Análisis dosimétrico del efecto de la configuración de la estructura de camilla en el cálculo de dosis absorbida en radioterapia
dc.contributor.advisor | Simbaqueba Ariza, Axel Danny | spa |
dc.contributor.advisor | Plazas de Pinzón, María Cristina | spa |
dc.contributor.author | González Niño, Juan Manuel | spa |
dc.date.accessioned | 2025-07-10T16:39:03Z | |
dc.date.available | 2025-07-10T16:39:03Z | |
dc.date.issued | 2025 | |
dc.description | ilustraciones a color, diagramas, fotografías | spa |
dc.description.abstract | La presente investigación evalúa el impacto dosimétrico de distintas representaciones de la camilla de tratamiento en el sistema de planificación Monaco, mediante un enfoque integral que combina mediciones experimentales y simulaciones clínicas. Se compararon cuatro metodologías de modelado: aire (HUaire), agua (HUagua), valor teórico para fibra de carbono (HUteórico) y valor experimental obtenido por escaneo CT de un extensor de camilla (HUexp). La primera fase incluyó mediciones puntuales con cámara de ionización, utilizadas para evidenciar la variación en la dosis absorbida a diferentes profundidades al modificar la representación de la camilla. Posteriormente, se obtuvieron perfiles de dosis a profundidad mediante películas radiocrómicas EBT3 en un fantoma de PMMA, evaluando el desplazamiento del Dmax y las diferencias de dosis respecto al modelo experimental. Finalmente, se realizaron 16 planes clínicos (IMRT y VMAT; 6 MV y 15 MV) sobre un fantoma antropomórfico, analizando métricas clínicas (Dmax, Dmedia, D2, V95) en sitio objetivo y órganos a riesgo y validando la entrega de dosis mediante ArcCheck. Los resultados evidencian que HUexp proporciona la mejor concordancia dosimétrica, con errores inferiores al 2 % en todas las configuraciones evaluadas. HUteórico mostró un desempeño aceptable, pero con variabilidad dependiente del ángulo de incidencia. En contraste, HUaire y HUagua generaron errores clínicamente relevantes, incluyendo desplazamientos del Dmax y sobreestimaciones de dosis de hasta 25 % en mediciones puntuales y más del 9 % en planes clínicos. Se concluye que la representación precisa de la camilla es esencial para una planificación dosimétrica confiable, especialmente en condiciones geométricas complejas. HUexp se propone como referencia para la comisión de sistemas de planificación que incorporen estructuras físicas como la camilla, contribuyendo a reducir incertidumbres sistemáticas y a mejorar la calidad en la entrega de dosis (Texto tomado de la fuente). | spa |
dc.description.abstract | This research evaluates the dosimetric impact of different representations of the treatment couch in the Monaco treatment planning system, using a comprehensive approach that combines experimental measurements and clinical simulations. Four modeling methodologies were compared: air (HUair), water (HUwater), theoretical value for carbon fiber (HUtheoretical), and experimental value obtained through CT scanning of a couch extender (HUexp). The first phase included point measurements with an ionization chamber, used to demonstrate variations in absorbed dose at different depths depending on the couch representation. Subsequently, depth dose profiles were obtained using EBT3 radiochromic films in a PMMA phantom, assessing the displacement of Dmax and dose differences compared to the experimental model. Finally, 16 clinical plans (IMRT and VMAT; 6 MV and 15 MV) were created on an anthropomorphic phantom, analyzing clinical metrics (Dmax, Dmean, D2, V95) in the target and organs at risk, and validating dose delivery using ArcCheck. The results show that HUexp provides the best dosimetric agreement, with errors below 2% across all evaluated configurations. HUtheoretical showed acceptable performance but with angle-dependent variability. In contrast, HUair and HUwater produced clinically significant errors, including Dmax displacements and dose overestimations of up to 25% in point measurements and over 9% in clinical plans. It is concluded that accurate representation of the couch is essential for reliable dosimetric planning, especially under complex geometric conditions. HUexp is proposed as a reference for commissioning treatment planning systems that include physical structures such as the couch, contributing to the reduction of systematic uncertainties and improving dose delivery quality. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Física Médica | spa |
dc.format.extent | 80 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88322 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias - Maestría en Física Médica | spa |
dc.relation.references | C. G. de Radioterapia, “Simulación en radioterapia,” 2021, Último acceso: 5 de febrero de 2025. [Online]. Available: https://www.cog.es/wp-content/uploads/ 2021/08/Simulacion_Radioterapia_COG.pdf | spa |
dc.relation.references | G. Delaney, S. Jacob, C. Featherstone, and M. Barton, “The role of radiotherapy in cancer treatment: estimating optimal utilization from a review of evidence-based clinical guidelines,” Cancer, vol. 104, no. 6, pp. 1129–1137, 2005. | spa |
dc.relation.references | A. Varios, “Influencia de la camilla en el cálculo de tratamientos de radioterapia,” 1Library, 2020, Último acceso: 5 de febrero de 2025. [Online]. Available: https://1library.co/article/influencia-camilla-calculo-tratamientos.qvl0g0mr | spa |
dc.relation.references | cademia.edu, “Práctica 1: Dosimetría con película radiocrómica,” 2023, Último acceso: 5 de febrero de 2025. [Online]. Availa- ble: https://www.academia.edu/103415663/Practica_1_Dosimetr%C3%ADa_con_ pel%C3%ADcula_radiocr%C3%B3mica | spa |
dc.relation.references | A. V. SLD, “Sistemas de medida y dosimetría de radioterapia,” 2021, Último acceso: 5 de febrero de 2025. [Online]. Available: https: //aulavirtual.sld.cu/pluginfile.php/65954/mod_resource/content/0/SISTEMAS% 20DE%20MEDIDA%20Y%20DOSIMETR%C3%8DA%20DE%20RADIOTERAPIA.pdf | spa |
dc.relation.references | S. A. de Radioterapia, “Verificación de planes de tratamiento con arccheck y 3dvh,” 2017, Último acceso: 5 de febrero de 2025. [Online]. Available: https://www.sarh.es/files/Jornada%20Verificacion%202017/ArcCheck-3DVH.pdf | spa |
dc.relation.references | A. de la Cruz, J. Saez, and I. Martínez-Rovira, “Carbon-fiber treatment couch mode- ling for radiotherapy dose calculation: a systematic review,” Radiotherapy and Onco- logy, vol. 147, pp. 19–29, 2020. | spa |
dc.relation.references | L. Wang, C. Ma, L. Wang, and H. Zhang, “Dose attenuation effects of a carbon fi- ber couch and immobilization devices in imrt and vmat,” Journal of Applied Clinical Medical Physics, vol. 13, no. 4, p. 3856, 2012. | spa |
dc.relation.references | J. M. Boone, “Hounsfield units and ct attenuation coefficients,” Radiology, vol. 221, no. 2, pp. 632–633, 2001. | spa |
dc.relation.references | I. A. E. Agency, Absorbed Dose Determination in External Beam Radiotherapy: An Interna- tional Code of Practice for Dosimetry Based on Standards of Absorbed Dose to Water, ser. Technical Reports Series No. 398. IAEA, 2006. | spa |
dc.relation.references | J. e. a. Johnson, “Commissioning of carbon fiber treatment couch modeling in a commercial treatment planning system,” Journal of Applied Clinical Medical Physics, vol. 15, no. 1, pp. 228–237, 2014. | spa |
dc.relation.references | B. Poppe, T. Stelljes, and H. e. a. Looe, “Dose perturbation caused by couch inserts in photon treatment beams: a multi-institutional study,” Medical Physics, vol. 34, no. 6, pp. 2234–2240, 2007. | spa |
dc.relation.references | E. Spezi, A. Ferri, and C. W. Smith, “Modelling of the varian generic treatment couch for monte carlo dose calculations,” Physics in Medicine & Biology, vol. 53, no. 13, p. N257, 2008. | spa |
dc.relation.references | J. C. Chow and G. N. Grigorov, “The effect of carbon fiber couch on 6 mv photon beam attenuation,” Medical Dosimetry, vol. 30, no. 3, pp. 179–183, 2005. | spa |
dc.relation.references | I. B. Mihaylov and E. G. Moros, “Dosimetric impact of carbon fiber couch on imrt planning,” Medical Dosimetry, vol. 33, no. 2, pp. 110–116, 2008. | spa |
dc.relation.references | W. Smith, P. Baldwin, V. Batumalai, L. Holloway, G. Delaney, and M. Kapanen, “Cha- racterization of the dosimetric impact of the ibeam evo carbon fiber couch in ra- diotherapy treatments,” Medical Physics, vol. 37, no. 8, pp. 4022–4029, 2010. | spa |
dc.relation.references | H. Li, M. Rodriguez, C. Liu, L. Wang, and Q. J. Wu, “Characterization of the dosime- tric impact of treatment couch and immobilization devices in intensity-modulated radiotherapy,” Medical Dosimetry, vol. 39, no. 4, pp. 330–336, 2014. | spa |
dc.relation.references | X. Zhang, H. Wu, F.-F. Yin, S. Chang, and L. Ren, “Effect of couch top on radiation delivery and modeling in monaco tps,” in Medical Physics, vol. 46, no. 6, 2019, p. e545, presented at AAPM Annual Meeting. [Online]. Available: https://aapm.org/meetings/2019AM | spa |
dc.relation.references | A. Almahwasi, “Does hadron therapy offer enough effectiveness in treating cancer to be worth the cost?” 2011. | spa |
dc.relation.references | E. B. Podgorsak, Radiation Oncology Physics: A Handbook for Teachers and Students. Vienna: International Atomic Energy Agency, 2005. [Online]. Available: https://www.iaea.org/publications/7004/ radiation-oncology-physics-a-handbook-for-teachers-and-students | spa |
dc.relation.references | K. S. Krane, Introductory Nuclear Physics. New York: John Wiley & Sons, 1991. | spa |
dc.relation.references | F. H. Attix, Introduction to Radiological Physics and Radiation Dosimetry. New York: Wiley-VCH, 2004. | spa |
dc.relation.references | E. B. Podgorsak, Radiation Oncology Physics: A Handbook for Teachers and Students. Vienna: International Atomic Energy Agency, 2005. | spa |
dc.relation.references | . M. Khan and J. P. Gibbons, Khan’s the Physics of Radiation Therapy, 6th ed. Phila- delphia: Lippincott Williams & Wilkins, 2020. | spa |
dc.relation.references | N. C. on Radiation Protection and Measurements, “Average energy required to pro- duce an ion pair,” NCRP Report, Bethesda, MD, Tech. Rep. 58, 1985. | spa |
dc.relation.references | G. F. Knoll, Radiation Detection and Measurement, 4th ed. Hoboken, NJ: John Wiley & Sons, 2010. | spa |
dc.relation.references | M. Oehrnberg, S. Bäck, and T. Knöös, “Gafchromic film dosimetry in high-energy photon beams: energy dependence and improved uncertainty estimation,” Journal of Applied Clinical Medical Physics, vol. 21, no. 6, pp. 153–162, 2020. | spa |
dc.relation.references | International Atomic Energy Agency, Dosimetry for Radiotherapy: Physical Aspects, Code of Practice for Dosimetry Based on Standards of Absorbed Dose to Water, ser. Technical Reports Series. Vienna: IAEA, 2000, vol. 398, iAEA TRS-398. | spa |
dc.relation.references | O. M. Physics, “Ionization chamber design and operation - farmer chamber,” 2025, accessed: 2025-03-29. [Online]. Available: https://oncologymedicalphysics.com/ ionization-chamber-design-and-operation/ | spa |
dc.relation.references | S. Méndez Gutiérrez, “Práctica 1: Dosimetría con película radiocrómica,” 2023, dis- ponible en: https://www.academia.edu/103415663/Practica_1_Dosimetría_con_ película_radiocrómica. | spa |
dc.relation.references | S. Devic, J. Seuntjens, G. Hegyi, E. B. Podgorsak, and et al., “Precise radiochromic film dosimetry using a flat-bed document scanner,” Medical Physics, vol. 32, no. 7, pp. 2245–2253, 2005. | spa |
dc.relation.references | Sun Nuclear Corporation, “Arccheck,” 2024, accedido en mayo de 2025. [Online]. Available: https://www.sunnuclear.com/products/arccheck | spa |
dc.relation.references | M. Miften, A. Olch, D. Mihailidis, J. M. Moran, T. Pawlicki, P. McDermott et al., “To- lerance limits and methodologies for imrt measurement based verification qa: Re- commendations of aapm task group no. 218,” Medical Physics, vol. 45, no. 4, pp. e53–e83, 2018. | spa |
dc.relation.references | International Atomic Energy Agency, “Clinical treatment planning in external photon beam radiotherapy,” 2005, accessed: 2025-04-19. [Online]. Available: https://international.anl.gov/training/materials/IAEA%20Publications/Radiation% 20Oncology%20Physics%20Handbook/Radiation%20Oncology%20Physics%20-% 20Slides%20-%20pdf/Chapter_07_Treatment_planning.pdf | spa |
dc.relation.references | F. Gaillard, “Hounsfield unit,” https://radiopaedia.org/articles/hounsfield-unit, 2023, accedido el 5 de mayo de 2025. | spa |
dc.relation.references | J. Crawford, T. A. Lalli, and D. S. A. Majid, “Computed tomography (ct) scan,” https: //www.ncbi.nlm.nih.gov/books/NBK470460/, 2023, en: StatPearls [Internet]. Trea- sure Island (FL): StatPearls Publishing; 2023. Accedido el 5 de mayo de 2025. | spa |
dc.relation.references | J. T. Bushberg, J. A. Seibert, E. M. Leidholdt, and J. A. Boone, The Essential Physics of Medical Imaging, 3rd ed. Lippincott Williams Wilkins, 2011. | spa |
dc.relation.references | Radiopaedia contributors, “Hounsfield scale diagram,” https://radiopaedia.org/ cases/hounsfield-scale-diagram, 2024, accessed: 2025-04-19. [Online]. Available: https://radiopaedia.org/cases/hounsfield-scale-diagram | spa |
dc.relation.references | International Atomic Energy Agency, Commissioning and Quality Assurance of Compute- rized Planning Systems for Radiation Treatment of Cancer, ser. Technical Reports Series No. 430. Vienna: IAEA, 2004, available from the International Atomic Energy Agency. | spa |
dc.relation.references | M. Bazalova, J.-F. Carrier, L. Beaulieu, and F. Verhaegen, “Dual-energy ct-based ma- terial extraction for tissue segmentation in monte carlo dose calculations,” Physics in Medicine & Biology, vol. 53, no. 9, p. 2439, 2008. | spa |
dc.relation.references | OncoLink, “Radiation therapy treatment process,” 2024, accessed: 2025-04- 19. [Online]. Available: https://www.oncolink.org/cancer-treatment/radiation/ introduction-to-radiation-therapy/radiation-therapy-treatment-process | spa |
dc.relation.references | F. Verhaegen and J. Seuntjens, “Monte carlo techniques in radiotherapy dose calcu- lation,” Physics in medicine and biology, vol. 48, no. 21, p. R107, 2003. | spa |
dc.relation.references | A. e. a. Fogliata, “Evaluation of the monaco treatment planning system for imrt plan- ning,” Radiation Oncology, vol. 6, no. 1, pp. 1–10, 2011. | spa |
dc.relation.references | E. P. Pappas, P. Mavroidis, and J. Damilakis, “Dosimetric evaluation of monaco treatment planning system using monte carlo algorithm for intensity-modulated ra- diotherapy and volumetric-modulated arc therapy in head and neck cancer,” Medical Physics, vol. 46, no. 3, pp. 1304–1314, 2019. | spa |
dc.relation.references | Eclipse | varian,” accessed: 2025-05-10. [Online]. Available: https://www.varian. com/products/radiotherapy/treatment-planning/eclipse | spa |
dc.relation.references | “Eclipse photon and electron algorithms reference guide,” accessed: 2025- 05-10. [Online]. Available: https://jpneylon.github.io/ABR/PDFs/Add_052418/ EclipseAlgorithms13.6_RefGuide.pdf | spa |
dc.relation.references | E. Spezi, A. Ferri, and C. Rowbottom, “Evaluation of the impact of couch top on image quality and dose calculation in radiotherapy,” Physica Medica, vol. 27, no. 2, pp. 91–96, 2011. | spa |
dc.relation.references | V. M. Systems, “Exact igrt couch for varian linear accelerators,” 2020, product specification sheet. [Online]. Available: https://www.varian.com | spa |
dc.relation.references | E. AB, “Elekta hexapod evo rt system: User manual,” 2018, product manual. [Online]. Available: https://www.elekta.com | spa |
dc.relation.references | E. e. a. Georgiou, “Evaluation of hexapod evo rt six-degrees-of-freedom couch: Per- formance tests and dosimetric impact,” Journal of Applied Clinical Medical Physics, vol. 16, no. 1, pp. 258–270, 2015. | spa |
dc.relation.references | “Elekta versa hd” https://www.elekta.com/products/radiation-therapy/ versa-hd/assets/versa-hd-brochure.pdf, accedido el 11 de mayo de 2025. | spa |
dc.relation.references | G. Alexiou, A. Papadakis, and A. Dimitriadis, “Evaluation of couch modeling and do- simetric effect in monaco tps using monte carlo algorithm,” Journal of Applied Clinical Medical Physics, vol. 22, no. 10, pp. 245–255, 2021. | spa |
dc.relation.references | J. S. e. a. Li, “Modeling of treatment couch and its impact on dose distribution,” Medical Physics, vol. 33, no. 10, pp. 3615–3620, 2006. | spa |
dc.relation.references | “Dosimetric effects caused by couch tops and immobilization devices,” accessed: 2025-05-10. [Online]. Available: https://international.anl.gov/Training/materials/ AX/Publications/AAPM%20RPT_176%20-Dosimetric%20effects%20caused% 20by%20couch%20tops%20and%20immobilization%20devices.pdf | spa |
dc.relation.references | T. Bortfeld, “Intensity-modulated radiotherapy: current status and issues of inter- est,” International Journal of Radiation Oncology* Biology* Physics, vol. 64, no. 2, pp. S9–S15, 2006. | spa |
dc.relation.references | K. Otto, “Volumetric modulated arc therapy: Imrt in a single gantry arc,” Medical Physics, vol. 35, no. 1, pp. 310–317, 2008. | spa |
dc.relation.references | L. e. a. Cozzi, “Comparison of imrt and vmat treatment plans for prostate cancer pa- tients using different treatment planning systems,” Radiation Oncology, vol. 6, no. 1, pp. 1–9, 2011. | spa |
dc.relation.references | J. Seco and F. Verhaegen, “Monte carlo dose calculation in radiotherapy: review and clinical implications,” Physics in Medicine and Biology, vol. 60, no. 10, pp. R151–R209, 2015. | spa |
dc.relation.references | O. N. Vassiliev, T. A. Wareing, J. McGhee, G. Failla, M. Salehpour, and F. Mourtada, “Validation of the acuros xb dose calculation algorithm for photon beams in hete- rogeneous media,” Medical Physics, vol. 37, no. 1, pp. 136–146, 2010. | spa |
dc.relation.references | S. M. Bentzen, L. S. Constine, J. O. Deasy, A. Eisbruch, A. Jackson, L. B. Marks, R. K. Ten Haken, and E. D. Yorke, “Quantitative analyses of normal tissue effects in the clinic (quantec): a review of radiation dose–volume effects on normal tissues,” In- ternational Journal of Radiation Oncology* Biology* Physics, vol. 76, no. 3, pp. S1–S160, 2010. | spa |
dc.relation.references | Elekta AB, Elekta Versa HD: Product Overview, 2023, disponible en: https://www. elekta.com. | spa |
dc.relation.references | T. e. a. Krusenstjerna-Hafström, “Commissioning and performance evaluation of the elekta versa hd linear accelerator,” Journal of Applied Clinical Medical Physics, vol. 16, no. 4, pp. 111–127, 2015. | spa |
dc.relation.references | Elekta AB, Hexapod Evo RT System - User Manual, 2022, documento técnico del siste- ma de posicionamiento Hexapod Evo. | spa |
dc.relation.references | C. Inc., “Model 002lfc: Female thorax phantom - betty,” https://www.cirsinc.com/ products/all/002lfc-female-thorax-phantom-betty/, consultado en mayo de 2025 | spa |
dc.relation.references | A. Gaya, J. P. Wylie, M. Lee, L. Wilson, S. Green, T. Jones, and R. Mukherjee, “Car- diac dose reduction with deep inspiration breath hold techniques in breast cancer radiotherapy: a systematic review,” Radiotherapy and Oncology, vol. 114, no. 3, pp. 323–329, 2015. | spa |
dc.relation.references | M. Miften, A. Olch, D. Mihailidis, J. M. Moran, T. Pawlicki, P. McDermott, P. Xia, J. Li, A. Bergman, R. Carmona, L. Court, J. Dempsey, G. Ezzell, E. Ford, R. Howell, M. S. Huq, E. Klein, V. Moiseenko, J. Palta, and N. Papanikolaou, “Tqa guidelines for imrt and vmat: Report of the aapm task group 218,” Medical Physics, vol. 45, no. 4, pp. e53–e83, 2018. | spa |
dc.relation.references | B. E. Nelms, H. Zhen, and W. A. Tome, “Per-beam, planar imrt qa passing rates do not predict clinically relevant patient dose errors,” Medical Physics, vol. 38, no. 2, pp. 1037–1044, 2011. | spa |
dc.relation.references | P. R. Almond, P. J. Biggs, B. M. Coursey, W. F. Hanson, M. S. Huq, R. Nath, and D. W. O. Rogers, “Aapm’s tg-51 protocol for clinical reference dosimetry of high- energy photon and electron beams,” Medical Physics, vol. 26, no. 9, pp. 1847–1870, 1999. | spa |
dc.relation.references | P. R. Almond, P. J. Biggs, B. M. Coursey, W. F. Hanson, M. S. Huq, R. Nath, and D. W. O. Rogers, “Aapm’s tg-51 protocol for clinical reference dosimetry of high- energy photon and electron beams,” Medical Physics, vol. 26, no. 9, pp. 1847–1870, 1999. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Reconocimiento 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | spa |
dc.subject.decs | Tomografía | spa |
dc.subject.decs | Tomography | eng |
dc.subject.decs | Radiación Ionizante | spa |
dc.subject.decs | Radiation, Ionizing | eng |
dc.subject.decs | Riesgos por Radiación | spa |
dc.subject.decs | Radiation Risks | eng |
dc.subject.decs | Errores de Configuración en Radioterapia | spa |
dc.subject.decs | Radiotherapy Setup Errors | eng |
dc.subject.decs | Fraccionamiento de la Dosis de Radiación | spa |
dc.subject.decs | Dose Fractionation, Radiation | eng |
dc.subject.decs | Radioterapia | spa |
dc.subject.decs | Radiotherapy | eng |
dc.subject.proposal | Radioterapia | spa |
dc.subject.proposal | Modelado de camilla | spa |
dc.subject.proposal | TPS Monaco | spa |
dc.subject.proposal | Películas radiocrómicas | spa |
dc.subject.proposal | Cámara de ionización | spa |
dc.subject.proposal | ArcCheck | spa |
dc.subject.proposal | Radiotherapy | eng |
dc.subject.proposal | Ccouch modeling | eng |
dc.subject.proposal | TPS Monaco | eng |
dc.subject.proposal | Radiochromic film | eng |
dc.subject.proposal | Ionization chamber | eng |
dc.subject.proposal | ArcCheck | eng |
dc.title | Análisis dosimétrico del efecto de la configuración de la estructura de camilla en el cálculo de dosis absorbida en radioterapia | spa |
dc.title.translated | Dosimetric analysis of the effect of couch structure configuration on absorbed dose calculation in radiotherapy | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_b1a7d7d4d402bcce | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/draft | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_14cb | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1013678038.2025.pdf
- Tamaño:
- 11.49 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Física Médica
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: