kerkez, B., Kohrman-Glaser, J., & Koehler, K. (2019). Field and Laboratory Evaluations of the Low-Cost Plantower Particulate Matter Sensor. Environmental Science & Technology, 53(2), 838–849. https://doi.org/10.1021/acs.est.8b05174spa
dc.relation.referencesLi, S.-T., & Shue, L.-Y. (2004). Data mining to aid policy making in air pollution management. Expert Systems with Applications, 27(3), 331–340. https://doi.org/10.1016/j.eswa.2004.05.015spa
dc.relation.referencesLiu, H.-Y., Schneider, P., Haugen, R., & Vogt, M. (2019). Performance Assessment of a Low-Cost PM2.5 Sensor for a near Four-Month Period in Oslo, Norway.spa
dc.relation.referencesLoomis, D., Huang, W., & Chen, G. (2014). The International Agency for Research on Cancer (IARC) evaluation of the carcinogenicity of outdoor air pollution: Focus on China. Chinese Journal of Cancer, 33(4), 189–196. https://doi.org/10.5732/cjc.014.10028spa
dc.relation.referencesLuengo-Oroz, J., & Reis, S. (2019). Assessment of cyclists’ exposure to ultrafine particles along alternative commuting routes in Edinburgh. Atmospheric Pollution Research, 10(4), 1148–1158. https://doi.org/10.1016/j.apr.2019.01.020spa
dc.relation.referencesLundberg, S. M., & Lee, S.-I. (2017). Consistent feature attribution for tree ensembles. Proceedings of the 34 Th International Conference on Machine Learning.spa
dc.relation.referencesMa, Y., Richards, M., Ghanem, M., Guo, Y., & Hassard, J. (2008). Air Pollution Monitoring and Mining Based on Sensor Grid in London. Sensors, 8(6), 3601–3623. https://doi.org/10.3390/s8063601spa
dc.relation.referencesMaag, B., Zhou, Z., & Thiele, L. (2018). A Survey on Sensor Calibration in Air Pollution Monitoring Deployments. IEEE Internet of Things Journal, 5(6), 4857–4870. https://doi.org/10.1109/JIOT.2018.2853660spa
dc.relation.referencesMahajan, S., Chung, M.-K., Martinez, J., Olaya, Y., Helbing, D., & Chen, L.-J. (2022). Translating citizen-generated air quality data into evidence for shaping policy. Humanities and Social Sciences Communications, 9(1), Article 1. https://doi.org/10.1057/s41599-022-01135-2spa
dc.relation.referencesMahajan, S., & Kumar, P. (2020). Evaluation of low-cost sensors for quantitative personal exposure monitoring. Sustainable Cities and Society, 57, 102076. https://doi.org/10.1016/j.scs.2020.102076spa
dc.relation.referencesMahajan, S., Kumar, P., Pinto, J. A., Riccetti, A., Schaaf, K., Camprodon, G., Smári, V., Passani, A., & Forino, G. (2020). A citizen science approach for enhancing public understanding of air pollution. Sustainable Cities and Society, 52, 101800. https://doi.org/10.1016/j.scs.2019.101800spa
dc.relation.referencesMahajan, S., Luo, C.-H., Wu, D.-Y., & Chen, L.-J. (2021). From Do-It-Yourself (DIY) to Do-It-Together (DIT): Reflections on designing a citizen-driven air quality monitoring framework in Taiwan. Sustainable Cities and Society, 66, 102628. https://doi.org/10.1016/j.scs.2020.102628spa
dc.relation.referencesMakri, A., & Stilianakis, N. I. (2008). Vulnerability to air pollution health effects. International Journal of Hygiene and Environmental Health, 211(3–4), 326–336. https://doi.org/10.1016/j.ijheh.2007.06.005spa
dc.relation.referencesMannucci, P., & Franchini, M. (2017). Health Effects of Ambient Air Pollution in Developing Countries. International Journal of Environmental Research and Public Health, 14(9), 1048. https://doi.org/10.3390/ijerph14091048spa
dc.relation.referencesManojkumar, N., Monishraj, M., & Srimuruganandam, B. (2021). Commuter exposure concentrations and inhalation doses in traffic and residential routes of Vellore city, India. Atmospheric Pollution Research, 12(1), 219–230. https://doi.org/10.1016/j.apr.2020.09.002spa
dc.relation.referencesManojkumar, N., & Srimuruganandam, B. (2021). Investigation of on-road fine particulate matter exposure concentration and its inhalation dosage levels in an urban area. Building and Environment, 198, 107914. https://doi.org/10.1016/j.buildenv.2021.107914spa
dc.relation.referencesMarjovi, A., Arfire, A., & Martinoli, A. (2015). High Resolution Air Pollution Maps in Urban Environments Using Mobile Sensor Networks. 2015 International Conference on Distributed Computing in Sensor Systems, 11–20. https://doi.org/10.1109/DCOSS.2015.32spa
dc.relation.referencesMcKercher, G. R., Salmond, J. A., & Vanos, J. K. (2017). Characteristics and applications of small, portable gaseous air pollution monitors. Environmental Pollution, 223, 102–110. https://doi.org/10.1016/j.envpol.2016.12.045spa
dc.relation.referencesMead, M. I., Popoola, O. A. M., Stewart, G. B., Landshoff, P., Calleja, M., Hayes, M., Baldovi, J. J., McLeod, M. W., Hodgson, T. F., Dicks, J., Lewis, A., Cohen, J., Baron, R., Saffell, J. R., & Jones, R. L. (2013). The use of electrochemical sensors for monitoring urban air quality in low-cost, high-density networks. Atmospheric Environment, 70, 186–203. https://doi.org/10.1016/j.atmosenv.2012.11.060spa
dc.relation.referencesMedellín Cómo Vamos. (2021). Informe de de Calidad de Vida de Medellín, 2020. https://www.medellincomovamos.org/system/files/2021-09/docuprivados/Movilidad%20y%20espacio%20p%C3%BAblico%20Informe%20de%20Calidad%20de%20Vida%20de%20Medell%C3%ADn%2C%202020.pdf Resolución 2254 de 2017, (2017). https://www.minambiente.gov.co/documento-entidad/resolucion-2254-de-2017/spa
dc.relation.referencesMinisterio de Ambiente y Desarrollo Sostenible. (2021). Contaminación Atmosférica. Ministerio de Ambiente y Desarrollo Sostenible. https://www.minambiente.gov.co/asuntos-ambientales-sectorial-y-urbana/contaminacion-atmosferica/spa
dc.relation.referencesMoore, E., Chatzidiakou, L., Kuku, M.-O., Jones, R. L., Smeeth, L., Beevers, S., Kelly, F. J., Barratt, B., & Quint, J. (2016). Global Associations between Air Pollutants and Chronic Obstructive Pulmonary Disease Hospitalizations: A Systematic Review. Annals of the American Thoracic Society, AnnalsATS.201601-064OC. https://doi.org/10.1513/AnnalsATS.201601-064OCspa
dc.relation.referencesMorawska, L., Thai, P. K., Liu, X., Asumadu-Sakyi, A., Ayoko, G., Bartonova, A., Bedini, A., Chai, F., Christensen, B., Dunbabin, M., Gao, J., Hagler, G. S. W., Jayaratne, R., Kumar, P., Lau, A. K. H., Louie, P. K. K., Mazaheri, M., Ning, Z., Motta, N., … Williams, R. (2018). Applications of low-cost sensing technologies for air quality monitoring and exposure assessment: How far have they gone? Environment International, 116, 286–299. https://doi.org/10.1016/j.envint.2018.04.018spa
dc.relation.referencesMukherjee, A., Stanton, L., Graham, A., & Roberts, P. (2017). Assessing the Utility of Low-Cost Particulate Matter Sensors over a 12-Week Period in the Cuyama Valley of California. Sensors, 17(8), 1805. https://doi.org/10.3390/s17081805spa
dc.relation.referencesNABEL. (2017). National Air Pollution Monitoring Network (NABEL). https://www.bafu.admin.ch/bafu/en/home/topics/air/state/data/national-air-pollution-monitoring-network--nabel-.htmlspa
dc.relation.referencesNoble, C. A., Vanderpool, R. W., Peters, T. M., McElroy, F. F., Gemmill, D. B., & Wiener, R. W. (2001). Federal Reference and Equivalent Methods for Measuring Fine Particulate Matter. Aerosol Science and Technology, 34(5), 457–464. https://doi.org/10.1080/02786820121582spa
dc.relation.referencesOCL. (2019). People-centered informed decision making for participatory democracy. https://opencitieslab.org/odd/homespa
dc.relation.referencesOpenSeneca. (2019). Open-Seneca in Nairobi. https://centreforglobalequality.org/news/open-seneca-in-nairobi/spa
dc.relation.referencesPapapostolou, V., Zhang, H., Feenstra, B. J., & Polidori, A. (2017). Development of an environmental chamber for evaluating the performance of low-cost air quality sensors under controlled conditions. Atmospheric Environment, 171, 82–90. https://doi.org/10.1016/j.atmosenv.2017.10.003spa
dc.relation.referencesPerera, F. (2017). Pollution from Fossil-Fuel Combustion is the Leading Environmental Threat to Global Pediatric Health and Equity: Solutions Exist. International Journal of Environmental Research and Public Health, 15(1), 16. https://doi.org/10.3390/ijerph15010016spa
dc.relation.referencesPope, C. A., & Dockery, D. W. (2006). Health Effects of Fine Particulate Air Pollution: Lines that Connect. Journal of the Air & Waste Management Association, 56(6), 709–742. https://doi.org/10.1080/10473289.2006.10464485spa
dc.relation.referencesPope III, C. A. (2002). Lung Cancer, Cardiopulmonary Mortality, and Long-term Exposure to Fine Particulate Air Pollution. JAMA, 287(9), 1132. https://doi.org/10.1001/jama.287.9.1132spa
dc.relation.referencesPopoola, O. A. M., Carruthers, D., Lad, C., Bright, V. B., Mead, M. I., Stettler, M. E. J., Saffell, J. R., & Jones, R. L. (2018). Use of networks of low cost air quality sensors to quantify air quality in urban settings. Atmospheric Environment, 194, 58–70. https://doi.org/10.1016/j.atmosenv.2018.09.030spa
dc.relation.referencesPurpleAir. (2023). PurpleAir | Real-time Air Quality Monitoring. PurpleAir, Inc. https://www2.purpleair.com/spa
dc.relation.referencesRamírez, O., Mura, I., & Franco, J. F. (2017). How Do People Understand Urban Air Pollution? Exploring Citizens’ Perception on Air Quality, Its Causes and Impacts in Colombian Cities. Open Journal of Air Pollution, 6(1), Article 1. https://doi.org/10.4236/ojap.2017.61001spa
dc.relation.referencesRamos, C. A., Silva, J. R., Faria, T., Wolterbeek, T. H., & Almeida, S. M. (2017). Exposure assessment of a cyclist to particles and chemical elements. Environmental Science and Pollution Research, 24(13), 11879–11889. https://doi.org/10.1007/s11356-016-6365-2spa
dc.relation.referencesRamos, C. A., Wolterbeek, H. T., & Almeida, S. M. (2016). Air pollutant exposure and inhaled dose during urban commuting: A comparison between cycling and motorized modes. Air Quality, Atmosphere & Health, 9(8), 867–879. https://doi.org/10.1007/s11869-015-0389-5spa
dc.relation.referencesRendón, A. M., Salazar, J. F., Palacio, C. A., & Wirth, V. (2015). Temperature Inversion Breakup with Impacts on Air Quality in Urban Valleys Influenced by Topographic Shading. Journal of Applied Meteorology and Climatology, 54(2), 302–321. https://doi.org/10.1175/JAMC-D-14-0111.1spa
dc.relation.referencesRendón, A. M., Salazar, J. F., Palacio, C. A., Wirth, V., & Brötz, B. (2014). Effects of Urbanization on the Temperature Inversion Breakup in a Mountain Valley with Implications for Air Quality. Journal of Applied Meteorology and Climatology, 53(4), 840–858.spa
dc.relation.referencesRiesch, H., & Potter, C. (2014). Citizen science as seen by scientists: Methodological, epistemological and ethical dimensions. Public Understanding of Science, 23(1), 107–120. https://doi.org/10.1177/0963662513497324spa
dc.relation.referencesRiojas-Rodríguez, H., Texcalac-Sangrador, J. L., & Moreno-Banda, G. L. (2016). Air pollution management and control in Latin America and the Caribbean: Implications for climate change. Rev Panam Salud Publica, 10.spa
dc.relation.referencesRoldán Henao, N., Isaza, A., Herrera, L., & Hoyos Ortiz, C. D. (2018). Aburrá Valley (Colombia) spatio-temporal air quality assessment from a monitoring network using low-cost sensors and citizen science. 2018, A12E-08.spa
dc.relation.referencesRoldán-Henao, N., Hoyos, C. D., Herrera-Mejía, L., & Isaza, A. (2020). An Investigation of the Precipitation Net Effect on the Particulate Matter Concentration in a Narrow Valley: Role of Lower-Troposphere Stability. Journal of Applied Meteorology and Climatology, 59(3), 401–426. https://doi.org/10.1175/JAMC-D-18-0313.1spa
dc.relation.referencesRoy, H. E., & Brown, P. M. J. (2015). Ten years of invasion: Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae) in Britain. Ecological Entomology, 40(4), 336–348. Scopus. https://doi.org/10.1111/een.12203spa
dc.relation.referencesSamad, A., & Vogt, U. (2021). Mobile air quality measurements using bicycle to obtain spatial distribution and high temporal resolution in and around the city center of Stuttgart. Atmospheric Environment, 244, 117915. https://doi.org/10.1016/j.atmosenv.2020.117915spa
dc.relation.referencesSayahi, T., Kaufman, D., Becnel, T., Kaur, K., Butterfield, A. E., Collingwood, S., Zhang, Y., Gaillardon, P.-E., & Kelly, K. E. (2019). Development of a calibration chamber to evaluate the performance of low-cost particulate matter sensors. Environmental Pollution, 255, 113131. https://doi.org/10.1016/j.envpol.2019.113131spa
dc.relation.referencesSchaefer, T., Kieslinger, B., & Fabian, C. M. (2020). Citizen-Based Air Quality Monitoring: The Impact on Individual Citizen Scientists and How to Leverage the Benefits to Affect Whole Regions. Citizen Science: Theory and Practice, 5(1), 6. https://doi.org/10.5334/cstp.245spa
dc.relation.referencesScience, R. L. (2020). Transforming air quality monitoring through a microscopic lens. https://shaktifoundation.in/wp-content/uploads/2020/01/Impacts_Respirer.pdfspa
dc.relation.referencesSemple, S., Sweeting, H., Demou, E., Logan, G., O’Donnell, R., Hunt, K., & on behalf of the Tobacco in Prisons (TIPs) Research Team. (2017). Characterising the Exposure of Prison Staff to Second-Hand Tobacco Smoke. Annals of Work Exposures and Health, 61(7), 809–821. https://doi.org/10.1093/annweh/wxx058spa
dc.relation.referencesSensirion. (2021). SPS30—PM2.5 Sensor for HVAC and air quality applications SPS30. https://sensirion.com/products/catalog/SPS30/spa
dc.relation.referencesSensors.Africa. (2021). Citizen science initiative that uses sensors to monitor air, water and sound pollution. https://sensors.africa/spa
dc.relation.referencesShah, A. S., Langrish, J. P., Nair, H., McAllister, D. A., Hunter, A. L., Donaldson, K., Newby, D. E., & Mills, N. L. (2013). Global association of air pollution and heart failure: A systematic review and meta-analysis. The Lancet, 382(9897), 1039–1048. https://doi.org/10.1016/S0140-6736(13)60898-3spa
dc.relation.referencesSi, M., Xiong, Y., Du, S., & Du, K. (2020). Evaluation and calibration of a low-cost particle sensor in ambient conditions using machine-learning methods. Atmospheric Measurement Techniques, 13(4), 1693–1707. https://doi.org/10.5194/amt-13-1693-2020spa
dc.relation.referencesSiata. (2017). Monitoreo de la calidad del aire. https://siata.gov.co/sitio_web/index.php/calidad_airespa
dc.relation.referencesSpinelle, L., Gerboles, M., Kok, G., Persijn, S., & Sauerwald, T. (2017). Review of Portable and Low-Cost Sensors for the Ambient Air Monitoring of Benzene and Other Volatile Organic Compounds. Sensors, 17(7), 1520. https://doi.org/10.3390/s17071520spa
dc.relation.referencesSun, J., Zhang, N., Yan, X., Wang, M., & Wang, J. (2020). The effect of ambient fine particulate matter (PM2.5) on respiratory diseases in China: A systematic review and meta-analysis. Stochastic Environmental Research and Risk Assessment, 34(3–4), 593–610. https://doi.org/10.1007/s00477-020-01786-0spa
dc.relation.referencesSupasri, T., & Sampattagul, S. (2019). Haze Problem in the North of Thailand and DustBoy PM 2.5 Monitoring Systems.spa
dc.relation.referencesTagle, M., Rojas, F., Reyes, F., Vásquez, Y., Hallgren, F., Lindén, J., Kolev, D., Watne, Å. K., & Oyola, P. (2020). Field performance of a low-cost sensor in the monitoring of particulate matter in Santiago, Chile. Environmental Monitoring and Assessment, 192(3), 171. https://doi.org/10.1007/s10661-020-8118-4spa
dc.relation.referencesThiel, M., Penna-Díaz, M. A., Luna-Jorquera, G., Salas, S., Sellanes, J., & Stotz, W. (2014). Citizen scientists and marine research: Volunteer participants, their contributions, and projection for the future. Oceanography and Marine Biology: An Annual Review, 52, 257–314. Scopus. https://doi.org/10.1201/b17143spa
dc.relation.referencesUPB & AMVA. (2018). Actualización inventario de emisiones atmosféricas del Valle de Aburrá, 2016. Informe final. https://www.metropol.gov.co/ambiental/calidad-del-aire/Documents/Inventario-de-emisiones/Inventario_FuentesM%C3%B3viles2016.pdfspa
dc.relation.referencesU.S. Environmental Protection Agency (EPA). (2009). Metabolically Derived Human Ventilation Rates: A Revised Approach Based Upon Oxygen Consumption Rates (EPA/600/R-06/129F). National Center for Environmental Assessment. https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=202543spa
dc.relation.referencesUS EPA. (2016a). List of Designated Reference and Equivalent Methods. https://www.epa.gov/system/files/documents/2021-12/designated-referene-and-equivalent-methods-12152021.pdfspa
dc.relation.referencesUS EPA. (2016b). Technical Assistance Document for the Reporting of Daily Air Quality | AirNow.gov. https://www.airnow.gov/publications/air-quality-index/technical-assistance-document-for-reporting-the-daily-aqi/spa
dc.relation.referencesUS EPA. (2021). The National Ambient Air Quality Standards for Particulate Matter. https://www.epa.gov/sites/default/files/2020-04/documents/fact_sheet_pm_naaqs_proposal.pdfspa
dc.relation.referencesUS EPA, O. (2018, January 23). Instruction Guide and Macro Analysis Tool: Evaluating Air Sensors by Collocation with Federal Reference Monitors [Data and Tools]. https://www.epa.gov/air-research/instruction-guide-and-macro-analysis-tool-evaluating-air-sensors-collocation-federalspa
dc.relation.referencesValencia, J.-C., & Fonseca, O. (2019). AIR POLLUTION, CITIZEN DATA COLLECTIVES AND COMMUNICATION AGENDA SETTING IN COLOMBIA. 33–43. https://doi.org/10.2495/AIR190041spa
dc.relation.referencesVaraden, D., Leidland, E., Lim, S., & Barratt, B. (2021). “I am an air quality scientist”– Using citizen science to characterise school children’s exposure to air pollution. Environmental Research, 201, 111536. https://doi.org/10.1016/j.envres.2021.111536spa
dc.relation.referencesvon Gönner, J., Bowler, D. E., Gröning, J., Klauer, A.-K., Liess, M., Neuer, L., & Bonn, A. (2023). Citizen science for assessing pesticide impacts in agricultural streams. Science of the Total Environment, 857. Scopus. https://doi.org/10.1016/j.scitotenv.2022.159607spa
dc.relation.referencesWang, W.-C. V., Lung, S.-C. C., & Liu, C.-H. (2020). Application of Machine Learning for the in-Field Correction of a PM2.5 Low-Cost Sensor Network. Sensors, 20(17), 5002. https://doi.org/10.3390/s20175002spa
dc.relation.referencesWang, W.-C. V., Lung, S.-C. C., Liu, C.-H., Wen, T.-Y. J., Hu, S.-C., & Chen, L.-J. (2021). Evaluation and Application of a Novel Low-Cost Wearable Sensing Device in Assessing Real-Time PM2.5 Exposure in Major Asian Transportation Modes. Atmosphere, 12(2), Article 2. https://doi.org/10.3390/atmos12020270spa
dc.relation.referencesWang, Y., Li, J., Jing, H., Zhang, Q., Jiang, J., & Biswas, P. (2015). Laboratory Evaluation and Calibration of Three Low-Cost Particle Sensors for Particulate Matter Measurement. Aerosol Science and Technology, 49(11), 1063–1077. https://doi.org/10.1080/02786826.2015.1100710spa
dc.relation.referencesWesseling, J., de Ruiter, H., Blokhuis, C., Drukker, D., Weijers, E., Volten, H., Vonk, J., Gast, L., Voogt, M., Zandveld, P., van Ratingen, S., & Tielemans, E. (2019). Development and Implementation of a Platform for Public Information on Air Quality, Sensor Measurements, and Citizen Science. Atmosphere, 10(8), Article 8. https://doi.org/10.3390/atmos10080445spa
dc.relation.referencesWesseling, J., Hendricx, W., de Ruiter, H., van Ratingen, S., Drukker, D., Huitema, M., Schouwenaar, C., Janssen, G., van Aken, S., Smeenk, J., Hof, A., & Tielemans, E. (2021). Assessment of PM2.5 Exposure during Cycle Trips in The Netherlands Using Low-Cost Sensors. International Journal of Environmental Research and Public Health, 18(11), 6007. https://doi.org/10.3390/ijerph18116007spa
dc.relation.referencesWilliams, R., Kilaru, V., Snyder, E., Kaufman, A., Dye, T., Rutter, A., Russell, A., & Hafner, H. (2014). Air Sensor Guidebook (EPA/600/R-14/159). United States Environmental Protection Agency. file:///C:/Users/SVS13115FLS/Downloads/GUIDEBOOK%20-%20FINAL.PDFspa
dc.relation.referencesWorld Health Organization. (2006). WHO Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide. Global update 2005. Summary of risk assessment (Occupational and Environmental Health Team). World Health Organization. http://apps.who.int/iris/bitstream/10665/69477/1/WHO_SDE_PHE_OEH_06.02_eng.pdfspa
dc.relation.referencesWorld Health Organization. (2021). WHO global air quality guidelines: Particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. World Health Organization. https://apps.who.int/iris/handle/10665/345329spa
dc.relation.referencesXing, Y. F., Xu, Y. H., Shi, M. H., & Lian, Y. X. (2016). The impact of PM2.5 on the human respiratory system. Journal of Thoracic Disease, 8(1). https://doi.org/10.3978/j.issn.2072-1439.2016.01.19spa
dc.relation.referencesYatkin, S., Gerboles, M., Belis, C. A., Karagulian, F., Lagler, F., Barbiere, M., & Borowiak, A. (2020). Representativeness of an air quality monitoring station for PM2.5 and source apportionment over a small urban domain. Atmospheric Pollution Research, 11(2), 225–233. https://doi.org/10.1016/j.apr.2019.10.004spa
dc.relation.referencesZamora, M. L., Rice, J., & Koehler, K. (2020). One year evaluation of three low-cost PM2.5 monitors. Atmospheric Environment, 235, 117615. https://doi.org/10.1016/j.atmosenv.2020.117615spa
dc.relation.referencesZikova, N., Masiol, M., Chalupa, D., Rich, D., Ferro, A., & Hopke, P. (2017). Estimating Hourly Concentrations of PM2.5 across a Metropolitan Area Using Low-Cost Particle Monitors. Sensors, 17(8), 1922. https://doi.org/10.3390/s17081922spa
dc.relation.referencesZimmerman, N., Presto, A. A., Kumar, S. P. N., Gu, J., Hauryliuk, A., Robinson, E. S., Robinson, A. L., & R. Subramanian. (2018). A machine learning calibration model using random forests to improve sensor performance for lower-cost air quality monitoring. Atmospheric Measurement Techniques, 11(1), 291–313. https://doi.org/10.5194/amt-11-291-2018spa
dc.relation.referencesMalings, C., Tanzer, R., Hauryliuk, A., Kumar, S. P. N., Zimmerman, N., Kara, L. B., Presto, A. A., & Subramanian, R. (2019). Development of a general calibration model and long-term performance evaluation of low-cost sensors for air pollutant gas monitoring. Atmospheric Measurement Techniques, 12(2), 903–920. https://doi.org/10.5194/amt-12-903-2019spa
dc.relation.referencesSnyder, E. G., Watkins, T. H., Solomon, P. A., Thoma, E. D., Williams, R. W., Hagler, G. S. W., Shelow, D., Hindin, D. A., Kilaru, V. J., & Preuss, P. W. (2013). The Changing Paradigm of Air Pollution Monitoring. Environmental Science & Technology, 47(20), 11369–11377. https://doi.org/10.1021/es4022602spa
dc.relation.referencesSpinelle, L., Gerboles, M., Villani, M. G., Aleixandre, M., & Bonavitacola, F. (2015). Field calibration of a cluster of low-cost available sensors for air quality monitoring. Part A: Ozone and nitrogen dioxide. Sensors and Actuators B: Chemical, 215, 249–257. https://doi.org/10.1016/j.snb.2015.03.031spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::003 - Sistemasspa
dc.subject.lembContaminación del aire
dc.subject.lembMinería de datos
dc.subject.proposalContaminación de aire
dc.subject.proposalAprendizaje de máquinas
dc.subject.proposalSensores de bajo costo
dc.subject.proposalCalibración de sensores
dc.subject.proposalAir pollutioneng
dc.subject.proposalParticulate mattereng
dc.subject.proposalLow-cost sensorseng
dc.subject.proposalSensor calibrationeng
dc.subject.proposalMachine learningeng
dc.subject.proposalData miningeng
dc.subject.wikidataSensores
dc.titleMonitoring urban air pollution using low-cost sensor deviceseng
dc.title.translatedMonitoreo de la contaminación del aire urbano utilizando dispositivos sensores de bajo costospa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameColcienciasspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
63560781.2023.pdf.pdf
Tamaño:
5.07 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingenieria de Sistemas

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: