Análisis dosimétrico del efecto de la configuración de la estructura de camilla en el cálculo de dosis absorbida en radioterapia

dc.contributor.advisorSimbaqueba Ariza, Axel Dannyspa
dc.contributor.advisorPlazas de Pinzón, María Cristinaspa
dc.contributor.authorGonzález Niño, Juan Manuelspa
dc.date.accessioned2025-07-10T16:39:03Z
dc.date.available2025-07-10T16:39:03Z
dc.date.issued2025
dc.descriptionilustraciones a color, diagramas, fotografíasspa
dc.description.abstractLa presente investigación evalúa el impacto dosimétrico de distintas representaciones de la camilla de tratamiento en el sistema de planificación Monaco, mediante un enfoque integral que combina mediciones experimentales y simulaciones clínicas. Se compararon cuatro metodologías de modelado: aire (HUaire), agua (HUagua), valor teórico para fibra de carbono (HUteórico) y valor experimental obtenido por escaneo CT de un extensor de camilla (HUexp). La primera fase incluyó mediciones puntuales con cámara de ionización, utilizadas para evidenciar la variación en la dosis absorbida a diferentes profundidades al modificar la representación de la camilla. Posteriormente, se obtuvieron perfiles de dosis a profundidad mediante películas radiocrómicas EBT3 en un fantoma de PMMA, evaluando el desplazamiento del Dmax y las diferencias de dosis respecto al modelo experimental. Finalmente, se realizaron 16 planes clínicos (IMRT y VMAT; 6 MV y 15 MV) sobre un fantoma antropomórfico, analizando métricas clínicas (Dmax, Dmedia, D2, V95) en sitio objetivo y órganos a riesgo y validando la entrega de dosis mediante ArcCheck. Los resultados evidencian que HUexp proporciona la mejor concordancia dosimétrica, con errores inferiores al 2 % en todas las configuraciones evaluadas. HUteórico mostró un desempeño aceptable, pero con variabilidad dependiente del ángulo de incidencia. En contraste, HUaire y HUagua generaron errores clínicamente relevantes, incluyendo desplazamientos del Dmax y sobreestimaciones de dosis de hasta 25 % en mediciones puntuales y más del 9 % en planes clínicos. Se concluye que la representación precisa de la camilla es esencial para una planificación dosimétrica confiable, especialmente en condiciones geométricas complejas. HUexp se propone como referencia para la comisión de sistemas de planificación que incorporen estructuras físicas como la camilla, contribuyendo a reducir incertidumbres sistemáticas y a mejorar la calidad en la entrega de dosis (Texto tomado de la fuente).spa
dc.description.abstractThis research evaluates the dosimetric impact of different representations of the treatment couch in the Monaco treatment planning system, using a comprehensive approach that combines experimental measurements and clinical simulations. Four modeling methodologies were compared: air (HUair), water (HUwater), theoretical value for carbon fiber (HUtheoretical), and experimental value obtained through CT scanning of a couch extender (HUexp). The first phase included point measurements with an ionization chamber, used to demonstrate variations in absorbed dose at different depths depending on the couch representation. Subsequently, depth dose profiles were obtained using EBT3 radiochromic films in a PMMA phantom, assessing the displacement of Dmax and dose differences compared to the experimental model. Finally, 16 clinical plans (IMRT and VMAT; 6 MV and 15 MV) were created on an anthropomorphic phantom, analyzing clinical metrics (Dmax, Dmean, D2, V95) in the target and organs at risk, and validating dose delivery using ArcCheck. The results show that HUexp provides the best dosimetric agreement, with errors below 2% across all evaluated configurations. HUtheoretical showed acceptable performance but with angle-dependent variability. In contrast, HUair and HUwater produced clinically significant errors, including Dmax displacements and dose overestimations of up to 25% in point measurements and over 9% in clinical plans. It is concluded that accurate representation of the couch is essential for reliable dosimetric planning, especially under complex geometric conditions. HUexp is proposed as a reference for commissioning treatment planning systems that include physical structures such as the couch, contributing to the reduction of systematic uncertainties and improving dose delivery quality.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Física Médicaspa
dc.format.extent80 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88322
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Física Médicaspa
dc.relation.referencesC. G. de Radioterapia, “Simulación en radioterapia,” 2021, Último acceso: 5 de febrero de 2025. [Online]. Available: https://www.cog.es/wp-content/uploads/ 2021/08/Simulacion_Radioterapia_COG.pdfspa
dc.relation.referencesG. Delaney, S. Jacob, C. Featherstone, and M. Barton, “The role of radiotherapy in cancer treatment: estimating optimal utilization from a review of evidence-based clinical guidelines,” Cancer, vol. 104, no. 6, pp. 1129–1137, 2005.spa
dc.relation.referencesA. Varios, “Influencia de la camilla en el cálculo de tratamientos de radioterapia,” 1Library, 2020, Último acceso: 5 de febrero de 2025. [Online]. Available: https://1library.co/article/influencia-camilla-calculo-tratamientos.qvl0g0mrspa
dc.relation.referencescademia.edu, “Práctica 1: Dosimetría con película radiocrómica,” 2023, Último acceso: 5 de febrero de 2025. [Online]. Availa- ble: https://www.academia.edu/103415663/Practica_1_Dosimetr%C3%ADa_con_ pel%C3%ADcula_radiocr%C3%B3micaspa
dc.relation.referencesA. V. SLD, “Sistemas de medida y dosimetría de radioterapia,” 2021, Último acceso: 5 de febrero de 2025. [Online]. Available: https: //aulavirtual.sld.cu/pluginfile.php/65954/mod_resource/content/0/SISTEMAS% 20DE%20MEDIDA%20Y%20DOSIMETR%C3%8DA%20DE%20RADIOTERAPIA.pdfspa
dc.relation.referencesS. A. de Radioterapia, “Verificación de planes de tratamiento con arccheck y 3dvh,” 2017, Último acceso: 5 de febrero de 2025. [Online]. Available: https://www.sarh.es/files/Jornada%20Verificacion%202017/ArcCheck-3DVH.pdfspa
dc.relation.referencesA. de la Cruz, J. Saez, and I. Martínez-Rovira, “Carbon-fiber treatment couch mode- ling for radiotherapy dose calculation: a systematic review,” Radiotherapy and Onco- logy, vol. 147, pp. 19–29, 2020.spa
dc.relation.referencesL. Wang, C. Ma, L. Wang, and H. Zhang, “Dose attenuation effects of a carbon fi- ber couch and immobilization devices in imrt and vmat,” Journal of Applied Clinical Medical Physics, vol. 13, no. 4, p. 3856, 2012.spa
dc.relation.referencesJ. M. Boone, “Hounsfield units and ct attenuation coefficients,” Radiology, vol. 221, no. 2, pp. 632–633, 2001.spa
dc.relation.referencesI. A. E. Agency, Absorbed Dose Determination in External Beam Radiotherapy: An Interna- tional Code of Practice for Dosimetry Based on Standards of Absorbed Dose to Water, ser. Technical Reports Series No. 398. IAEA, 2006.spa
dc.relation.referencesJ. e. a. Johnson, “Commissioning of carbon fiber treatment couch modeling in a commercial treatment planning system,” Journal of Applied Clinical Medical Physics, vol. 15, no. 1, pp. 228–237, 2014.spa
dc.relation.referencesB. Poppe, T. Stelljes, and H. e. a. Looe, “Dose perturbation caused by couch inserts in photon treatment beams: a multi-institutional study,” Medical Physics, vol. 34, no. 6, pp. 2234–2240, 2007.spa
dc.relation.referencesE. Spezi, A. Ferri, and C. W. Smith, “Modelling of the varian generic treatment couch for monte carlo dose calculations,” Physics in Medicine & Biology, vol. 53, no. 13, p. N257, 2008.spa
dc.relation.referencesJ. C. Chow and G. N. Grigorov, “The effect of carbon fiber couch on 6 mv photon beam attenuation,” Medical Dosimetry, vol. 30, no. 3, pp. 179–183, 2005.spa
dc.relation.referencesI. B. Mihaylov and E. G. Moros, “Dosimetric impact of carbon fiber couch on imrt planning,” Medical Dosimetry, vol. 33, no. 2, pp. 110–116, 2008.spa
dc.relation.referencesW. Smith, P. Baldwin, V. Batumalai, L. Holloway, G. Delaney, and M. Kapanen, “Cha- racterization of the dosimetric impact of the ibeam evo carbon fiber couch in ra- diotherapy treatments,” Medical Physics, vol. 37, no. 8, pp. 4022–4029, 2010.spa
dc.relation.referencesH. Li, M. Rodriguez, C. Liu, L. Wang, and Q. J. Wu, “Characterization of the dosime- tric impact of treatment couch and immobilization devices in intensity-modulated radiotherapy,” Medical Dosimetry, vol. 39, no. 4, pp. 330–336, 2014.spa
dc.relation.referencesX. Zhang, H. Wu, F.-F. Yin, S. Chang, and L. Ren, “Effect of couch top on radiation delivery and modeling in monaco tps,” in Medical Physics, vol. 46, no. 6, 2019, p. e545, presented at AAPM Annual Meeting. [Online]. Available: https://aapm.org/meetings/2019AMspa
dc.relation.referencesA. Almahwasi, “Does hadron therapy offer enough effectiveness in treating cancer to be worth the cost?” 2011.spa
dc.relation.referencesE. B. Podgorsak, Radiation Oncology Physics: A Handbook for Teachers and Students. Vienna: International Atomic Energy Agency, 2005. [Online]. Available: https://www.iaea.org/publications/7004/ radiation-oncology-physics-a-handbook-for-teachers-and-studentsspa
dc.relation.referencesK. S. Krane, Introductory Nuclear Physics. New York: John Wiley & Sons, 1991.spa
dc.relation.referencesF. H. Attix, Introduction to Radiological Physics and Radiation Dosimetry. New York: Wiley-VCH, 2004.spa
dc.relation.referencesE. B. Podgorsak, Radiation Oncology Physics: A Handbook for Teachers and Students. Vienna: International Atomic Energy Agency, 2005.spa
dc.relation.references. M. Khan and J. P. Gibbons, Khan’s the Physics of Radiation Therapy, 6th ed. Phila- delphia: Lippincott Williams & Wilkins, 2020.spa
dc.relation.referencesN. C. on Radiation Protection and Measurements, “Average energy required to pro- duce an ion pair,” NCRP Report, Bethesda, MD, Tech. Rep. 58, 1985.spa
dc.relation.referencesG. F. Knoll, Radiation Detection and Measurement, 4th ed. Hoboken, NJ: John Wiley & Sons, 2010.spa
dc.relation.referencesM. Oehrnberg, S. Bäck, and T. Knöös, “Gafchromic film dosimetry in high-energy photon beams: energy dependence and improved uncertainty estimation,” Journal of Applied Clinical Medical Physics, vol. 21, no. 6, pp. 153–162, 2020.spa
dc.relation.referencesInternational Atomic Energy Agency, Dosimetry for Radiotherapy: Physical Aspects, Code of Practice for Dosimetry Based on Standards of Absorbed Dose to Water, ser. Technical Reports Series. Vienna: IAEA, 2000, vol. 398, iAEA TRS-398.spa
dc.relation.referencesO. M. Physics, “Ionization chamber design and operation - farmer chamber,” 2025, accessed: 2025-03-29. [Online]. Available: https://oncologymedicalphysics.com/ ionization-chamber-design-and-operation/spa
dc.relation.referencesS. Méndez Gutiérrez, “Práctica 1: Dosimetría con película radiocrómica,” 2023, dis- ponible en: https://www.academia.edu/103415663/Practica_1_Dosimetría_con_ película_radiocrómica.spa
dc.relation.referencesS. Devic, J. Seuntjens, G. Hegyi, E. B. Podgorsak, and et al., “Precise radiochromic film dosimetry using a flat-bed document scanner,” Medical Physics, vol. 32, no. 7, pp. 2245–2253, 2005.spa
dc.relation.referencesSun Nuclear Corporation, “Arccheck,” 2024, accedido en mayo de 2025. [Online]. Available: https://www.sunnuclear.com/products/arccheckspa
dc.relation.referencesM. Miften, A. Olch, D. Mihailidis, J. M. Moran, T. Pawlicki, P. McDermott et al., “To- lerance limits and methodologies for imrt measurement based verification qa: Re- commendations of aapm task group no. 218,” Medical Physics, vol. 45, no. 4, pp. e53–e83, 2018.spa
dc.relation.referencesInternational Atomic Energy Agency, “Clinical treatment planning in external photon beam radiotherapy,” 2005, accessed: 2025-04-19. [Online]. Available: https://international.anl.gov/training/materials/IAEA%20Publications/Radiation% 20Oncology%20Physics%20Handbook/Radiation%20Oncology%20Physics%20-% 20Slides%20-%20pdf/Chapter_07_Treatment_planning.pdfspa
dc.relation.referencesF. Gaillard, “Hounsfield unit,” https://radiopaedia.org/articles/hounsfield-unit, 2023, accedido el 5 de mayo de 2025.spa
dc.relation.referencesJ. Crawford, T. A. Lalli, and D. S. A. Majid, “Computed tomography (ct) scan,” https: //www.ncbi.nlm.nih.gov/books/NBK470460/, 2023, en: StatPearls [Internet]. Trea- sure Island (FL): StatPearls Publishing; 2023. Accedido el 5 de mayo de 2025.spa
dc.relation.referencesJ. T. Bushberg, J. A. Seibert, E. M. Leidholdt, and J. A. Boone, The Essential Physics of Medical Imaging, 3rd ed. Lippincott Williams Wilkins, 2011.spa
dc.relation.referencesRadiopaedia contributors, “Hounsfield scale diagram,” https://radiopaedia.org/ cases/hounsfield-scale-diagram, 2024, accessed: 2025-04-19. [Online]. Available: https://radiopaedia.org/cases/hounsfield-scale-diagramspa
dc.relation.referencesInternational Atomic Energy Agency, Commissioning and Quality Assurance of Compute- rized Planning Systems for Radiation Treatment of Cancer, ser. Technical Reports Series No. 430. Vienna: IAEA, 2004, available from the International Atomic Energy Agency.spa
dc.relation.referencesM. Bazalova, J.-F. Carrier, L. Beaulieu, and F. Verhaegen, “Dual-energy ct-based ma- terial extraction for tissue segmentation in monte carlo dose calculations,” Physics in Medicine & Biology, vol. 53, no. 9, p. 2439, 2008.spa
dc.relation.referencesOncoLink, “Radiation therapy treatment process,” 2024, accessed: 2025-04- 19. [Online]. Available: https://www.oncolink.org/cancer-treatment/radiation/ introduction-to-radiation-therapy/radiation-therapy-treatment-processspa
dc.relation.referencesF. Verhaegen and J. Seuntjens, “Monte carlo techniques in radiotherapy dose calcu- lation,” Physics in medicine and biology, vol. 48, no. 21, p. R107, 2003.spa
dc.relation.referencesA. e. a. Fogliata, “Evaluation of the monaco treatment planning system for imrt plan- ning,” Radiation Oncology, vol. 6, no. 1, pp. 1–10, 2011.spa
dc.relation.referencesE. P. Pappas, P. Mavroidis, and J. Damilakis, “Dosimetric evaluation of monaco treatment planning system using monte carlo algorithm for intensity-modulated ra- diotherapy and volumetric-modulated arc therapy in head and neck cancer,” Medical Physics, vol. 46, no. 3, pp. 1304–1314, 2019.spa
dc.relation.referencesEclipse | varian,” accessed: 2025-05-10. [Online]. Available: https://www.varian. com/products/radiotherapy/treatment-planning/eclipsespa
dc.relation.references“Eclipse photon and electron algorithms reference guide,” accessed: 2025- 05-10. [Online]. Available: https://jpneylon.github.io/ABR/PDFs/Add_052418/ EclipseAlgorithms13.6_RefGuide.pdfspa
dc.relation.referencesE. Spezi, A. Ferri, and C. Rowbottom, “Evaluation of the impact of couch top on image quality and dose calculation in radiotherapy,” Physica Medica, vol. 27, no. 2, pp. 91–96, 2011.spa
dc.relation.referencesV. M. Systems, “Exact igrt couch for varian linear accelerators,” 2020, product specification sheet. [Online]. Available: https://www.varian.comspa
dc.relation.referencesE. AB, “Elekta hexapod evo rt system: User manual,” 2018, product manual. [Online]. Available: https://www.elekta.comspa
dc.relation.referencesE. e. a. Georgiou, “Evaluation of hexapod evo rt six-degrees-of-freedom couch: Per- formance tests and dosimetric impact,” Journal of Applied Clinical Medical Physics, vol. 16, no. 1, pp. 258–270, 2015.spa
dc.relation.references“Elekta versa hd” https://www.elekta.com/products/radiation-therapy/ versa-hd/assets/versa-hd-brochure.pdf, accedido el 11 de mayo de 2025.spa
dc.relation.referencesG. Alexiou, A. Papadakis, and A. Dimitriadis, “Evaluation of couch modeling and do- simetric effect in monaco tps using monte carlo algorithm,” Journal of Applied Clinical Medical Physics, vol. 22, no. 10, pp. 245–255, 2021.spa
dc.relation.referencesJ. S. e. a. Li, “Modeling of treatment couch and its impact on dose distribution,” Medical Physics, vol. 33, no. 10, pp. 3615–3620, 2006.spa
dc.relation.references“Dosimetric effects caused by couch tops and immobilization devices,” accessed: 2025-05-10. [Online]. Available: https://international.anl.gov/Training/materials/ AX/Publications/AAPM%20RPT_176%20-Dosimetric%20effects%20caused% 20by%20couch%20tops%20and%20immobilization%20devices.pdfspa
dc.relation.referencesT. Bortfeld, “Intensity-modulated radiotherapy: current status and issues of inter- est,” International Journal of Radiation Oncology* Biology* Physics, vol. 64, no. 2, pp. S9–S15, 2006.spa
dc.relation.referencesK. Otto, “Volumetric modulated arc therapy: Imrt in a single gantry arc,” Medical Physics, vol. 35, no. 1, pp. 310–317, 2008.spa
dc.relation.referencesL. e. a. Cozzi, “Comparison of imrt and vmat treatment plans for prostate cancer pa- tients using different treatment planning systems,” Radiation Oncology, vol. 6, no. 1, pp. 1–9, 2011.spa
dc.relation.referencesJ. Seco and F. Verhaegen, “Monte carlo dose calculation in radiotherapy: review and clinical implications,” Physics in Medicine and Biology, vol. 60, no. 10, pp. R151–R209, 2015.spa
dc.relation.referencesO. N. Vassiliev, T. A. Wareing, J. McGhee, G. Failla, M. Salehpour, and F. Mourtada, “Validation of the acuros xb dose calculation algorithm for photon beams in hete- rogeneous media,” Medical Physics, vol. 37, no. 1, pp. 136–146, 2010.spa
dc.relation.referencesS. M. Bentzen, L. S. Constine, J. O. Deasy, A. Eisbruch, A. Jackson, L. B. Marks, R. K. Ten Haken, and E. D. Yorke, “Quantitative analyses of normal tissue effects in the clinic (quantec): a review of radiation dose–volume effects on normal tissues,” In- ternational Journal of Radiation Oncology* Biology* Physics, vol. 76, no. 3, pp. S1–S160, 2010.spa
dc.relation.referencesElekta AB, Elekta Versa HD: Product Overview, 2023, disponible en: https://www. elekta.com.spa
dc.relation.referencesT. e. a. Krusenstjerna-Hafström, “Commissioning and performance evaluation of the elekta versa hd linear accelerator,” Journal of Applied Clinical Medical Physics, vol. 16, no. 4, pp. 111–127, 2015.spa
dc.relation.referencesElekta AB, Hexapod Evo RT System - User Manual, 2022, documento técnico del siste- ma de posicionamiento Hexapod Evo.spa
dc.relation.referencesC. Inc., “Model 002lfc: Female thorax phantom - betty,” https://www.cirsinc.com/ products/all/002lfc-female-thorax-phantom-betty/, consultado en mayo de 2025spa
dc.relation.referencesA. Gaya, J. P. Wylie, M. Lee, L. Wilson, S. Green, T. Jones, and R. Mukherjee, “Car- diac dose reduction with deep inspiration breath hold techniques in breast cancer radiotherapy: a systematic review,” Radiotherapy and Oncology, vol. 114, no. 3, pp. 323–329, 2015.spa
dc.relation.referencesM. Miften, A. Olch, D. Mihailidis, J. M. Moran, T. Pawlicki, P. McDermott, P. Xia, J. Li, A. Bergman, R. Carmona, L. Court, J. Dempsey, G. Ezzell, E. Ford, R. Howell, M. S. Huq, E. Klein, V. Moiseenko, J. Palta, and N. Papanikolaou, “Tqa guidelines for imrt and vmat: Report of the aapm task group 218,” Medical Physics, vol. 45, no. 4, pp. e53–e83, 2018.spa
dc.relation.referencesB. E. Nelms, H. Zhen, and W. A. Tome, “Per-beam, planar imrt qa passing rates do not predict clinically relevant patient dose errors,” Medical Physics, vol. 38, no. 2, pp. 1037–1044, 2011.spa
dc.relation.referencesP. R. Almond, P. J. Biggs, B. M. Coursey, W. F. Hanson, M. S. Huq, R. Nath, and D. W. O. Rogers, “Aapm’s tg-51 protocol for clinical reference dosimetry of high- energy photon and electron beams,” Medical Physics, vol. 26, no. 9, pp. 1847–1870, 1999.spa
dc.relation.referencesP. R. Almond, P. J. Biggs, B. M. Coursey, W. F. Hanson, M. S. Huq, R. Nath, and D. W. O. Rogers, “Aapm’s tg-51 protocol for clinical reference dosimetry of high- energy photon and electron beams,” Medical Physics, vol. 26, no. 9, pp. 1847–1870, 1999.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.decsTomografíaspa
dc.subject.decsTomographyeng
dc.subject.decsRadiación Ionizantespa
dc.subject.decsRadiation, Ionizingeng
dc.subject.decsRiesgos por Radiaciónspa
dc.subject.decsRadiation Riskseng
dc.subject.decsErrores de Configuración en Radioterapiaspa
dc.subject.decsRadiotherapy Setup Errorseng
dc.subject.decsFraccionamiento de la Dosis de Radiaciónspa
dc.subject.decsDose Fractionation, Radiationeng
dc.subject.decsRadioterapiaspa
dc.subject.decsRadiotherapyeng
dc.subject.proposalRadioterapiaspa
dc.subject.proposalModelado de camillaspa
dc.subject.proposalTPS Monacospa
dc.subject.proposalPelículas radiocrómicasspa
dc.subject.proposalCámara de ionizaciónspa
dc.subject.proposalArcCheckspa
dc.subject.proposalRadiotherapyeng
dc.subject.proposalCcouch modelingeng
dc.subject.proposalTPS Monacoeng
dc.subject.proposalRadiochromic filmeng
dc.subject.proposalIonization chambereng
dc.subject.proposalArcCheckeng
dc.titleAnálisis dosimétrico del efecto de la configuración de la estructura de camilla en el cálculo de dosis absorbida en radioterapiaspa
dc.title.translatedDosimetric analysis of the effect of couch structure configuration on absorbed dose calculation in radiotherapyeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/draftspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_14cbspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1013678038.2025.pdf
Tamaño:
11.49 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Física Médica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: