Problema de Cauchy asociado a un ecuación del tipo KZKP con dispersión transversal fraccionaria
dc.contributor.advisor | Soriano Méndez, Félix Humberto | spa |
dc.contributor.author | Morales Paredes, Jorge | spa |
dc.contributor.researchgroup | ECUACIONES DE EVOLUCIÓN | spa |
dc.date.accessioned | 2020-09-18T20:57:04Z | spa |
dc.date.available | 2020-09-18T20:57:04Z | spa |
dc.date.issued | 2020-07-10 | spa |
dc.description.abstract | In this work it shall be studied the Cauchy problem for the following ZK-KP type equation u_{t}=u_{xxx}+HD_x^{\alpha}u_{yy}+uu_{x}, u(0)=\psi where 1\leq \alpha\leq 1, H denotes the Hilbert transform in the x variable and D_x is the \alpha^{th} fractional derivative defined via Fourier transform by D_x^{\alpha}f=|\xi|^{\alpha}\widehat{f}. It is showed the local well posedness in the ansisotropic Sobolev spaces H^{s_1,s_2} and examined ill-posedness properties for 1\leq \alpha < 0 | spa |
dc.description.abstract | En este trabajo se estudia el problema de Cauchy de tipo ZK-KP u_{t}=u_{xxx}+HD_x^{\alpha}u_{yy}+uu_{x}, u(0)=\psi donde 1\leq \alpha\leq 1, H es la transformada de Hilbert en la variable x y D_x^{\alpha} es la \alpha-ésima derivada fraccionaria en x definida vía transformada de Fourier por D_x^{\alpha}f=|\xi|^{\alpha}\widehat{f} Se demuestra el buen planteamiento de este problema en espacios de Sobolev anisotrópicos H^{s_1,s_2} no periódicos y se examinan propiedades de mal planteamiento para 1\leq \alpha < 0 | spa |
dc.description.additional | Línea de Investigación: Ecuaciones en derivadas parciales dispersivas de evolución | spa |
dc.description.degreelevel | Doctorado | spa |
dc.description.project | Colciencias Beca Nacional 617-1 | spa |
dc.format.extent | 48 | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/78478 | |
dc.language.iso | spa | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.department | Departamento de Matemáticas | spa |
dc.publisher.program | Bogotá - Ciencias - Doctorado en Ciencias - Matemáticas | spa |
dc.relation.references | Zabusky, N., and Kruskal, M. Interaction of \Solitons" in a Collisionless Plasma and the Recurrence of Initial States. Phys. Rev. Lett. 15 (Aug 1965), 240{243. | spa |
dc.relation.references | Whitham, G. B. Variational methods and applications to water waves. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 299, 1456 (1967), 6{25. | spa |
dc.relation.references | Stein, E. M., and Weiss, G. L. Introduction to fourier analysis on euclidean spaces. Princeton Mathematical Series, 32 (1971). | spa |
dc.relation.references | S anchez Salazar, F. El problema de Cauchy asociado a una ecuaci on del tipo rBO-ZK. PhD thesis, Universidad Nacional de Colombia, 2015. | spa |
dc.relation.references | Lizarazo Osorio, J. d. C. El problema de Cauchy de la clase de ecuaciones de dispersi on generalizada de Benjamin-Ono bidimensionales. PhD thesis, Universidad Nacional de Colombia, 2018. | spa |
dc.relation.references | Ginibre, J., and Velo, G. Smoothing properties and retarded estimates for some dispersive evolut ion equations. Comm. Math. Phys 144, 1 (1992), 163{188. | spa |
dc.relation.references | Saut, J.-C. Remarks on the generalized kadomtsev-petviashvili equations. Indiana University Mathematics Journal 42, 3 (1993), 1011{1026. | spa |
dc.relation.references | Reed, M., and Simon, B. Methods of modern mathematical physics. II. Fourier analysis, self-adjointness. Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1975. | spa |
dc.relation.references | Pego, R. L., and Weinstein, M. I. Asymptotic stability of solitary waves. Comm. Math. Phys. 164, 2 (1994), 305{349. | spa |
dc.relation.references | Ono, H. Algebraic solitary waves in strati ed uids. J. Phys. Soc. Japan 39, 4 (1975), 1082{1091. | spa |
dc.relation.references | Molinet, L., Saut, J.-C., and Tzvetkov, N. Well-posedness and ill-posedness results for the Kadomtsev-Petviashvili-I equation. Duke Math. J. 115, 2 (2002), 353{384. | spa |
dc.relation.references | Linares, F., and Ponce, G. Introduction to nonlinear dispersive equations. Universitext (1979). Springer, 2009. | spa |
dc.relation.references | Linares, F., Pilod, D., and Saut, J.-C. The cauchy problem for the fractional kadomtsev-petviashvili equations. Preprint (2017). Ar- Xiv:1705.09744v1. | spa |
dc.relation.references | Linares, F., Pilod, D., and Saut, J.-C. Remarks on the orbital stability of ground state solutions of fkdv and related equations. Preprint (2015). Arxiv, math.AP, 1503.03084. | spa |
dc.relation.references | Linares, F., Pilod, D., and Saut, J.-C. Well-posedness of strongly dispersive two-dimensional surface wave Boussinesq systems. SIAM J. Math. Anal. 44, 6 (2012), 4195{4221. | spa |
dc.relation.references | Linares, F., and Pastor, A. Well-posedness for the two-dimensional modi ed Zakharov-Kuznetsov equation. SIAM J. Math. Anal. 41, 4 (2009), 1323{1339. | spa |
dc.relation.references | Lannes, D., and Saut, J.-C. Remarks on the full dispersion Kadomtsev-Petviashvli equation. Kinet. Relat. Models 6, 4 (2013), 989{ 1009. | spa |
dc.relation.references | Lannes, D. The water waves problem, vol. 188 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2013. Mathematical analysis and asymptotics. | spa |
dc.relation.references | Kobayasi, K. On a theorem for linear evolution equations of hyperbolic type. J. Math. Soc. Japan 31, 4 (1979), 647{654. | spa |
dc.relation.references | Klein, C., and Saut, J.-C. A numerical approach to blow-up issues for dispersive perturbations of Burgers' equation. Phys. D 295/296 (2015), 46{65. | spa |
dc.relation.references | Kim, B. Three-dimensional solitary waves in dispersive wave systems. PhD thesis, Massachusetts Institute of Technology. Dept. of Mathematics., Cambridge, MA, 2006. | spa |
dc.relation.references | Kenig, C. E., Ponce, G., and Vega, L. Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle. Comm. Pure Appl. Math. 46, 4 (1993), 527{620. | spa |
dc.relation.references | Kenig, C. E., Martel, Y., and Robbiano, L. Local well-posedness and blow-up in the energy space for a class of L2 critical dispersion generalized Benjamin-Ono equations. Ann. Inst. H. Poincar e Anal. Non Lin eaire 28, 6 (2011), 853{887. | spa |
dc.relation.references | Kenig, C. E. On the local and global well-posedness theory for the KP-I equation. Ann. Inst. H. Poincar e Anal. Non Lin eaire 21, 6 (2004), 827{838. | spa |
dc.relation.references | Kato, T., and Ponce, G. Commutator estimates and the Euler and Navier-Stokes equations. Comm. Pure Appl. Math. 41, 7 (1988), 891{ 907. | spa |
dc.relation.references | Kato, T. Perturbation theory for linear operators. Classics in Mathematics. Springer-Verlag, Berlin, 1995. Reprint of the 1980 edition. | spa |
dc.relation.references | Kato, T. On the Korteweg-de Vries equation. Manuscripta Math. 28, 1-3 (1979), 89{99. | spa |
dc.relation.references | Kato, T. Quasi-linear equations of evolution, with applications to partial di erential equations. In Spectral theory and di erential equations (Proc. Sympos., Dundee, 1974; dedicated to Konrad J orgens), vol. 448 of Lecture Notes in Math. Springer, Berlin, 1975, pp. 25{70. | spa |
dc.relation.references | Kadomtsev, B. B., and Petviashvili, V. I. On the Stability of Solitary Waves in Weakly Dispersing Media. Soviet Physics Doklady 15 (Dec. 1970), 539. | spa |
dc.relation.references | Castro, A., C ordoba, D., and Gancedo, F. Singularity formations for a surface wave model. Nonlinearity 23, 11 (2010), 2835{2847. | spa |
dc.relation.references | Bona, J. L., and Smith, R. The initial-value problem for the Korteweg-de Vries equation. Philos. Trans. Roy. Soc. London Ser. A 278, 1287 (1975), 555{601. | spa |
dc.relation.references | Bona, J. On the stability theory of solitary waves. Proc. Roy. Soc. London Ser. A 344, 1638 (1975), 363{374. | spa |
dc.relation.references | Benjamin, T. B., Bona, J. L., and Mahony, J. J. Model equations for long waves in nonlinear dispersive systems. Philos. Trans. Roy. Soc. London Ser. A 272, 1220 (1972), 47{78. | spa |
dc.relation.references | Benjamin, T. B. The stability of solitary waves. Proc. Roy. Soc. (London) Ser. A 328 (1972), 153{183. | spa |
dc.relation.references | Benjamin, T. B. Internal waves of permanent form in uids of great depth. J. Fluid Mech. 29 (1967), 559{592. | spa |
dc.relation.references | Ablowitz, M. J., and Segur, H. Long internal waves in uids of great depth. Stud. Appl. Math. 62, 3 (1980), 249{262. | spa |
dc.relation.references | Ablowitz, M. J., and Clarkson, P. A. Solitons, nonlinear evolution equations and inverse scattering, vol. 149 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1991. | spa |
dc.rights | Derechos reservados - Universidad Nacional de Colombia | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.spa | Acceso abierto | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.ddc | 510 - Matemáticas | spa |
dc.subject.proposal | Cauchy Problem | eng |
dc.subject.proposal | Problema de Cauchy | spa |
dc.subject.proposal | Ecuación Kadomtsev-Petviashvili | spa |
dc.subject.proposal | Kadomtsev-Petviashvili | eng |
dc.subject.proposal | Ecuación de Zakharov-Kuznetsov | spa |
dc.subject.proposal | Zakharov-Kuznetsov Equation | eng |
dc.subject.proposal | Buen planteamiento local | spa |
dc.subject.proposal | Local well posedness | eng |
dc.subject.proposal | Espacios de Sobolev anisotrópicos | spa |
dc.subject.proposal | Anisotropic Sobolev Spaces | eng |
dc.subject.proposal | Kato Theory | eng |
dc.subject.proposal | Teoría de Kato. | spa |
dc.title | Problema de Cauchy asociado a un ecuación del tipo KZKP con dispersión transversal fraccionaria | spa |
dc.type | Trabajo de grado - Doctorado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_db06 | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/doctoralThesis | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |