Problema de Cauchy asociado a un ecuación del tipo KZKP con dispersión transversal fraccionaria

dc.contributor.advisorSoriano Méndez, Félix Humbertospa
dc.contributor.authorMorales Paredes, Jorgespa
dc.contributor.researchgroupECUACIONES DE EVOLUCIÓNspa
dc.date.accessioned2020-09-18T20:57:04Zspa
dc.date.available2020-09-18T20:57:04Zspa
dc.date.issued2020-07-10spa
dc.description.abstractIn this work it shall be studied the Cauchy problem for the following ZK-KP type equation u_{t}=u_{xxx}+HD_x^{\alpha}u_{yy}+uu_{x}, u(0)=\psi where 1\leq \alpha\leq 1, H denotes the Hilbert transform in the x variable and D_x is the \alpha^{th} fractional derivative defined via Fourier transform by D_x^{\alpha}f=|\xi|^{\alpha}\widehat{f}. It is showed the local well posedness in the ansisotropic Sobolev spaces H^{s_1,s_2} and examined ill-posedness properties for 1\leq \alpha < 0spa
dc.description.abstractEn este trabajo se estudia el problema de Cauchy de tipo ZK-KP u_{t}=u_{xxx}+HD_x^{\alpha}u_{yy}+uu_{x}, u(0)=\psi donde 1\leq \alpha\leq 1, H es la transformada de Hilbert en la variable x y D_x^{\alpha} es la \alpha-ésima derivada fraccionaria en x definida vía transformada de Fourier por D_x^{\alpha}f=|\xi|^{\alpha}\widehat{f} Se demuestra el buen planteamiento de este problema en espacios de Sobolev anisotrópicos H^{s_1,s_2} no periódicos y se examinan propiedades de mal planteamiento para 1\leq \alpha < 0spa
dc.description.additionalLínea de Investigación: Ecuaciones en derivadas parciales dispersivas de evoluciónspa
dc.description.degreelevelDoctoradospa
dc.description.projectColciencias Beca Nacional 617-1spa
dc.format.extent48spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78478
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Matemáticasspa
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Matemáticasspa
dc.relation.referencesZabusky, N., and Kruskal, M. Interaction of \Solitons" in a Collisionless Plasma and the Recurrence of Initial States. Phys. Rev. Lett. 15 (Aug 1965), 240{243.spa
dc.relation.referencesWhitham, G. B. Variational methods and applications to water waves. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 299, 1456 (1967), 6{25.spa
dc.relation.referencesStein, E. M., and Weiss, G. L. Introduction to fourier analysis on euclidean spaces. Princeton Mathematical Series, 32 (1971).spa
dc.relation.referencesS anchez Salazar, F. El problema de Cauchy asociado a una ecuaci on del tipo rBO-ZK. PhD thesis, Universidad Nacional de Colombia, 2015.spa
dc.relation.referencesLizarazo Osorio, J. d. C. El problema de Cauchy de la clase de ecuaciones de dispersi on generalizada de Benjamin-Ono bidimensionales. PhD thesis, Universidad Nacional de Colombia, 2018.spa
dc.relation.referencesGinibre, J., and Velo, G. Smoothing properties and retarded estimates for some dispersive evolut ion equations. Comm. Math. Phys 144, 1 (1992), 163{188.spa
dc.relation.referencesSaut, J.-C. Remarks on the generalized kadomtsev-petviashvili equations. Indiana University Mathematics Journal 42, 3 (1993), 1011{1026.spa
dc.relation.referencesReed, M., and Simon, B. Methods of modern mathematical physics. II. Fourier analysis, self-adjointness. Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1975.spa
dc.relation.referencesPego, R. L., and Weinstein, M. I. Asymptotic stability of solitary waves. Comm. Math. Phys. 164, 2 (1994), 305{349.spa
dc.relation.referencesOno, H. Algebraic solitary waves in strati ed uids. J. Phys. Soc. Japan 39, 4 (1975), 1082{1091.spa
dc.relation.referencesMolinet, L., Saut, J.-C., and Tzvetkov, N. Well-posedness and ill-posedness results for the Kadomtsev-Petviashvili-I equation. Duke Math. J. 115, 2 (2002), 353{384.spa
dc.relation.referencesLinares, F., and Ponce, G. Introduction to nonlinear dispersive equations. Universitext (1979). Springer, 2009.spa
dc.relation.referencesLinares, F., Pilod, D., and Saut, J.-C. The cauchy problem for the fractional kadomtsev-petviashvili equations. Preprint (2017). Ar- Xiv:1705.09744v1.spa
dc.relation.referencesLinares, F., Pilod, D., and Saut, J.-C. Remarks on the orbital stability of ground state solutions of fkdv and related equations. Preprint (2015). Arxiv, math.AP, 1503.03084.spa
dc.relation.referencesLinares, F., Pilod, D., and Saut, J.-C. Well-posedness of strongly dispersive two-dimensional surface wave Boussinesq systems. SIAM J. Math. Anal. 44, 6 (2012), 4195{4221.spa
dc.relation.referencesLinares, F., and Pastor, A. Well-posedness for the two-dimensional modi ed Zakharov-Kuznetsov equation. SIAM J. Math. Anal. 41, 4 (2009), 1323{1339.spa
dc.relation.referencesLannes, D., and Saut, J.-C. Remarks on the full dispersion Kadomtsev-Petviashvli equation. Kinet. Relat. Models 6, 4 (2013), 989{ 1009.spa
dc.relation.referencesLannes, D. The water waves problem, vol. 188 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2013. Mathematical analysis and asymptotics.spa
dc.relation.referencesKobayasi, K. On a theorem for linear evolution equations of hyperbolic type. J. Math. Soc. Japan 31, 4 (1979), 647{654.spa
dc.relation.referencesKlein, C., and Saut, J.-C. A numerical approach to blow-up issues for dispersive perturbations of Burgers' equation. Phys. D 295/296 (2015), 46{65.spa
dc.relation.referencesKim, B. Three-dimensional solitary waves in dispersive wave systems. PhD thesis, Massachusetts Institute of Technology. Dept. of Mathematics., Cambridge, MA, 2006.spa
dc.relation.referencesKenig, C. E., Ponce, G., and Vega, L. Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle. Comm. Pure Appl. Math. 46, 4 (1993), 527{620.spa
dc.relation.referencesKenig, C. E., Martel, Y., and Robbiano, L. Local well-posedness and blow-up in the energy space for a class of L2 critical dispersion generalized Benjamin-Ono equations. Ann. Inst. H. Poincar e Anal. Non Lin eaire 28, 6 (2011), 853{887.spa
dc.relation.referencesKenig, C. E. On the local and global well-posedness theory for the KP-I equation. Ann. Inst. H. Poincar e Anal. Non Lin eaire 21, 6 (2004), 827{838.spa
dc.relation.referencesKato, T., and Ponce, G. Commutator estimates and the Euler and Navier-Stokes equations. Comm. Pure Appl. Math. 41, 7 (1988), 891{ 907.spa
dc.relation.referencesKato, T. Perturbation theory for linear operators. Classics in Mathematics. Springer-Verlag, Berlin, 1995. Reprint of the 1980 edition.spa
dc.relation.referencesKato, T. On the Korteweg-de Vries equation. Manuscripta Math. 28, 1-3 (1979), 89{99.spa
dc.relation.referencesKato, T. Quasi-linear equations of evolution, with applications to partial di erential equations. In Spectral theory and di erential equations (Proc. Sympos., Dundee, 1974; dedicated to Konrad J orgens), vol. 448 of Lecture Notes in Math. Springer, Berlin, 1975, pp. 25{70.spa
dc.relation.referencesKadomtsev, B. B., and Petviashvili, V. I. On the Stability of Solitary Waves in Weakly Dispersing Media. Soviet Physics Doklady 15 (Dec. 1970), 539.spa
dc.relation.referencesCastro, A., C ordoba, D., and Gancedo, F. Singularity formations for a surface wave model. Nonlinearity 23, 11 (2010), 2835{2847.spa
dc.relation.referencesBona, J. L., and Smith, R. The initial-value problem for the Korteweg-de Vries equation. Philos. Trans. Roy. Soc. London Ser. A 278, 1287 (1975), 555{601.spa
dc.relation.referencesBona, J. On the stability theory of solitary waves. Proc. Roy. Soc. London Ser. A 344, 1638 (1975), 363{374.spa
dc.relation.referencesBenjamin, T. B., Bona, J. L., and Mahony, J. J. Model equations for long waves in nonlinear dispersive systems. Philos. Trans. Roy. Soc. London Ser. A 272, 1220 (1972), 47{78.spa
dc.relation.referencesBenjamin, T. B. The stability of solitary waves. Proc. Roy. Soc. (London) Ser. A 328 (1972), 153{183.spa
dc.relation.referencesBenjamin, T. B. Internal waves of permanent form in uids of great depth. J. Fluid Mech. 29 (1967), 559{592.spa
dc.relation.referencesAblowitz, M. J., and Segur, H. Long internal waves in uids of great depth. Stud. Appl. Math. 62, 3 (1980), 249{262.spa
dc.relation.referencesAblowitz, M. J., and Clarkson, P. A. Solitons, nonlinear evolution equations and inverse scattering, vol. 149 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1991.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc510 - Matemáticasspa
dc.subject.proposalCauchy Problemeng
dc.subject.proposalProblema de Cauchyspa
dc.subject.proposalEcuación Kadomtsev-Petviashvilispa
dc.subject.proposalKadomtsev-Petviashvilieng
dc.subject.proposalEcuación de Zakharov-Kuznetsovspa
dc.subject.proposalZakharov-Kuznetsov Equationeng
dc.subject.proposalBuen planteamiento localspa
dc.subject.proposalLocal well posednesseng
dc.subject.proposalEspacios de Sobolev anisotrópicosspa
dc.subject.proposalAnisotropic Sobolev Spaceseng
dc.subject.proposalKato Theoryeng
dc.subject.proposalTeoría de Kato.spa
dc.titleProblema de Cauchy asociado a un ecuación del tipo KZKP con dispersión transversal fraccionariaspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
80030089.2020.pdf
Tamaño:
494.13 KB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.8 KB
Formato:
Item-specific license agreed upon to submission
Descripción: