Desarrollo de una arquitectura de referencia basada en microservicios para Internet de las Cosas
dc.contributor.advisor | Cangrejo Aljure, Libia Denisse | spa |
dc.contributor.author | Obregón Sánchez, David | spa |
dc.contributor.referee | Umaña Acosta, Henry Roberto | spa |
dc.contributor.referee | Herrera Álvarez, David Alberto | spa |
dc.contributor.researchgroup | ANGeoSc | spa |
dc.date.accessioned | 2025-03-17T19:16:56Z | |
dc.date.available | 2025-03-17T19:16:56Z | |
dc.date.issued | 2024-10-22 | |
dc.description | ilustraciones, diagramas, fotografías | spa |
dc.description.abstract | Internet de las Cosas (IoT) es un ecosistema en constante crecimiento que conecta el mundo físico y digital a través de internet, y plantea una serie de desafíos únicos en el desarrollo de software, como la heterogeneidad de dispositivos, la naturaleza distribuida, la escalabilidad y la seguridad. En este trabajo se presenta el diseño de una arquitectura de referencia basada en microservicios para entornos IoT, que garantiza los atributos mínimos de calidad de software de dichos sistemas. Mediante una revisión sistemática de la literatura, la identificación de los atributos de calidad de software específicos para IoT, el diseño de una arquitectura de referencia y la implementación de una arquitectura tecnológica a través de una prueba de concepto, se evalúan atributos de calidad específicos usando el enfoque de microservicios en entornos IoT. Se destacan sus principales ventajas frente a enfoques tradicionales, como las arquitecturas monolíticas. Finalmente, se plantean desafíos vigentes en aspectos adicionales a la calidad del software para el enfoque de microservicios. (Texto tomado de la fuente). | spa |
dc.description.abstract | Internet of Things (IoT) is a constantly growing ecosystem that connects the physical and digital worlds through the internet, presenting a series of unique challenges in software development, such as device heterogeneity, distributed nature, scalability, and security. This work presents the design of a reference architecture based on microservices for IoT environments, which ensures the minimum software quality attributes of such systems. Through a systematic literature review, the identification of specific software quality attributes for IoT, the design of a reference architecture, and the implementation of a technological architecture via a proof of concept, specific quality attributes are evaluated using the microservices approach in IoT environments. The main advantages of this approach over traditional ones, such as monolithic architectures, are highlighted. Finally, ongoing challenges related to additional aspects of software quality in the microservices approach are discussed. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ingeniería - Ingeniería de Sistemas y Computación | spa |
dc.description.methods | Los aspectos metodológicos de este trabajo combinan enfoques teóricos y prácticos, abordando tanto la investigación teórica como la aplicación práctica. La metodología se divide en dos dimensiones clave: una teórica, que incluye investigación y revisión sistemática de la literatura, y otra práctica, que abarca el diseño, construcción y validación de la arquitectura. Para el diseño, construcción y validación de la arquitectura de referencia, se emplea el Proceso para Construir Arquitecturas de Referencia (ProSA-RA). Este proceso, ampliamente utilizado, sistematiza el diseño, la representación y la evaluación de arquitecturas de referencia (Nakagawa et al., 2014). Ha sido aplicado previamente en diversos dominios, como software, robótica, arquitecturas orientadas a servicios, computación ubicua y tecnologías de la información y las comunicaciones (TIC) (Garcés et al., 2021). | spa |
dc.description.researcharea | Arquitecturas de software para Internet de las cosas | spa |
dc.format.extent | xv, 162 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87673 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ingeniería | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería de Sistemas y Computación | spa |
dc.relation.references | Akanbi, A. (2023). Towards a Microservice-Based Middleware for a Multi-hazard Early Warning System. In Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST: Vol. 503 LNICST (pp. 179–191). https://doi.org/10.1007/978-3-031-35883-8_12 | spa |
dc.relation.references | Alshudukhi, K. S., Khemakhem, M. A., Eassa, F. E., & Jambi, K. M. (2023). An Interoperable Blockchain Security Frameworks Based on Microservices and Smart Contract in IoT Environment. Electronics (Switzerland), 12(3), 776. https://doi.org/10.3390/electronics12030776 | spa |
dc.relation.references | Atitallah, S. Ben, Driss, M., & Ghzela, H. Ben. (2022). Microservices for Data Analytics in IoT Applications: Current Solutions, Open Challenges, and Future Research Directions. Procedia Computer Science, 207, 3938–3947. https://doi.org/10.1016/j.procs.2022.09.456 | spa |
dc.relation.references | Aydin, S., & Nafiz Aydin, M. (2022). Design and implementation of a smart beehive and its monitoring system using microservices in the context of IoT and open data. Computers and Electronics in Agriculture, 196. https://doi.org/10.1016/j.compag.2022.106897 | spa |
dc.relation.references | Badampudi, D., Wohlin, C., & Petersen, K. (2015). Experiences from using snowballing and database searches in systematic literature studies. ACM International Conference Proceeding Series, 27-29-April-2015. https://doi.org/10.1145/2745802.2745818 | spa |
dc.relation.references | Banijamali, A., Pakanen, O. P., Kuvaja, P., & Oivo, M. (2020). Software architectures of the convergence of cloud computing and the Internet of Things: A systematic literature review. Information and Software Technology, 122, 106271. https://doi.org/10.1016/j.infsof.2020.106271 | spa |
dc.relation.references | Bass, L., Clements, P., & Kazman, R. (2013). Software Architecture in Practice Second Edition Third Edition. In Communication. https://www.oreilly.com/library/view/software-architecture-in/9780132942799/ | spa |
dc.relation.references | Bassi, A., Bauer, M., Fiedler, M., Kramp, T., van Kranenburg, R., Lange, S., & Meissner, S. (2013). Enabling things to talk: Designing IoT solutions with the IoT architectural reference model. In Enabling Things to Talk: Designing IoT Solutions with the IoT Architectural Reference Model. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-40403-0 | spa |
dc.relation.references | Benayache, A., Bilami, A., Barkat, S., Lorenz, P., & Taleb, H. (2019). MsM: A microservice middleware for smart WSN-based IoT application. Journal of Network and Computer Applications, 144, 138–154. https://doi.org/10.1016/j.jnca.2019.06.015 | spa |
dc.relation.references | Bixio, L., Delzanno, G., Rebora, S., & Rulli, M. (2020). A flexible IoT stream processing architecture based on microservices. Information (Switzerland), 11(12), 1–19. https://doi.org/10.3390/info11120565 | spa |
dc.relation.references | Butzin, B., Golatowski, F., & Timmermann, D. (2016). Microservices approach for the internet of things. IEEE International Conference on Emerging Technologies and Factory Automation, ETFA, 2016-Novem, 1–6. https://doi.org/10.1109/ETFA.2016.7733707 | spa |
dc.relation.references | CEBECİ, K., & KORÇAK, Ö. (2020). Design of an Enterprise Level Architecture Based on Microservices. Bilişim Teknolojileri Dergisi, 13(4), 357–371. https://doi.org/10.17671/gazibtd.558392 | spa |
dc.relation.references | Chamari, L., Petrova, E., & Pauwels, P. (2023). An End-to-End Implementation of a Service-Oriented Architecture for Data-Driven Smart Buildings. IEEE Access, 11, 117261–117281. https://doi.org/10.1109/ACCESS.2023.3325767 | spa |
dc.relation.references | Chen, C. H., & Liu, C. T. (2021). A 3.5-tier container-based edge computing architecture. Computers and Electrical Engineering, 93, 107227. https://doi.org/10.1016/j.compeleceng.2021.107227 | spa |
dc.relation.references | Cisco: Software, Network, and Cybersecurity Solutions - Cisco. (n.d.). Retrieved April 16, 2024, from https://www.cisco.com/ | spa |
dc.relation.references | Cota, D., Martins, J., Mamede, H., & Branco, F. (2023). BHiveSense: An integrated information system architecture for sustainable remote monitoring and management of apiaries based on IoT and microservices. Journal of Open Innovation: Technology, Market, and Complexity, 9(3). https://doi.org/10.1016/j.joitmc.2023.100110 | spa |
dc.relation.references | Croes, E. (2015). Software Architectural Styles in the Internet of Things. In undefined (Issue August 2015). | spa |
dc.relation.references | Di Martino, B., Rak, M., Ficco, M., Esposito, A., Maisto, S. A., & Nacchia, S. (2018). Internet of things reference architectures, security and interoperability: A survey. Internet of Things (Netherlands), 1–2, 99–112. https://doi.org/10.1016/J.IOT.2018.08.008 | spa |
dc.relation.references | Dias, J. P., Restivo, A., & Ferreira, H. S. (2022). Designing and constructing internet-of-Things systems: An overview of the ecosystem. In Internet of Things (Netherlands) (Vol. 19). https://doi.org/10.1016/j.iot.2022.100529 | spa |
dc.relation.references | Dobaj, J., Schuss, M., Krisper, M., Boano, C. A., & MacHer, G. (2019). Dependable mesh networking patterns. ACM International Conference Proceeding Series, 1–14. https://doi.org/10.1145/3361149.3361174 | spa |
dc.relation.references | Dong, W., Li, L., Zhou, C., Wang, Y., Li, M., Tian, C., & Sun, W. (2012). Discovery of generalized spatial association rules. Proceedings of 2012 IEEE International Conference on Service Operations and Logistics, and Informatics, SOLI 2012. https://doi.org/10.1109/SOLI.2012.6273505 | spa |
dc.relation.references | Driss, M., Hasan, D., Boulila, W., & Ahmad, J. (2021). Microservices in IoT security: Current solutions, research challenges, and future directions. Procedia Computer Science, 192, 2385–2395. https://doi.org/10.1016/j.procs.2021.09.007 Eclipse Arrowhead: A Framework for IoT and System of Systems Solutions | The Eclipse Foundation. (n.d.). Retrieved March 16, 2024, from https://www.eclipse.org/community/eclipse_newsletter/2020/july/1.php | spa |
dc.relation.references | Erl, T. P. R. M. Z. (2013). Cloud Computing: Concepts, Technology & Architecture. Pearson Education. https://www.amazon.com/Cloud-Computing-Concepts-Technology-Architecture/dp/0133387526 | spa |
dc.relation.references | Famá, F., Faria, J. N., & Portugal, D. (2022). An IoT-based interoperable architecture for wireless biomonitoring of patients with sensor patches. Internet of Things (Netherlands), 19. https://doi.org/10.1016/j.iot.2022.100547 | spa |
dc.relation.references | Farooq, S. U., Quadri, S. M. K., & Ahmad, N. (2012). Metrics, models and measurements in software reliability. IEEE 10th Jubilee International Symposium on Applied Machine Intelligence and Informatics, SAMI 2012 - Proceedings, 441–449. https://doi.org/10.1109/SAMI.2012.6209008 | spa |
dc.relation.references | Ferreira, L. C. B. C., Borchardt, A. D. R., Cardoso, G. D. S., Mendes Lemes, D. A., Sousa, G. R. D. R. De, Neto, F. B., De Lima, E. R., Fraidenraich, G., Cardieri, P., & Meloni, L. G. P. (2022). Edge Computing and Microservices Middleware for Home Energy Management Systems. IEEE Access, 10. https://doi.org/10.1109/ACCESS.2022.3214229 | spa |
dc.relation.references | Firouzi, F., & Farahani, B. (2020). Architecting IoT Cloud. In Intelligent Internet of Things: From Device to Fog and Cloud (pp. 173–241). Springer International Publishing. https://doi.org/10.1007/978-3-030-30367-9_4 Forrester, J. W. (1995). The beginning of system dynamics. McKinsey Quarterly, 4. | spa |
dc.relation.references | Fremantle, P. (2014, October). A reference architecture for the internet of things. WSO2 White Paper. https://docs.huihoo.com/wso2/wso2-whitepaper-a-reference-architecture-for-the-internet-of-things.pdf | spa |
dc.relation.references | Furstenau, L. B., Rodrigues, Y. P. R., Sott, M. K., Leivas, P., Dohan, M. S., López-Robles, J. R., Cobo, M. J., Bragazzi, N. L., & Choo, K. K. R. (2023). Internet of things: Conceptual network structure, main challenges and future directions. Digital Communications and Networks, 9(3), 677–687. https://doi.org/10.1016/j.dcan.2022.04.027 | spa |
dc.relation.references | Garcés, L., Martínez-Fernández, S., Oliveira, L., Valle, P., Ayala, C., Franch, X., & Nakagawa, E. Y. (2021). Three decades of software reference architectures: A systematic mapping study. Journal of Systems and Software, 179, 111004. https://doi.org/10.1016/j.jss.2021.111004 | spa |
dc.relation.references | Gupta, S. (2022). Non-functional requirements elicitation for edge computing. Internet of Things (Netherlands), 18, 100503. https://doi.org/10.1016/j.iot.2022.100503 | spa |
dc.relation.references | Hamzah, A. K., Khalid, R., Al Mansor, A. H. O., & Singh, P. (2023). Ensuring Trust and Security in IoT Systems through Blockchain Integration. ICSCCC 2023 - 3rd International Conference on Secure Cyber Computing and Communications, 298–303. https://doi.org/10.1109/ICSCCC58608.2023.10176600 | spa |
dc.relation.references | He, X., & Deng, F. (2020). Research on architecture of internet of things platform based on service mesh. Proceedings - 2020 12th International Conference on Measuring Technology and Mechatronics Automation, ICMTMA 2020, 755–759. https://doi.org/10.1109/ICMTMA50254.2020.00164 | spa |
dc.relation.references | Hossain, M. D., Sultana, T., Akhter, S., Hossain, M. I., Thu, N. T., Huynh, L. N. T., Lee, G. W., & Huh, E. N. (2023). The role of microservice approach in edge computing: Opportunities, challenges, and research directions. ICT Express, 9(6), 1162–1182. https://doi.org/10.1016/j.icte.2023.06.006 | spa |
dc.relation.references | IEEE SA - IEEE 2413-2019. (n.d.). Retrieved March 16, 2024, from https://standards.ieee.org/ieee/2413/6226/ | spa |
dc.relation.references | Industrial Internet Reference Architecture (IIRA). (n.d.). Retrieved March 16, 2024, from https://hub.iiconsortium.org/iira | spa |
dc.relation.references | Information technology ISO/IEC JTC 1 Internet of Things (IoT). (2015). www.iso.org | spa |
dc.relation.references | ISO 25010. (n.d.). Retrieved March 4, 2024, from https://iso25000.com/index.php/en/iso-25000-standards/iso-25010 | spa |
dc.relation.references | ITU. (2012). Internet of things global standards initiative. Internet of Things Global Standards Initiative, July, 2. https://www.itu.int/en/ITU-T/gsi/iot/Pages/default.aspx | spa |
dc.relation.references | ITU. (2016). Itu-T Y.4000/Y.2060 (06/2012). In ITU-T Recommendations. | spa |
dc.relation.references | ITU-T Y.2066 (06/14) Common requirements of the Internet of things. (n.d.). Retrieved April 5, 2024, from https://www.intertekinform.com/en-us/standards/itu-t-y-2066-06-14--1220261_saig_itu_itu_2962118/ | spa |
dc.relation.references | Khoso, F. H., Lakhan, A., Arain, A. A., Soomro, M. A., Nizamani, S. Z., & Kanwar, K. (2021). A Microservice-Based System for Industrial Internet of Things in Fog-Cloud Assisted Network. Engineering, Technology and Applied Science Research, 11(2), 7029–7032. https://doi.org/10.48084/etasr.4077 | spa |
dc.relation.references | Kim, M. (2016). A Quality Model for Evaluating IoT Applications. International Journal of Computer and Electrical Engineering, 8(1), 66–76. https://doi.org/10.17706/IJCEE.2016.8.1.66-76 | spa |
dc.relation.references | Kitchenham, B. (2004). Procedures for Performing Systematic Reviews Kitchenham, B., 2004. Keele, UK, Keele University, 33(2004). | spa |
dc.relation.references | Kouicem, D. E., Bouabdallah, A., & Lakhlef, H. (2018). Internet of things security: A top-down survey. Computer Networks, 141, 199–221. https://doi.org/10.1016/J.COMNET.2018.03.012 | spa |
dc.relation.references | Krämer, M., Frese, S., & Kuijper, A. (2019). Implementing secure applications in smart city clouds using microservices. Future Generation Computer Systems, 99, 308–320. https://doi.org/10.1016/j.future.2019.04.042 | spa |
dc.relation.references | Kruchten, P. B. (1995). The 4+1 View Model of Architecture. IEEE Software, 12(6). https://doi.org/10.1109/52.469759 | spa |
dc.relation.references | Lai, C., Boi, F., Buschettu, A., & Caboni, R. (2019). IoT and microservice architecture for multimobility in a smart city. Proceedings - 2019 International Conference on Future Internet of Things and Cloud, FiCloud 2019, 238–242. https://doi.org/10.1109/FiCloud.2019.00040 | spa |
dc.relation.references | Lewis, J., & Fowler, M. (2014). Microservices a definiton of this new architectural term. https://martinfowler.com/articles/microservices.html | spa |
dc.relation.references | Liu, J., Wu, N., Qiao, Y., & Li, Z. (2021). A scientometric review of research on traffic forecasting in transportation. In IET Intelligent Transport Systems (Vol. 15, Issue 1). https://doi.org/10.1049/itr2.12024 | spa |
dc.relation.references | Lohiya, R., & Thakkar, A. (2021). Application Domains, Evaluation Data Sets, and Research Challenges of IoT: A Systematic Review. In IEEE Internet of Things Journal (Vol. 8, Issue 11). https://doi.org/10.1109/JIOT.2020.3048439 | spa |
dc.relation.references | Mahmoud, R., Yousuf, T., Aloul, F., & Zualkernan, I. (2016). Internet of things (IoT) security: Current status, challenges and prospective measures. 2015 10th International Conference for Internet Technology and Secured Transactions, ICITST 2015, 336–341. https://doi.org/10.1109/ICITST.2015.7412116 | spa |
dc.relation.references | Mahmud, R., Pallewatta, S., Goudarzi, M., & Buyya, R. (2022). iFogSim2: An extended iFogSim simulator for mobility, clustering, and microservice management in edge and fog computing environments. Journal of Systems and Software, 190, 111351. https://doi.org/10.1016/j.jss.2022.111351 | spa |
dc.relation.references | Malche, T., Maheshwary, P., & Kumar, R. (2019). Environmental Monitoring System for Smart City Based on Secure Internet of Things (IoT) Architecture. Wireless Personal Communications, 107(4), 2143–2172. https://doi.org/10.1007/S11277-019-06376-0 | spa |
dc.relation.references | Martín-Lopo, M. M., Boal, J., & Sánchez-Miralles, Á. (2020). A literature review of IoT energy platforms aimed at end users. Computer Networks, 171, 107101. https://doi.org/10.1016/j.comnet.2020.107101 | spa |
dc.relation.references | Mendes, D., Jorge, D., Pires, G., Panda, R., Antonio, R., Dias, P., & Oliveira, L. (2019). VITASENIOR-MT: A distributed and scalable cloud-based telehealth solution. IEEE 5th World Forum on Internet of Things, WF-IoT 2019 - Conference Proceedings, 767–772. https://doi.org/10.1109/WF-IoT.2019.8767184 | spa |
dc.relation.references | Merlino, G., Tricomi, G., D’Agati, L., Benomar, Z., Longo, F., & Puliafito, A. (2024). FaaS for IoT: Evolving Serverless towards Deviceless in I/Oclouds. Future Generation Computer Systems, 154, 189–205. https://doi.org/10.1016/j.future.2023.12.029 | spa |
dc.relation.references | Morchid, A., Alami, R. El, Raezah, A. A., & Sabbar, Y. (2024). Applications of internet of things (IoT) and sensors technology to increase food security and agricultural Sustainability: Benefits and challenges. Ain Shams Engineering Journal, 15, 102509. https://doi.org/10.1016/j.asej.2023.102509 | spa |
dc.relation.references | Muccini, H., & Moghaddam, M. T. (2018). IoT architectural styles: A systematic mapping study. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11048 LNCS, 68–85. https://doi.org/10.1007/978-3-030-00761-4_5 | spa |
dc.relation.references | Muchandi, V. (2007). Applying 4+1 View Architecture with UML 2 White Paper. www.fcgss.com | spa |
dc.relation.references | Múnera, D., Diana, V., Aguirre, J., & Gómez, N. G. (2021). IoT-based air quality monitoring systems for smart cities: A systematic mapping study. International Journal of Electrical and Computer Engineering, 11(4). https://doi.org/10.11591/ijece.v11i4.pp3470-3482 | spa |
dc.relation.references | Nadaf, S. R., & Krishnappa, H. K. (2022). Kubernetes in Microservices. International Journal of Advanced Science and Computer Applications, 2(1). https://doi.org/10.47679/ijasca.v2i1.19 | spa |
dc.relation.references | Nakagawa, E. Y., Guessi, M., Maldonado, J. C., Feitosa, D., & Oquendo, F. (2014). Consolidating a process for the design, representation, and evaluation of reference architectures. Proceedings - Working IEEE/IFIP Conference on Software Architecture 2014, WICSA 2014, 143–152. https://doi.org/10.1109/WICSA.2014.25 | spa |
dc.relation.references | Negru, C., Musat, G., Colezea, M., Anghel, C., Dumitrascu, A., Pop, F., De Maio, C., & Castiglione, A. (2022). Dependable workflow management system for smart farms. Connection Science, 34(1), 1833–1854. https://doi.org/10.1080/09540091.2022.2083078 | spa |
dc.relation.references | Nehme, A., Jesus, V., Mahbub, K., & Abdallah, A. (2019). Securing Microservices. IT Professional, 21(1), 42–49. https://doi.org/10.1109/MITP.2018.2876987 | spa |
dc.relation.references | Nguyen, L. T. T., Ha, S. X., Le, T. H., Luong, H. H., Vo, K. H., Nguyen, K. H. T., Nguyen, A. T., Dao, T. A., & Nguyen, H. V. K. (2022). BMDD: A novel approach for IoT platform (broker-less and microservice architecture, decentralized identity, and dynamic transmission messages). PeerJ Computer Science, 8, e950. https://doi.org/10.7717/peerj-cs.950 | spa |
dc.relation.references | OASIS Web Services Quality Model (WSQM) TC. (n.d.). Retrieved March 4, 2024, from https://www.oasis-open.org/committees/wsqm/charter.php | spa |
dc.relation.references | Petticrew, M., & Roberts, H. (2008). Systematic Reviews in the Social Sciences: A Practical Guide. In Systematic Reviews in the Social Sciences: A Practical Guide. https://doi.org/10.1002/9780470754887 | spa |
dc.relation.references | Pham, V. N., Hossain, M. D., Lee, G. W., & Huh, E. N. (2023). Efficient Data Delivery Scheme for Large-Scale Microservices in Distributed Cloud Environment. Applied Sciences (Switzerland), 13(2), 886. https://doi.org/10.3390/app13020886 | spa |
dc.relation.references | Pontarolli, R. P., Bigheti, J. A., de Sá, L. B. R., & Godoy, E. P. (2021). Towards security mechanisms for an industrial microservice-oriented architecture. 2021 14th IEEE International Conference on Industry Applications, INDUSCON 2021 - Proceedings, 679–685. https://doi.org/10.1109/INDUSCON51756.2021.9529415 | spa |
dc.relation.references | Pontarolli, R. P., Bigheti, J. A., de Sá, L. B. R., & Godoy, E. P. (2023). Microservice-Oriented Architecture for Industry 4.0. Eng, 4(2), 1179–1197. https://doi.org/10.3390/eng4020069 | spa |
dc.relation.references | Popoola, O., Rodrigues, M., Marchang, J., Shenfield, A., Ikpehia, A., & Popoola, J. (2023). A critical literature review of security and privacy in smart home healthcare schemes adopting IoT & blockchain: Problems, Challenges and Solutions. Blockchain: Research and Applications, 100178. https://doi.org/10.1016/j.bcra.2023.100178 | spa |
dc.relation.references | Rahmatulloh, A., Sari, D. W., Shofa, R. N., & Darmawan, I. (2021). Microservices-based IoT Monitoring Application with a Domain-driven Design Approach. 2021 International Conference Advancement in Data Science, E-Learning and Information Systems, ICADEIS 2021, 1–8. https://doi.org/10.1109/ICADEIS52521.2021.9701966 | spa |
dc.relation.references | Rath, C. K., Mandal, A. K., & Sarkar, A. (2023). Microservice based scalable IoT architecture for device interoperability. Computer Standards and Interfaces, 84, 103697. https://doi.org/10.1016/j.csi.2022.103697 | spa |
dc.relation.references | Richardson, C. (2018). Microservice Pattern. Manning Publications, 2–16. https://www.academia.edu/41827915/_Microservice_Pattern | spa |
dc.relation.references | Sánchez-Reolid, R., Sánchez-Reolid, D., Ayora, C., de la Vara, J. L., Pereira, A., & Fernández-Caballero, A. (2023). Generic Architecture for Multisource Physiological Signal Acquisition, Processing and Classification Based on Microservices. Lecture Notes in Networks and Systems, 740 LNNS, 123–133. https://doi.org/10.1007/978-3-031-38333-5_13 | spa |
dc.relation.references | Schweichhart, K. (2016). Reference architectural model industrie 4.0 (rami 4.0). An Introduction, 40. | spa |
dc.relation.references | Shadija, D., Rezai, M., & Hill, R. (2017). Towards an Understanding of Microservices. In arXiv. https://www.researchgate.net/publication/319952918_Towards_an_Understanding_of_Microservices | spa |
dc.relation.references | Sheikh, A., & Ambhaikar, A. (n.d.). Quality of Services Parameters for Architectural Patterns of IoT. https://doi.org/10.22059/jitm.2021.80616 | spa |
dc.relation.references | Siaterlis, G., Franke, M., Klein, K., Hribernik, K. A., Thoben, K. D., Siatras, V., Nikolakis, N., Petrali, P., & Alexopoulos, K. (2021). A framework for advanced visualization of predictive analytics in cyber-physical production systems. Procedia CIRP, 104, 1565–1570. https://doi.org/10.1016/j.procir.2021.11.264 | spa |
dc.relation.references | Siddiqui, H., Khendek, F., & Toeroe, M. (2023). Microservices based architectures for IoT systems - State-of-the-art review. In Internet of Things (Netherlands) (Vol. 23). https://doi.org/10.1016/j.iot.2023.100854 | spa |
dc.relation.references | Software Architecture in Practice: Software Architect Practice_c3 - Len Bass, Paul Clements, Rick Kazman - Google Books. (n.d.). Retrieved March 30, 2024, from https://books.google.com.co/books?id=-II73rBDXCYC&printsec=frontcover&redir_esc=y#v=onepage&q&f=false | spa |
dc.relation.references | Son, S. C., Ko, S., Lee, H., & Lee, B. T. (2020). LwM2M based IoT Microservice Model with Repicas Synchronization Technique. International Conference on ICT Convergence, 2020-Octob, 1802–1804. https://doi.org/10.1109/ICTC49870.2020.9289346 | spa |
dc.relation.references | Subash, K., Janet Ramya, D., & Arockiam Associate Professor, L. (2019). Quality of Service in the Internet of Things (IoT)-A Survey. 21. | spa |
dc.relation.references | Sun, L., Li, Y., & Memon, R. A. (2017). An open IoT framework based on microservices architecture. China Communications, 14(2), 154–162. https://doi.org/10.1109/CC.2017.7868163 | spa |
dc.relation.references | Sun, Y., Fan, H., Bakillah, M., & Zipf, A. (2015). Road-based travel recommendation using geo-tagged images. Computers, Environment and Urban Systems, 53. https://doi.org/10.1016/j.compenvurbsys.2013.07.006 | spa |
dc.relation.references | Surantha, N., Utomo, O. K., & Isa, S. M. (2020). High-Performance and Resource-Efficient IoT-based Sleep Monitoring System. IEEE Vehicular Technology Conference, 2020-May. https://doi.org/10.1109/VTC2020-Spring48590.2020.9129521 | spa |
dc.relation.references | That “Internet of Things” Thing - RFID JOURNAL. (n.d.). Retrieved March 1, 2024, from https://www.rfidjournal.com/that-internet-of-things-thing | spa |
dc.relation.references | The Internet of Things Reference Model. (2014). | spa |
dc.relation.references | Thean, Z. Y., Voon Yap, V., & Teh, P. C. (2019). Container-based MQTT Broker Cluster for Edge Computing. ICRAIE 2019 - 4th International Conference and Workshops on Recent Advances and Innovations in Engineering: Thriving Technologies, 1–6. https://doi.org/10.1109/ICRAIE47735.2019.9037775 | spa |
dc.relation.references | Thönes, J. (2015). Microservices. In IEEE Software (Vol. 32, Issue 1). IEEE Computer Society. https://doi.org/10.1109/MS.2015.11 | spa |
dc.relation.references | Trilles, S., González-Pérez, A., & Huerta, J. (2020). An IoT platform based on microservices and serverless paradigms for smart farming purposes. Sensors (Switzerland), 20(8). https://doi.org/10.3390/s20082418 | spa |
dc.relation.references | Tsiatsis, V., Karnouskos, S., Höller, J., Boyle, D., & Mulligan, C. (2019). Technology Fundamentals. In Internet of Things (pp. 67–126). Elsevier. https://doi.org/10.1016/b978-0-12-814435-0.00017-1 | spa |
dc.relation.references | Uviase, O., & Kotonya, G. (2018). IoT architectural framework: Connection and integration framework for IoT systems. Electronic Proceedings in Theoretical Computer Science, EPTCS, 264, 1–17. https://doi.org/10.4204/EPTCS.264.1 | spa |
dc.relation.references | Weyrich, M., & Ebert, C. (2016). Reference architectures for the internet of things. IEEE Software, 33(1), 112–116. https://doi.org/10.1109/MS.2016.20 | spa |
dc.relation.references | White, G., Nallur, V., & Clarke, S. (2017). Quality of service approaches in IoT: A systematic mapping. Journal of Systems and Software, 132. https://doi.org/10.1016/j.jss.2017.05.125 | spa |
dc.relation.references | Xu, R., Jin, W., Hong, Y., & Kim, D. H. (2021). Intelligent optimization mechanism based on an objective function for efficient home appliances control in an embedded edge platform. Electronics (Switzerland), 10(12). https://doi.org/10.3390/electronics10121460 | spa |
dc.relation.references | Xu, R., Jin, W., & Kim, D. (2019). Microservice security agent based on API gateway in edge computing. Sensors (Switzerland), 19(22), 4905. https://doi.org/10.3390/s19224905 | spa |
dc.relation.references | Xu, R., Nikouei, S. Y., Chen, Y., Blasch, E., & Aved, A. (2019). BlendMAS: A blockchain-enabled decentralized microservices architecture for smart public safety. Proceedings - 2019 2nd IEEE International Conference on Blockchain, Blockchain 2019, 564–571. https://doi.org/10.1109/Blockchain.2019.00082 | spa |
dc.relation.references | Xu, R., Nikouei, S. Y., Nagothu, D., Fitwi, A., & Chen, Y. (2020). Blendsps: A blockchain-enabled decentralized smart public safety system. Smart Cities, 3(3), 928–951. https://doi.org/10.3390/smartcities3030047 | spa |
dc.relation.references | Xu, R., Ramachandran, G. S., Chen, Y., & Krishnamachari, B. (2019). BlendSM-DDM: BLockchain-ENabled secure microservices for decentralized data marketplaces. 5th IEEE International Smart Cities Conference, ISC2 2019, 14–17. https://doi.org/10.1109/ISC246665.2019.9071766 | spa |
dc.relation.references | Yang, H., Ong, S. K., Nee, A. Y. C., Jiang, G., & Mei, X. (2022). Microservices-based cloud-edge collaborative condition monitoring platform for smart manufacturing systems. International Journal of Production Research, 60(24), 7492–7501. https://doi.org/10.1080/00207543.2022.2098075 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-CompartirIgual 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-sa/4.0/ | spa |
dc.subject.ddc | 000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación | spa |
dc.subject.proposal | IoT | eng |
dc.subject.proposal | Microservicios | spa |
dc.subject.proposal | Arquitecturas de Software | spa |
dc.subject.proposal | Internet de las Cosas | spa |
dc.subject.proposal | Internet of Things | eng |
dc.subject.proposal | Microservices | eng |
dc.subject.proposal | Software Architecture | eng |
dc.subject.wikidata | arquitectura de software | spa |
dc.subject.wikidata | software architecture | eng |
dc.subject.wikidata | Internet de las cosas | spa |
dc.subject.wikidata | Internet of things | eng |
dc.subject.wikidata | calidad de software | spa |
dc.subject.wikidata | Arquitectura de microservicios | eng |
dc.subject.wikidata | microservices | eng |
dc.subject.wikidata | software quality | eng |
dc.title | Desarrollo de una arquitectura de referencia basada en microservicios para Internet de las Cosas | spa |
dc.title.translated | Development of a microservices reference architecture for the Internet of Things | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Grupos comunitarios | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1.016.046.175.2024.pdf
- Tamaño:
- 6.11 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Ingeniería de Sistemas y Computación
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: