Multi-view learning for hierarchical topic detection on corpus of documents

dc.contributor.advisorNiño Vasquez, Luis Fernando
dc.contributor.authorCalero Espinosa, Juan Camilo
dc.contributor.researchgroupLABORATORIO DE INVESTIGACIÓN EN SISTEMAS INTELIGENTES - LISIspa
dc.date.accessioned2021-05-26T16:54:28Z
dc.date.available2021-05-26T16:54:28Z
dc.date.issued2021
dc.descriptiondiagramas, ilustraciones a color, tablasspa
dc.description.abstractTopic detection on a large corpus of documents requires a considerable amount of computational resources, and the number of topics increases the burden as well. However, even a large number of topics might not be as specific as desired, or simply the topic quality starts decreasing after a certain number. To overcome these obstacles, we propose a new methodology for hierarchical topic detection, which uses multi-view clustering to link different topic models extracted from document named entities and part of speech tags. Results on three different datasets evince that the methodology decreases the memory cost of topic detection, improves topic quality and allows the detection of more topics.eng
dc.description.abstractLa detección de temas en grandes colecciones de documentos requiere una considerable cantidad de recursos computacionales, y el número de temas también puede aumentar la carga computacional. Incluso con un elevado nùmero de temas, estos pueden no ser tan específicos como se desea, o simplemente la calidad de los temas comienza a disminuir después de cierto número. Para superar estos obstáculos, proponemos una nueva metodología para la detección jerárquica de temas, que utiliza agrupamiento multi-vista para vincular diferentes modelos de temas extraídos de las partes del discurso y de las entidades nombradas de los documentos. Los resultados en tres conjuntos de documentos muestran que la metodología disminuye el costo en memoria de la detección de temas, permitiendo detectar màs temas y al mismo tiempo mejorar su calidad.spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería – Sistemas y Computaciónspa
dc.description.researchareaProcesamiento de lenguaje naturalspa
dc.format.extent1 recurso en línea (88 páginas)spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79567
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Ingeniería de Sistemas e Industrialspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotáspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería de Sistemas y Computaciónspa
dc.relation.referencesStephen E. Palmer. “Hierarchical structure in perceptual representation”. In: Cogni- tive Psychology 9.4 (Oct. 1977), pp. 441–474. issn: 0010-0285. doi: 10.1016/0010- 0285(77)90016-0. url: https://www.sciencedirect.com/science/article/pii/ 0010028577900160.spa
dc.relation.referencesE. Wachsmuth, M. W. Oram, and D. I. Perrett. “Recognition of Objects and Their Component Parts: Responses of Single Units in the Temporal Cortex of the Macaque”. In: Cerebral Cortex 4.5 (Sept. 1994), pp. 509–522. issn: 1047-3211. doi: 10.1093/ cercor/4.5.509. url: https://academic.oup.com/cercor/article-lookup/doi/ 10.1093/cercor/4.5.509.spa
dc.relation.referencesN K Logothetis and D L Sheinberg. “Visual Object Recognition”. In: Annual Review of Neuroscience 19.1 (Mar. 1996), pp. 577–621. issn: 0147-006X. doi: 10.1146/annurev. ne . 19 . 030196 . 003045. url: http : / / www . annualreviews . org / doi / 10 . 1146 / annurev.ne.19.030196.003045.spa
dc.relation.referencesDaniel D. Lee and H. Sebastian Seung. “Learning the parts of objects by non-negative matrix factorization”. In: Nature 401.6755 (Oct. 1999), pp. 788–791. issn: 00280836. doi: 10.1038/44565. url: http://www.nature.com/articles/44565.spa
dc.relation.referencesDavid M. Blei, Andrew Y. Ng, and Michael I. Jordan. “Latent Dirichlet Allocation”. In: Journal of Machine Learning Research 3.Jan (2003), pp. 993–1022. issn: ISSN 1533-7928. url: http://www.jmlr.org/papers/v3/blei03a.html.spa
dc.relation.referencesThomas L. Griffiths et al. “Hierarchical Topic Models and the Nested Chinese Restau- rant Process”. In: Advances in Neural Information Processing Systems (2003), pp. 17– 24. url: https://papers.nips.cc/paper/2466- hierarchical- topic- models- and-the-nested-chinese%20-restaurant-process.pdf.spa
dc.relation.referencesStella X. Yu and Jianbo Shi. “Multiclass spectral clustering”. In: Proceedings of the IEEE International Conference on Computer Vision. Vol. 1. Institute of Electrical and Electronics Engineers Inc., 2003, pp. 313–319. doi: 10.1109/iccv.2003.1238361. url: https://ieeexplore.ieee.org/abstract/document/1238361.spa
dc.relation.referencesS. Bickel and T. Scheffer. “Multi-View Clustering”. In: Fourth IEEE International Conference on Data Mining (ICDM’04). IEEE, 2004, pp. 19–26. isbn: 0-7695-2142-8. doi: 10.1109/ICDM.2004.10095. url: http://ieeexplore.ieee.org/document/ 1410262/.74 Bibliographyspa
dc.relation.referencesNevin L Zhang and Lzhang@cs Ust Hk. Hierarchical Latent Class Models for Cluster Analysis. Tech. rep. 2004, pp. 697–723. url: https : / / www . jmlr . org / papers / volume5/zhang04a/zhang04a.pdf.spa
dc.relation.referencesDavid Newman, Chaitanya Chemudugunta, and Padhraic Smyth. “Statistical entity- topic models”. In: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Vol. 2006. Association for Computing Ma- chinery, 2006, pp. 680–686. isbn: 1595933395. doi: 10.1145/1150402.1150487.spa
dc.relation.referencesLi Wei and Andrew McCallum. “Pachinko allocation: DAG-structured mixture models of topic correlations”. In: ACM International Conference Proceeding Series. Vol. 148. 2006, pp. 577–584. isbn: 1595933832. doi: 10.1145/1143844.1143917. url: https: //dl.acm.org/doi/abs/10.1145/1143844.1143917.spa
dc.relation.referencesDavid M. Blei, Thomas L. Griffiths, and Michael I. Jordan. “The nested Chinese restaurant process and Bayesian nonparametric inference of topic hierarchies”. In: (Oct. 2007). url: https://arxiv.org/abs/0710.0845.spa
dc.relation.referencesDavid Mimno, Wei Li, and Andrew McCallum. “Mixtures of hierarchical topics with Pachinko allocation”. In: ACM International Conference Proceeding Series. Vol. 227. 2007, pp. 633–640. doi: 10.1145/1273496.1273576. url: https://dl.acm.org/ doi/abs/10.1145/1273496.1273576.spa
dc.relation.referencesTomoaki Nakamura, Takayuki Nagai, and Naoto Iwahashi. “Multimodal object cat- egorization by a robot”. In: 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, Oct. 2007, pp. 2415–2420. isbn: 978-1-4244-0911-2. doi: 10 . 1109 / IROS . 2007 . 4399634. url: http : / / ieeexplore . ieee . org / document / 4399634/.spa
dc.relation.referencesChaitanya Chemudugunta et al. “Modeling Documents by Combining Semantic Con- cepts with Unsupervised Statistical Learning”. In: 2008, pp. 229–244. doi: 10.1007/ 978-3-540-88564-1{\_}15.spa
dc.relation.referencesYi Wang, Nevin L. Zhang, and Tao Chen. “Latent tree models and approximate in- ference in Bayesian networks”. In: Journal of Artificial Intelligence Research 32 (Aug. 2008), pp. 879–900. issn: 10769757. doi: 10.1613/jair.2530. url: https://www. jair.org/index.php/jair/article/view/10564.spa
dc.relation.referencesNevin L. Zhang et al. “Latent tree models and diagnosis in traditional Chinese medicine”. In: Artificial Intelligence in Medicine 42.3 (Mar. 2008), pp. 229–245. issn: 09333657. doi: 10.1016/j.artmed.2007.10.004. url: https://www.sciencedirect.com/ science/article/pii/S0933365707001443.spa
dc.relation.referencesDavid Andrzejewski, Xiaojin Zhu, and Mark Craven. “Incorporating domain knowledge into topic modeling via Dirichlet forest priors”. In: ACM International Conference Proceeding Series. Vol. 382. 2009. isbn: 9781605585161. doi: 10 . 1145 / 1553374 . 1553378.Bibliography 75spa
dc.relation.referencesJonathan Chang et al. Reading Tea Leaves: How Humans Interpret Topic Models. Tech. rep. 2009. url: http://rexa.info.spa
dc.relation.referencesTomoaki Nakamura, Takayuki Nagai, and Naoto Iwahashi. “Grounding of word mean- ings in multimodal concepts using LDA”. In: 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, Oct. 2009, pp. 3943–3948. isbn: 978-1-4244- 3803-7. doi: 10.1109/IROS.2009.5354736. url: http://ieeexplore.ieee.org/ document/5354736/.spa
dc.relation.referencesGuangcan Liu et al. “Robust Recovery of Subspace Structures by Low-Rank Repre- sentation”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence 35.1 (Oct. 2010), pp. 171–184. doi: 10.1109/TPAMI.2012.88. url: http://arxiv.org/ abs/1010.2955%20http://dx.doi.org/10.1109/TPAMI.2012.88.spa
dc.relation.referencesJames Petterson et al. Word Features for Latent Dirichlet Allocation. Tech. rep. 2010, pp. 1921–1929.spa
dc.relation.referencesNakatani Shuyo. Language Detection Library for Java. 2010. url: http : / / code . google.com/p/language-detection/.spa
dc.relation.referencesAbhishek Kumar and Hal Daumé III. A Co-training Approach for Multi-view Spectral Clustering. Tech. rep. 2011. url: http://legacydirs.umiacs.umd.edu/~abhishek/ cospectral.icml11.pdf.spa
dc.relation.referencesAbhishek Kumar, Piyush Rai, and Hal Daumé III. Co-regularized Multi-view Spectral Clustering. Tech. rep. 2011.spa
dc.relation.referencesDavid Mimno et al. Optimizing Semantic Coherence in Topic Models. Tech. rep. 2011, pp. 262–272. url: https://www.aclweb.org/anthology/D11-1024.pdf.spa
dc.relation.referencesTomoaki Nakamura, Takayuki Nagai, and Naoto Iwahashi. “Bag of multimodal LDA models for concept formation”. In: 2011 IEEE International Conference on Robotics and Automation. IEEE, May 2011, pp. 6233–6238. isbn: 978-1-61284-386-5. doi: 10. 1109 / ICRA . 2011 . 5980324. url: http : / / ieeexplore . ieee . org / document / 5980324/.spa
dc.relation.referencesEhsan Elhamifar and Rene Vidal. “Sparse Subspace Clustering: Algorithm, Theory, and Applications”. In: IEEE Transactions on Pattern Analysis and Machine Intelli- gence 35.11 (Mar. 2012), pp. 2765–2781. url: http://arxiv.org/abs/1203.1005.spa
dc.relation.referencesJagadeesh Jagarlamudi, Hal Daumé Iii, and Raghavendra Udupa. Incorporating Lexical Priors into Topic Models. Tech. rep. 2012, pp. 204–213. url: https://www.aclweb. org/anthology/E12-1021.pdf.spa
dc.relation.referencesXiao Cai, Feiping Nie, and Heng Huang. Multi-View K-Means Clustering on Big Data. Tech. rep. 2013. url: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10. 1.1.415.8610&rep=rep1&type=pdf.76 Bibliographyspa
dc.relation.referencesZhiyuan Chen et al. “Discovering Coherent Topics Using General Knowledge Data Mining View project Web-KDD-KDD Workshop Series on Web Mining and Web Usage Analysis View project Discovering Coherent Topics Using General Knowledge”. In: dl.acm.org (2013), pp. 209–218. doi: 10.1145/2505515.2505519. url: http://dx. doi.org/10.1145/2505515.2505519.spa
dc.relation.referencesZhiyuan Chen et al. “Leveraging Multi-Domain Prior Knowledge in Topic Models”. In: IJCAI International Joint Conference on Artificial Intelligence. Nov. 2013, pp. 2071– 2077.spa
dc.relation.referencesLinmei Hu et al. “Incorporating entities in news topic modeling”. In: Communications in Computer and Information Science. Vol. 400. Springer Verlag, Nov. 2013, pp. 139– 150. isbn: 9783642416439. doi: 10.1007/978-3-642-41644-6{\_}14. url: https: //link.springer.com/chapter/10.1007/978-3-642-41644-6_14.spa
dc.relation.referencesTomas Mikolov, Wen-tau Yih, and Geoffrey Zweig. “Linguistic Regularities in Contin- uous Space Word Representations”. In: June (2013), pp. 746–751.spa
dc.relation.referencesTomas Mikolov et al. Distributed Representations of Words and Phrases and their Compositionality. Tech. rep. 2013. url: http : / / papers . nips . cc / paper / 5021 - distributed-representations-of-words-and-phrases-and.spa
dc.relation.referencesTomas Mikolov et al. “Efficient estimation of word representations in vector space”. In: 1st International Conference on Learning Representations, ICLR 2013 - Workshop Track Proceedings. International Conference on Learning Representations, ICLR, Jan. 2013.spa
dc.relation.referencesKonstantinos N. Vavliakis, Andreas L. Symeonidis, and Pericles A. Mitkas. “Event identification in web social media through named entity recognition and topic model- ing”. In: Data and Knowledge Engineering 88 (Nov. 2013), pp. 1–24. issn: 0169023X. doi: 10.1016/j.datak.2013.08.006.spa
dc.relation.referencesYuening Hu et al. “Interactive topic modeling”. In: Mach Learn 95 (2014), pp. 423– 469. doi: 10.1007/s10994- 013- 5413- 0. url: http://www.policyagendas.org/ page/topic-codebook..spa
dc.relation.referencesYeqing Li et al. Large-Scale Multi-View Spectral Clustering with Bipartite Graph. Tech. rep. 2015. url: https://dl.acm.org/doi/10.5555/2886521.2886704.spa
dc.relation.referencesZechao Li et al. “Robust structured subspace learning for data representation”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence 37.10 (Oct. 2015), pp. 2085–2098. issn: 01628828. doi: 10.1109/TPAMI.2015.2400461. url: https: //ieeexplore.ieee.org/document/7031960.Bibliography 77spa
dc.relation.referencesAndrew J. McMinn and Joemon M. Jose. “Real-time entity-based event detection for twitter”. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol. 9283. Springer Verlag, 2015, pp. 65–77. isbn: 9783319240268. doi: 10.1007/978-3-319-24027-5{\_}6. url: https://link.springer.com/chapter/10.1007/978-3-319-24027-5_6.spa
dc.relation.referencesJohn Paisley et al. “Nested hierarchical dirichlet processes”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence 37.2 (Feb. 2015), pp. 256–270. issn: 01628828. doi: 10.1109/TPAMI.2014.2318728. url: https://ieeexplore.ieee. org/abstract/document/6802355.spa
dc.relation.referencesZhao Zhang et al. “Joint low-rank and sparse principal feature coding for enhanced robust representation and visual classification”. In: IEEE Transactions on Image Pro- cessing 25.6 (June 2016), pp. 2429–2443. issn: 10577149. doi: 10.1109/TIP.2016. 2547180. url: https://ieeexplore.ieee.org/document/7442126.spa
dc.relation.referencesMehdi Allahyari and Krys Kochut. “Discovering Coherent Topics with Entity Topic Models”. In: Proceedings - 2016 IEEE/WIC/ACM International Conference on Web Intelligence, WI 2016. Institute of Electrical and Electronics Engineers Inc., Jan. 2017, pp. 26–33. isbn: 9781509044702. doi: 10.1109/WI.2016.0015.spa
dc.relation.referencesPeixian Chen et al. “Latent Tree Models for Hierarchical Topic Detection”. In: Artificial Intelligence 250 (May 2017), pp. 105–124. url: http://arxiv.org/abs/1605.06650.spa
dc.relation.referencesZhourong Chen et al. Sparse Boltzmann Machines with Structure Learning as Applied to Text Analysis. Tech. rep. 2017. url: www.aaai.org.spa
dc.relation.referencesMatthew Honnibal and Ines Montani. “spaCy 2: Natural language understanding with Bloom embeddings, convolutional neural networks and incremental parsing”. 2017.spa
dc.relation.referencesAshish Vaswani et al. “Transformer: Attention is all you need”. In: Advances in Neu- ral Information Processing Systems 30 (2017), pp. 5998–6008. issn: 10495258. url: https://arxiv.org/abs/1706.03762.spa
dc.relation.referencesJing Zhao et al. “Multi-view learning overview: Recent progress and new challenges”. In: Information Fusion 38 (2017), pp. 43–54. issn: 15662535. doi: 10.1016/j.inffus. 2017.02.007. url: http://dx.doi.org/10.1016/j.inffus.2017.02.007.spa
dc.relation.referencesXiaojun Chen et al. “Spectral clustering of large-scale data by directly solving normal- ized cut”. In: Proceedings of the ACM SIGKDD International Conference on Knowl- edge Discovery and Data Mining. Association for Computing Machinery, July 2018, pp. 1206–1215. isbn: 9781450355520. doi: 10.1145/3219819.3220039. url: https: //dl.acm.org/doi/10.1145/3219819.3220039.spa
dc.relation.referencesJacob Devlin et al. “BERT: Pre-training of Deep Bidirectional Transformers for Lan- guage Understanding”. In: (Oct. 2018). url: http://arxiv.org/abs/1810.04805.78 Bibliographyspa
dc.relation.referencesZhao Kang et al. “Multi-graph Fusion for Multi-view Spectral Clustering”. In: Knowledge- Based Systems 189 (Sept. 2019). url: http://arxiv.org/abs/1909.06940.spa
dc.relation.referencesAlec Radford et al. “Language Models are Unsupervised Multitask Learners”. In: (2019). url: http://www.persagen.com/files/misc/radford2019language.pdf. [54] Tom B. Brown et al. “Language Models are Few-Shot Learners”. In: arXiv (May 2020). url: http://arxiv.org/abs/2005.14165.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc000 - Ciencias de la computación, información y obras generalesspa
dc.subject.proposalNamed entitieseng
dc.subject.proposalTopic detectioneng
dc.subject.proposalMulti-view clusteringeng
dc.subject.proposalMulti-view learningeng
dc.subject.proposalGraph fusioneng
dc.subject.proposalEntidades nombradasspa
dc.subject.proposalAprendizaje multi-vistaspa
dc.subject.proposalAgrupamiento multi-vistaspa
dc.subject.proposalFusión de grafosspa
dc.subject.unescoIndexación automática
dc.subject.unescoRecuperación de información
dc.subject.unescoInformation processing
dc.subject.unescoAutomatic indexing
dc.titleMulti-view learning for hierarchical topic detection on corpus of documentseng
dc.title.translatedAprendizaje multi-vista para la detección jerárquica de temas en corpus de documentosspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1019125483.2021.pdf
Tamaño:
4.92 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería de Sistemas y Computación

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: