Filogeografía comparativa de cuatro especies de reptiles escamados en el altiplano cundiboyacense, cordillera oriental de Colombia

dc.contributor.advisorVargas Ramírez, Mario
dc.contributor.authorMéndez Galeano, Miguel Ángel
dc.contributor.researchgroupBiodiversidad y Conservación Genéticaspa
dc.date.accessioned2022-08-31T19:02:35Z
dc.date.available2022-08-31T19:02:35Z
dc.date.issued2021
dc.descriptionilustraciones, fotografías, graficasspa
dc.description.abstractEn el estudio de la distribución geográfica de la estructura genética intraespecífica y de los procesos y mecanismos subyacentes, el enfoque comparativo permite encontrar congruencias entre especies codistribuidas, y de este modo probar diferentes hipótesis con mayor soporte o evidencia, encontrando factores comunes. Recientemente, se han empezado a realizar este tipo de estudios en la región tropical. Sin embargo, los estudios en altiplanos son escasos. En el presente trabajo, se caracterizaron los patrones filogeográficos de cuatro especies codistribuidas de reptiles escamados del altiplano cundiboyacense, en la cordillera oriental de Colombia, desde un enfoque comparativo, tanto a nivel espacial como temporal. Se realizaron reconstrucciones filogenéticas, redes de haplotipos y se definieron grupos genéticos con base tanto en algoritmos de delimitación de especies o linajes, como en métodos coalescentes y AMOVA. También se calcularon distancias, índices de diversidad genética y se aplicaron métodos de reloj molecular filogenéticos y coalescentes. Anadia bogotensis y Stenocercus trachycephalus comparten una misma estructura filogeográfica asociada a las unidades geográficas del altiplano cundiboyacense, mientras que Riama striata y Atractus crassicaudatus comparten un patrón diferente. A. bogotensis y R. striata presentan linajes del Mioceno-Plioceno, mientras que las otras especies presentan unidades demográficas del Pleistoceno. Se discute como las similitudes ecológicas y orografías complejas y conservadas propician patrones filogeográficos concordantes, incluso en tiempos geológicos diferentes, pero con procesos o eventos análogos. Esto por medio de un mecanismo atemporal común de diversificación de linajes o estructuración de poblaciones bajo ciertas hipótesis o sistemas de diversificación-dispersión en la herpetofauna del altiplano cundiboyacense. (Texto tomado de la fuente)spa
dc.description.abstractFor the study of geographical distribution of intraspecific genetic structure, and its subjacent processes and mechanisms, a comparative approach leads to find congruences between co-distributed species, and thus tests different hypothesis with best support or evidence, finding common factors. Recently, this kind of studies have started to be developed in the tropical region. However, studies focused on plateaus are scarce. In the present study, phylogeographic patterns were identified on four co-distributed species of squamate reptiles in the Cundiboyacense plateau, Eastern cordillera of Colombia, using a comparative approach; both spatially and temporally. Phylogenetic reconstructions and haplotype networks were performed and genetic groups were defined based on species or lineages delimitation algorithms, as well as coalescent methods and AMOVA. Also, genetic distances and genetic diversity indices were calculated and both phylogenetic and coalescent molecular clock methods were performed. Anadia bogotensis and Stenocercus trachycephalus share the same phylogeographical structure associated with geographic units of Cundiboyacense plateau, while Riama striata and Atractus crassicaudatus share a different pattern. Anadia bogotensis and R. striata showed lineages from Miocene-Pliocene, while for the other species Pleistocene demographic units were revealed. It is discussed how ecological similarities and conserve and complex orographies boost concordant phylogeographic patterns, even in different geological periods, but with analogous processes or events. This being possible through common atemporal mechanisms of lineage diversification or populational structuring under certain diversification-dispersion hypothesis or systems in the herpetofauna of the Cundiboyacense plateaueng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Biologíaspa
dc.description.researchareaFilogeografía, sistemática molecular, genética de poblacionesspa
dc.format.extentxv, 102 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82224
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Biologíaspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Biologíaspa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAraujo-Carrillo, G. A., Varón-Ramírez, V. M., Jaramillo-Barrios, C. I., Estupiñan-Casallas, J. M., Silva-Arero, E. A., Gómez-Latorre, D. A., & Martínez-Maldonado, F. E. (2021). IRAKA: The first Colombian soil information system with digital soil mapping products. Catena, 196, 104940spa
dc.relation.referencesArbelaez-Cortes, E. (2012). Filogeografía comparada: conceptos, métodos y patrones generales en aves Neotropicales. Acta Biológica Colombiana, 17(1), 19-38spa
dc.relation.referencesArevalo, E., Davis, S. K., & Sites Jr, J. W. (1994). Mitochondrial DNA sequence divergence and phylogenetic relationships among eight chromosome races of the Sceloporus grammicus complex (Phrynosomatidae) in central Mexico. Systematic Biology, 43(3), 387-418spa
dc.relation.referencesArteaga, A., Pyron, R. A., Peñafiel, N., Romero-Barreto, P., Culebras, J., Bustamante, L., Yanez-Muñoz, M. H., & Guayasamin, J. M. (2016). Comparative phylogeography reveals cryptic diversity and repeated patterns of cladogenesis for amphibians and reptiles in northwestern Ecuador. PloS one, 11(4), e0151746spa
dc.relation.referencesAvise, J. C. (1995). Mitochondrial DNA polymorphism and a connection between genetics and demography of relevance to conservation. Conservation Biology, 9(3), 686-690spa
dc.relation.referencesAvise, J. C. (1998). The history and purview of phylogeography: a personal reflection. Molecular Ecology, 7(4), 371-379spa
dc.relation.referencesAvise, J. C. (2000). Phylogeography: the history and formation of species. Harvard university pressspa
dc.relation.referencesAvise, J. C. (2009). Phylogeography: retrospect and prospect. Journal of biogeography, 36(1), 3-15spa
dc.relation.referencesAvise, J. C., & Walker, D. E. (1998). Pleistocene phylogeographic effects on avian populations and the speciation process. Proceedings of the Royal Society of London. Series B: Biological Sciences, 265(1395), 457-463spa
dc.relation.referencesAvise, J. C., Arnold, J., Ball, R. M., Bermingham, E., Lamb, T., Neigel, J. E., Reeb, C. A. & Saunders, N. C. (1987). Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annual review of ecology and systematics, 18(1), 489-522spa
dc.relation.referencesAvise, J. C., Walker, D., & Johns, G. C. (1998). Speciation durations and Pleistocene effects on vertebrate phylogeography. Proceedings of the Royal Society of London. Series B: Biological Sciences, 265(1407), 1707-1712spa
dc.relation.referencesBarrow, L. N., Soto‐Centeno, J. A., Warwick, A. R., Lemmon, A. R., & Moriarty Lemmon, E. (2017). Evaluating hypotheses of expansion from refugia through comparative phylogeography of south‐eastern Coastal Plain amphibians. Journal of Biogeography, 44(12), 2692-2705spa
dc.relation.referencesBeaumont, M. A., & Panchal, M. (2008). On the validity of nested clade phylogeographical analysis. Molecular Ecology 17, 2563–2565spa
dc.relation.referencesBeaumont, M. A., Zhang, W., & Balding, D. J. (2002). Approximate Bayesian computation in population genetics. Genetics, 162(4), 2025-2035spa
dc.relation.referencesBeheregaray, L. B. (2008). Twenty years of phylogeography: the state of the field and the challenges for the Southern Hemisphere. Molecular Ecology, 17(17), 3754-3774spa
dc.relation.referencesBehling, H. (1998). Late Quaternary vegetational and climatic changes in Brazil. Review of palaeobotany and palynology, 99(2), 143-156spa
dc.relation.referencesBenavides, E., Baum, R., McClellan, D., & Sites, J. W. (2007). Molecular phylogenetics of the lizard genus Microlophus (Squamata: Tropiduridae): aligning and retrieving indel signal from nuclear introns. Systematic biology, 56(5), 776-797spa
dc.relation.referencesBrito, P. H., & Edwards, S. V. (2009). Multilocus phylogeography and phylogenetics using sequence-based markers. Genetica, 135(3), 439-455spa
dc.relation.referencesCalderón, M., Caicedo, J., Ines Hladki, A., Renjifo, J. & Urbina, N. 2017. Anadia bogotensis. In The IUCN Red List of Threatened Species 2017: e.T44578148A44578157. https://dx.doi.org/10.2305/IUCN.UK.2017-2.RLTS.T44578148A44578157.enspa
dc.relation.referencesCamargo, A., Sinervo, B., & Sites Jr, J. W. (2010). Lizards as model organisms for linking phylogeographic and speciation studies. Molecular Ecology, 19(16), 3250-3270spa
dc.relation.referencesCastaño-Mora, O.V, Hernández, E. & Cárdenas, G. (2000). Reptiles. En Colombia Diversidad Biótica III La región de vida paramuna. Bogotá D.C.spa
dc.relation.referencesCheng, L., Connor, T. R., Sirén, J., Aanensen, D. M., & Corander, J. (2013). Hierarchical and spatially explicit clustering of DNA sequences with BAPS software. Molecular biology and evolution, 30(5), 1224-1228spa
dc.relation.referencesClement, M., Posada, D. C. K. A., & Crandall, K. A. (2000). TCS: a computer program to estimate gene genealogies. Molecular ecology, 9(10), 1657-1659spa
dc.relation.referencesCrnobrnja-Isailovic, J. (2007). Cross-section of a refugium: genetic diversity of amphibian and reptile populations in the Balkans. In Phylogeography of southern European refugia (pp. 327-337). Springer, Dordrechtspa
dc.relation.referencesCsilléry, K., Blum, M. G., Gaggiotti, O. E., & François, O. (2010). Approximate Bayesian computation (ABC) in practice. Trends in ecology & evolution, 25(7), 410-418spa
dc.relation.referencesDa Silva, M. N. F., & Patton, J. L. (1998). Molecular phylogeography and the evolution and conservation of Amazonian mammals. Molecular Ecology, 7(4), 475-486spa
dc.relation.referencesDe Bermoudes, O., & Velandia, F. (2010). Hidrogeología regional de la Sabana de Bogotá. Universidad de Antioquia, Hidrogeología para la gestión del recurso Hídrico Ministerio de Ambiente, Vivienda y Desarrollo Territorial. Pp. 159-168spa
dc.relation.referencesDe Queiroz, K. (2007). Species concepts and species delimitation. Systematic biology, 56(6), 879-886spa
dc.relation.referencesDrummond A.J., Suchard M.A., Xie D., Rambaut A. 2012. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution 29: 1969–1973. doi:10.1093/molbev/mss075spa
dc.relation.referencesFlantua, S. G., Hooghiemstra, H., & Hoorn, C. (2018). Historical connectivity and mountain biodiversity. In Mountains, climate and biodiversity, 171-185spa
dc.relation.referencesFlantua, S. G., O'Dea, A., Onstein, R. E., Giraldo, C., & Hooghiemstra, H. (2019). The flickering connectivity system of the north Andean páramos. Journal of Biogeography, 46(8), 1808-1825spa
dc.relation.referencesGarcía-R, J. C., Crawford, A. J., Mendoza, Á. M., Ospina, O., Cardenas, H., & Castro, F. (2012). Comparative phylogeography of direct-developing frogs (Anura: Craugastoridae: Pristimantis) in the southern Andes of Colombia. PLoS One, 7(9), e46077spa
dc.relation.referencesGarrick, R. C., Hyseni, C., Arantes, Í. C., Zachos, L. G., Zee, P. C., & Oliver, J. C. (2021). Is Phylogeographic Congruence Predicted by Historical Habitat Stability, or Ecological Co-associations?. Insect Systematics and Diversity, 5(5), 1-7spa
dc.relation.referencesGehara, M., Garda, A. A., Werneck, F. P., Oliveira, E. F., da Fonseca, E. M., Camurugi, F., Magalhães, F. de M., Lanna, F. M., Sites Jr, J. W. Marques, R., Silveira-Filho, R., São Pedro, V. A., Colli, G. R., Costa, G. C., & Burbrink, F. T. (2017). Estimating synchronous demographic changes across populations using hABC and its application for a herpetological community from northeastern Brazil. Molecular Ecology, 26(18), 4756-4771spa
dc.relation.referencesGonzález, B. A., Vásquez, J. P., Gómez-Uchida, D., Cortés, J., Rivera, R., Aravena, N., Chero, A. M., Agapito, A. M., Varas, V, Wheeler, J. C., Orozco-terWengel, P., & Marín, J. C. (2019). Phylogeography and population genetics of Vicugna vicugna: Evolution in the arid Andean high plateau. Frontiers in genetics, 10, 445spa
dc.relation.referencesGrazziotin, F. G., Zaher, H., Murphy, R. W., Scrocchi, G., Benavides, M. A., Zhang, Y. P., & Bonatto, S. L. (2012). Molecular phylogeny of the new world Dipsadidae (Serpentes: Colubroidea): a reappraisal. Cladistics, 28(5), 437-459spa
dc.relation.referencesGreen, M. R., & Sambrook, J. (2017). Isolation of high-molecular-weight DNA using organic solvents. Cold Spring Harbor Protocols, 2017(4), pdb-prot093450spa
dc.relation.referencesGregory-Wodzicki, K. M. (2000). Uplift history of the Central and Northern Andes: a review. Geological Society of America Bulletin, 112(7), 1091-1105spa
dc.relation.referencesGuarnizo, C. E., Amézquita, A., & Bermingham, E. (2009). The relative roles of vicariance versus elevational gradients in the genetic differentiation of the high Andean tree frog, Dendropsophus labialis. Molecular Phylogenetics and Evolution, 50(1), 84-92spa
dc.relation.referencesGuarnizo, C. E., Escallón, C., Cannatella, D., & Amézquita, A. (2012). Congruence between acoustic traits and genealogical history reveals a new species of Dendropsophus (Anura: Hylidae) in the high Andes of Colombia. Herpetologica, 68(4), 523-540spa
dc.relation.referencesGuarnizo, C. E., Paz, A., Muñoz-Ortiz, A., Flechas, S. V., Méndez-Narváez, J., & Crawford, A. J. (2015). DNA barcoding survey of anurans across the Eastern Cordillera of Colombia and the impact of the Andes on cryptic diversity. PloS one, 10(5), e0127312spa
dc.relation.referencesGuicking, D., Joger, U., & Wink, M. (2009). Cryptic diversity in a Eurasian water snake (Natrix tessellata, Serpentes: Colubridae): Evidence from mitochondrial sequence data and nuclear ISSR-PCR fingerprinting. Organisms Diversity & Evolution, 9(3), 201-214spa
dc.relation.referencesHall, T. A. (1999, January). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. In Nucleic acids symposium series (Vol. 41, No. 41, pp. 95-98). [London]: Information Retrieval Ltd., c1979-c2000spa
dc.relation.referencesHeled, J. (2015). Extended Bayesian Skyline Plot tutorial for BEAST 2. Disponible en http://evomicsorg.wpengine.netdna-cdn.com/wpcontent/uploads/2015/11/ebsp2-tut1.pdfspa
dc.relation.referencesHewitt, G. M. (1996). Some genetic consequences of ice ages, and their role in divergence and speciation. Biological journal of the Linnean Society, 58(3), 247-276spa
dc.relation.referencesHewitt, G. M. (1999). Post-glacial re-colonization of European biota. Biological journal of the Linnean Society, 68(1-2), 87-112spa
dc.relation.referencesHickerson, M. J., Carstens, B. C., Cavender-Bares, J., Crandall, K. A., Graham, C. H., Johnson, J. B., Rissler, L., Victoriano, P. F. & Yoder, A. D. (2010). Phylogeography’s past, present, and future: 10 years after. Molecular phylogenetics and evolution, 54(1), 291-301spa
dc.relation.referencesHo, S. Y., & Shapiro, B. (2011). Skyline‐plot methods for estimating demographic history from nucleotide sequences. Molecular ecology resources, 11(3), 423-434spa
dc.relation.referencesHofmann, S., Kraus, S., Dorge, T., Nothnagel, M., Fritzsche, P., & Miehe, G. (2014). Effects of Pleistocene climatic fluctuations on the phylogeography, demography and population structure of a high‐elevation snake species, Thermophis baileyi, on the Tibetan Plateau. Journal of biogeography, 41(11), 2162-2172spa
dc.relation.referencesHooghiemstra, H., & Van der Hammen, T. (2004). Quaternary Ice-Age dynamics in the Colombian Andes: developing an understanding of our legacy. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 359(1442), 173-181spa
dc.relation.referencesHoscheit, P., & Pybus, O. G. (2019). The multifurcating skyline plot. Virus evolution, 5(2), vez031spa
dc.relation.referencesHudson, R. R. (1990). Gene genealogies and the coalescent process. Oxford surveys in evolutionary biology, 7(1), 1-44spa
dc.relation.referencesJerez, A., & Calderón-Espinosa, M. L. (2014). Anadia bogotensis (Peters, 1862). Catálogo de Anfibios y Reptiles de Colombia, 2(1), 30-35spa
dc.relation.referencesJin, Y., Liu, N., & Brown, R. P. (2017). The geography and timing of genetic divergence in the lizard Phrynocephalus theobaldi on the Qinghai-Tibetan plateau. Scientific reports, 7(1), 1-8spa
dc.relation.referencesKalyaanamoorthy, S., Minh, B. Q., Wong, T. K., Von Haeseler, A., & Jermiin, L. S. (2017). ModelFinder: fast model selection for accurate phylogenetic estimates. Nature methods, 14(6), 587-589spa
dc.relation.referencesKlunzinger, M. W., Lopes-Lima, M., Gomes-dos-Santos, A., Froufe, E., Lymbery, A. J., & Kirkendale, L. (2021). Phylogeographic study of the West Australian freshwater mussel, Westralunio carteri, uncovers evolutionarily significant units that raise new conservation concerns. Hydrobiologia, 848(12), 2951-2964spa
dc.relation.referencesKnowles, L. L. (2004). The burgeoning field of statistical phylogeography. Journal of evolutionary biology, 17(1), 1-10spa
dc.relation.referencesKnowles, L. L., & Maddison, W. P. (2002). Statistical phylogeography. Molecular Ecology, 11(12), 2623-2635spa
dc.relation.referencesLeigh, J. W., & Bryant, D. (2015). PoPArt: full‐feature software for haplotype network construction. Methods in Ecology and Evolution, 6(9), 1110-1116spa
dc.relation.referencesLibrado, P., & Rozas, J. (2009). DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25(11), 1451-1452spa
dc.relation.referencesMacey, J. R., Schulte II, J. A., Ananjeva, N. B., Larson, A., Rastegar-Pouyani, N., Shammakov, S. M., & Papenfuss, T. J. (1998). Phylogenetic Relationships among Agamid Lizards of the Laudakia caucasia species Group: Testing Hypotheses of Biogeographic Fragmentation and an Area Cladogram for the Iranian Plateau. Molecular Phylogenetics and Evolution, 10(1), 118-131spa
dc.relation.referencesMacey, J. R., Schulte II, J. A., Larson, A., Tuniyev, B. S., Orlov, N., & Papenfuss, T. J. (1999). Molecular phylogenetics, tRNA evolution, and historical biogeography in anguid lizards and related taxonomic families. Molecular phylogenetics and evolution, 12(3), 250-272spa
dc.relation.referencesManolopoulou, I., Hille, A., & Emerson, B. (2020). BPEC: An R package for Bayesian phylogeographic and ecological clustering. Journal of Statistical Software, 92, 1-32spa
dc.relation.referencesMao, K., Wang, Y., & Liu, J. (2021). Evolutionary origin of species diversity on the Qinghai‐Tibet Plateau. Journal of Systematics and Evolution. Pp. 1-17spa
dc.relation.referencesMarin, J. C., González, B. A., Poulin, E., Casey, C. S., & Johnson, W. E. (2013). The influence of the arid Andean high plateau on the phylogeography and population genetics of guanaco (Lama guanicoe) in South America. Molecular ecology, 22(2), 463-482spa
dc.relation.referencesMartins, L. F., Choueri, E. L., Oliveira, A. F., Domingos, F. M., Caetano, G. H., Cavalcante, V. H., Leite R. N., Fouquet, A., Rodrigues, M. T., Carnaval, A. C., Colli, G. R., & Werneck, F. P. (2021). Whiptail lizard lineage delimitation and population expansion as windows into the history of Amazonian open ecosystems. Systematics and Biodiversity, 1-19spa
dc.relation.referencesMasta, S. E. (2000). Phylogeography of the jumping spider Habronattus pugillis (Araneae: Salticidae): recent vicariance of sky island populations?. Evolution, 54(5), 1699-1711spa
dc.relation.referencesMéndez-Galeano, M. A., & Pinto-Erazo, M. A. (2018). Riama striata (Peters, 1862). Catálogo de Anfibios y Reptiles de Colombia, 4 (2), 61-67spa
dc.relation.referencesMorales-Betancourt, M. A., Lasso, C. A., Páez, V. P., & Bock, B. C. (2015). Libro rojo de reptiles de Colombia (2015) Instituto de Investigación de Recursos Biológicos Alexander von Humboldt (IAvH), Universidad de Antioquia. Bogotá, DC, Colombiaspa
dc.relation.referencesMoritz, C. (1994). Defining ‘evolutionarily significant units’ for conservation. Trends in ecology & evolution, 9(10), 373-375spa
dc.relation.referencesMoritz, C., & Faith, D. P. (1998). Comparative phylogeography and the identification of genetically divergent areas for conservation. Molecular ecology, 7(4), 419-429spa
dc.relation.referencesMosbrugger, V., Favre, A., Muellner-Riehl, A. N., Päckert, M., & Mulch, A. (2018). Cenozoic evolution of geo-biodiversity in the Tibeto-Himalayan region. Mountains, climate, and biodiversity, 429, 448spa
dc.relation.referencesMuellner-Riehl, A. N. (2019). Mountains as evolutionary arenas: patterns, emerging approaches, paradigm shifts, and their implications for plant phylogeographic research in the Tibeto-Himalayan region. Frontiers in Plant Science, 10, 195spa
dc.relation.referencesMuñoz‐Ortiz, A., Velásquez‐Álvarez, Á. A., Guarnizo, C. E., & Crawford, A. J. (2015). Of peaks and valleys: testing the roles of orogeny and habitat heterogeneity in driving allopatry in mid‐elevation frogs (Aromobatidae: Rheobates) of the northern Andes. Journal of Biogeography, 42(1), 193-205spa
dc.relation.referencesNguyen, L. T., Schmidt, H. A., Von Haeseler, A., & Minh, B. Q. (2015). IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular biology and evolution, 32(1), 268-274spa
dc.relation.referencesPalacios, C., García-R, S., Parra, J. L., Cuervo, A. M., Stiles, F. G., McCormack, J. E., & Cadena, C. D. (2019). Shallow genetic divergence and distinct phenotypic differences between two Andean hummingbirds: Speciation with gene flow?. The Auk, 136(4), ukz046spa
dc.relation.referencesPalumbi, S.R. (1996) Nucleic acids II: the polymerase chain reaction. In D.M. Hillis, B.K. Mable & C. Moritz (Eds). Molecular systematics, pp. 205–247. Sinauer Associates, Sunderland, MAspa
dc.relation.referencesPanchal, M., & Beaumont, M. A. (2007). The automation and evaluation of nested clade phylogeographic analysis. Evolution: International Journal of Organic Evolution, 61(6), 1466-1480spa
dc.relation.referencesPanchal, M., & Beaumont, M. A. (2010). Evaluating nested clade phylogeographic analysis under models of restricted gene flow. Systematic Biology, 59(4), 415-432spa
dc.relation.referencesPaternina, R. F., & Capera-M, V. H. (2017). Atractus crassicaudatus (Duméril, Bibron & Duméril, 1854). Catálogo de Anfibios y Reptiles de Colombia, 3 (2): 7-13spa
dc.relation.referencesPosada, D., Crandall, K. A., & Templeton, A. R. (2006). Nested clade analysis statistics. Molecular Ecology Notes, 6(3), 590-593spa
dc.relation.referencesPouchon, C., Fernández, A., Nassar, J. M., Boyer, F., Aubert, S., Lavergne, S., & Mavárez, J. (2018). Phylogenomic analysis of the explosive adaptive radiation of the Espeletia complex (Asteraceae) in the tropical Andes. Systematic Biology, 67(6), 1041-1060spa
dc.relation.referencesPrates, I., Xue, A. T., Brown, J. L., Alvarado-Serrano, D. F., Rodrigues, M. T., Hickerson, M. J., & Carnaval, A. C. (2016). Inferring responses to climate dynamics from historical demography in neotropical forest lizards. Proceedings of the National Academy of Sciences, 113(29), 7978-798spa
dc.relation.referencesProvost, K. L., Myers, E. A., & Smith, B. T. (2021). Community phylogeographic patterns reveal how a barrier filters and structures taxa in North American warm deserts. Journal of Biogeography, 48(6), 1267-1283spa
dc.relation.referencesPuillandre, N., Brouillet, S., & Achaz, G. (2021). ASAP: assemble species by automatic partitioning. Molecular Ecology Resources, 21(2), 609-620spa
dc.relation.referencesPybus, O. G., Rambaut, A., & Harvey, P. H. (2000). An integrated framework for the inference of viral population history from reconstructed genealogies. Genetics, 155(3), 1429-1437spa
dc.relation.referencesRambaut A. 2009. FigTree v1.3.1. Disponible en http://tree.bio.ed.ac. uk/software/figtree/spa
dc.relation.referencesRambaut A., Drummond A.J. 2007. Tracer v1.4. Disponible en http://beast.bio.ed.ac.uk/software/tracer/spa
dc.relation.referencesRecoder, R., Prates, I., Marques-Souza, S., Camacho, A., Nunes, P. M. S., Dal Vechio, F., Ghellere, J. M., McDiarmid, R. W., & Rodrigues, M. T. (2020). Lizards from the Lost World: two new species and evolutionary relationships of the Pantepui highland Riolama (Gymnophthalmidae). Zoological Journal of the Linnean Society, 190(1), 271-297spa
dc.relation.referencesRiddle, B. R., Hafner, D. J., Alexander, L. F., & Jaeger, J. R. (2000). Cryptic vicariance in the historical assembly of a Baja California Peninsular Desert biota. Proceedings of the National Academy of Sciences, 97(26), 14438-14443spa
dc.relation.referencesRiginos, C. (2005). Cryptic vicariance in Gulf of California fishes parallels vicariant patterns found in Baja California mammals and reptiles. Evolution, 59(12), 2678-2690spa
dc.relation.referencesRivera, D., Gómez, F., & Goodhew, P. (2004). Altiplanos de Colombia. Imprelibros SA-Banco de Occidente. Cali, 59-107spa
dc.relation.referencesRodríguez-Barbosa, C. A., Mendoza-Roldán, J. S., & Sánchez, D. A. G. (2017). Stenocercus trachycephalus (Duméril, 1851). Catálogo de Anfibios y Reptiles de Colombia, 3 (1): 67-74spa
dc.relation.referencesRodríguez-Muñoz, E., Montes, C., & Crawford, A. J. (2020). Synthesis of geological and comparative phylogeographic data point to climate, not mountain uplift, as driver of divergence across the Eastern Andean Cordillera. BioRxivspa
dc.relation.referencesRonquist F., Huelsenbeck J.P. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574spa
dc.relation.referencesSánchez, H., Castaño, O., & Cárdenas, G. (1995). Diversidad de los Reptiles en Colombia. En Rangel-Ch, O. (Ed.). Colombia Diversidad Biótica I. Santa Fe de Bogotá. Universidad Nacional de Colombia, INDERENA, Fundación FES, Ed. Guadalupe LTDA, 277-325spa
dc.relation.referencesSánchez‐Pacheco, S. J., Torres‐Carvajal, O., Aguirre‐Peñafiel, V., Nunes, P. M. S., Verrastro, L., Rivas, G. A., Rodrigues, M. T., Grant, T., & Murphy, R. W. (2018). Phylogeny of Riama (Squamata: Gymnophthalmidae), impact of phenotypic evidence on molecular datasets, and the origin of the Sierra Nevada de Santa Marta endemic fauna. Cladistics, 34(3), 260-291spa
dc.relation.referencesSarmiento, G., Gaviria, S., Hooghiemstra, H., Berrio, J. C., & Van der Hammen, T. (2008). Landscape evolution and origin of Lake Fúquene (Colombia): tectonics, erosion and sedimentation processes during the Pleistocene. Geomorphology, 100(3-4), 563-575spa
dc.relation.referencesSites Jr, J. W. & Morando, M. (2009). Phylogeography. En Encyclopedia of Life Sciences (ELS). John Wiley & Sons, Ltd: Chichesterspa
dc.relation.referencesStephan, W., & Langley, C. H. (1992). Evolutionary consequences of DNA mismatch inhibited repair opportunity. Genetics, 132(2), 567-574spa
dc.relation.referencesStrimmer, K., & Pybus, O. G. (2001). Exploring the demographic history of DNA sequences using the generalized skyline plot. Molecular Biology and Evolution, 18(12), 2298-2305spa
dc.relation.referencesSunnåker, M., Busetto, A. G., Numminen, E., Corander, J., Foll, M., & Dessimoz, C. (2013). Approximate bayesian computation. PLoS computational biology, 9(1), e1002803spa
dc.relation.referencesTaberlet, P., Fumagalli, L., WUST‐SAUCY, A. G., & COSSON, J. F. (1998). Comparative phylogeography and postglacial colonization routes in Europe. Molecular ecology, 7(4), 453-464spa
dc.relation.referencesTamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular biology and evolution, 28(10), 2731-2739spa
dc.relation.referencesTempleton, A. R. (1998). Nested clade analyses of phylogeographic data: testing hypotheses about gene flow and population history. Molecular Ecology, 7(4), 381-397spa
dc.relation.referencesTempleton, A. R. (2008). Nested clade analysis: an extensively validated method for strong phylogeographic inference. Molecular Ecology, 17(8), 1877spa
dc.relation.referencesTempleton, A. R. (2009). Why does a method that fails continue to be used? The answer. Evolution: International Journal of Organic Evolution, 63(4), 807-812spa
dc.relation.referencesTempleton, A. R. (2009a). Statistical hypothesis testing in intraspecific phylogeography: nested clade phylogeographical analysis vs. approximate Bayesian computation. Molecular ecology, 18(2), 319-331spa
dc.relation.referencesTempleton, A. R. (2010). Coalescent-based, maximum likelihood inference in phylogeography. Molecular Ecology, 19(3), 431spa
dc.relation.referencesTempleton, A. R. (2010). Coherent and incoherent inference in phylogeography and human evolution. Proceedings of the National Academy of Sciences, 107(14), 6376-6381spa
dc.relation.referencesTempleton, A. R. (2010). The diverse applications of cladistic analysis of molecular evolution, with special reference to nested clade analysis. International journal of molecular sciences, 11(1), 124-139spa
dc.relation.referencesTempleton, A. R., Routman, E., & Phillips, C. A. (1995). Separating population structure from population history: a cladistic analysis of the geographical distribution of mitochondrial DNA haplotypes in the tiger salamander, Ambystoma tigrinum. Genetics, 140(2), 767-782spa
dc.relation.referencesThompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic acids research, 22(22), 4673-4680spa
dc.relation.referencesTorres-Carvajal, O., Lobos, S. E., Venegas, P. J., Chávez, G., Aguirre-Peñafiel, V., Zurita, D., & Echevarría, L. Y. (2016). Phylogeny and biogeography of the most diverse clade of South American gymnophthalmid lizards (Squamata, Gymnophthalmidae, Cercosaurinae). Molecular phylogenetics and evolution, 99, 63-75spa
dc.relation.referencesVargas-Ramírez, M., & Moreno-Arias, R. (2014). Unknown evolutionary lineages and population differentiation in Anolis heterodermus (Squamata: Dactyloidae) from the eastern and central Cordilleras of Colombia revealed by DNA sequence data. South American Journal of Herpetology, 9(2), 131-141spa
dc.relation.referencesWeiss, S., & Ferrand, N. (2007). Current perspectives in phylogeography and the significance of South European refugia in the creation and maintenance of European biodiversity. In Phylogeography of southern European refugia (pp. 341-357) Springer, Dordrechtspa
dc.relation.referencesXu, W., Dong, W. J., Fu, T. T., Gao, W., Lu, C. Q., Yan, F., Wu Y., Jiang K., Jin J., Chen H., Zhang Y., Hillis D. M., & Che, J. (2021). Herpetological phylogeographic analyses support a Miocene focal point of Himalayan uplift and biological diversification. National science review, 8(9), nwaa263spa
dc.relation.referencesYang, S., Dong, H., & Lei, F. (2009). Phylogeography of regional fauna on the Tibetan Plateau: a review. Progress in Natural Science, 19(7), 789-799spa
dc.relation.referencesZając, K. S., Proćków, M., Zając, K., Stec, D., & Lachowska-Cierlik, D. (2020). Phylogeography and potential glacial refugia of terrestrial gastropod Faustina faustina (Rossmässler, 1835) (Gastropoda: Eupulmonata: Helicidae) inferred from molecular data and species distribution models. Organisms Diversity & Evolution, 20(4), 747-762spa
dc.relation.referencesZhang, J., Kapli, P., Pavlidis, P., & Stamatakis, A. (2013). A general species delimitation method with applications to phylogenetic placements. Bioinformatics, 29(22), 2869-2876spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc570 - Biología::573 - Sistemas fisiológicos específicos en animales, histología regional y fisiología en los animalesspa
dc.subject.lembDEMOGRAFIAspa
dc.subject.lembDemographyeng
dc.subject.lembDemographic characteristicseng
dc.subject.lembCARACTERISTICAS DEMOGRAFICASspa
dc.subject.lembBIOLOGIA EVOLUTIVAspa
dc.subject.lembDevelopmental biologyeng
dc.subject.proposalReptiles escamadosspa
dc.subject.proposalCongruencia filogeográficaspa
dc.subject.proposalPatrones atemporalesspa
dc.subject.proposalHipótesis de geodiversidad de montañaspa
dc.subject.proposalSquamate reptileseng
dc.subject.proposalPhylogeographic congruenceeng
dc.subject.proposalAtemporal patternseng
dc.subject.proposalMountain-geobiodiversity hypothesiseng
dc.titleFilogeografía comparativa de cuatro especies de reptiles escamados en el altiplano cundiboyacense, cordillera oriental de Colombiaspa
dc.title.translatedComparative phylogeography of four squamate reptile species from Cundiboyacense high plateau, eastern cordillera of Colombiaeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1015433702.2022.pdf
Tamaño:
2.36 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Biología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
4.57 KB
Formato:
Item-specific license agreed upon to submission
Descripción: