Diseño y construcción de generador eléctrico y drive de potencia para el control eléctrico en baja tension y potencia 1 Kw orientada a la micro-generación eólica urbana.

dc.contributor.advisorRosero Garcia, Javier Alveiro
dc.contributor.authorVelandia Gomez, Jeison Joseph
dc.contributor.researchgroupElectrical Machines & Drives, Em&Dspa
dc.date.accessioned2023-11-27T14:22:41Z
dc.date.available2023-11-27T14:22:41Z
dc.date.issued2023-11
dc.descriptionilustraciones, diagramas, fotografíasspa
dc.description.abstractEste trabajo de grado explora aspectos de diseño, análisis electromagnético, construcción y pruebas experimentales para la construcción de un generador de microgeneración eólica orientado a ambientes urbanos. En primer lugar, se realizará una revisión del estado del arte de la generación eólica y de las máquinas de generación comúnmente utilizadas para la microgeneración eólica. A partir de esta revisión, se seleccionará la tecnología adecuada para implementarse en la ciudad de Bogotá y se diseñará un prototipo piloto en la ciudad universitaria de la sede Bogotá que permita cumplir las necesidades de potencia requeridas para obtener un generador eléctrico eficiente y de bajo costo para bajas velocidades de viento. Se evaluarán diferentes equipos de generación de tecnologías viables y adecuadas a los parámetros de la ciudad de Bogotá, incluyendo las ventajas y desventajas de la máquina de inducción IM y el generador de flujo axial de imanes permanentes (AFPMG), para uso en grupos de turbinas eólicas de eje vertical en ambientes urbanos de bajas velocidades de viento, u otros sistemas con pocas RPM y bajo par de arranque. La composición geométrica y los materiales de las máquinas eléctricas permitirán realizar una comparación con las topologías convencionales ya aplicadas y orientadas a determinadas aplicaciones de generación eléctrica. Sin embargo, es necesario revisar y utilizar métodos precisos para determinar el correcto diseño y análisis electromagnético. Uno de los propósitos de este trabajo es analizar y comparar un rango de métodos y el uso de análisis FEA 2D y FEA 3D para la tecnología seleccionada, los cuales pueden extenderse a diseños novedosos u optimizar los diseños actuales de acuerdo con las necesidades de potencia prevista de 1 kW. Para esto, se construirá y evaluará en laboratorio un prototipo con la tecnología seleccionada. El uso de análisis de elementos finitos (FEA) permitirá una mayor comprensión de estas máquinas y facilitará la ilustración y cuantificación de los aspectos electromagnéticos de su funcionamiento. A través de la verificación de una selección de enfoques analíticos y respectivos cálculos, se considerará el tipo de tecnología de la máquina que se ajusta a las necesidades planteadas. (Texto tomado de la fuente)spa
dc.description.abstractThis undergraduate thesis explores aspects of design, electromagnetic analysis, construction, and experimental testing for the development of a wind microgeneration generator aimed at urban environments. Firstly, a review of the state of the art in wind generation and machines commonly used for wind microgeneration will be conducted. Based on this review, the appropriate technology will be selected for implementation in the city of Bogotá, and a pilot prototype will be designed at the university campus in Bogotá to meet the power requirements for an efficient and low-cost electrical generator at low wind speeds. Different generation equipment technologies suitable for the parameters of Bogotá, including the advantages and disadvantages of the induction machine (IM) and the axial-flux permanent magnet generator (AFPMG), will be evaluated for use in groups of vertical-axis wind turbines in urban environments with low wind speeds, or other systems with low RPM and starting torque. The geometric composition and materials of the electric machines will allow for a comparison with conventional topologies already applied and oriented towards specific electrical generation applications. However, it is necessary to review and use precise methods to determine the correct design and electromagnetic analysis. One of the purposes of this work is to analyze and compare a range of methods and the use of 2D and 3D FEA analysis for the selected technology, which can be extended to novel designs or optimize current designs according to the anticipated power needs of 1 kW. To achieve this, a prototype with the selected technology will be constructed and evaluated in the laboratory. The use of finite element analysis (FEA) will provide a better understanding of these machines and facilitate the illustration and quantification of the electromagnetic aspects of their operation. Through the verification of a selection of analytical approaches and respective calculations, the type of machine technology that fits the outlined needs will be considered.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería de Eléctricaspa
dc.format.extentxxiii, 119 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84963
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Eléctricaspa
dc.relation.referencesR. Kumar, K. Raahemifar, and A. S. Fung, "A critical review of vertical axis wind turbines for urban applications," Renewable and Suslainable Energy Reviews, vol. 89, pp. 281-291, 6 2018.spa
dc.relation.referencesL. S. Bianchin, D. Beck, and D. J. Seidel, "Influência do número de (Ftágios no torque estático da turbina eólica Savonius," Revista Thema, vol. 17, pp. 309—317, 6 2020.spa
dc.relation.referencesW. Tjiu, T. Marnoto, S. Mac, M. H. RIFIan, and K. Sopian, "Darrieus vertical axis wind turbine for power generation I: Assessment of Darrieus VAWT configurations," Renewable Energy, vol. 75, pp. 50-67, 3 2015.spa
dc.relation.referencesR. Rajabi Moghaddam, Synchmnms Reluciance Machine (SynRM) in Variable spend (VSD) Applicalioms. KTH Royal Instituto of Technology, 2011.spa
dc.relation.referencesHaataja J. Ph. D, A comparative performance sludy of four-pole, induclion molors and synchronous reluclance molors in variable spend drives. PhD t,hesis, Lappeenranta University of Technology, Lappeenrannan teknillinen yliopisto, 2003.spa
dc.relation.referencesBrown J. E. and Jones B. L., "Electrical variable-speed drives" , , , IEEE Pmcendings A Physical Science, Measuremenl and Instrumenlalion Managemenl and Educalion, vol. 131, no. 7, pp. 51(Y558, 1984.spa
dc.relation.referencesJ. Ospina, Emplazamiento Sustentable de Sistemas de Micmgenemci "on Eolicn en Co- lombia desde la Perspectiva del Desarrollo Sustentable. PhD th(XSis, Universidad ECCI, Bogota, 2020.spa
dc.relation.references"Historical Development of the Windrnill," in Wind Turbine, Technology: Fundamental Concepls in Wind Turbine Enqineering, Second Edilion, pp. 1—16, ASME Press, 2()()9.spa
dc.relation.referencesH. Heidari, A. Rassõlkin, A. KalltFte, T. Vaimann, E. Andriushchenko, A. Belahcen, and D. V. Lukichev, "A review of synchronous reluctance motor-drive advancements," 1 2021.spa
dc.relation.referencesM. Malinowski, A. Milczarek, R. Kot, Z. Goryca, and J. T. Szuster, "Optimized Energy-Conversion Syst,ems for Small Wind Turbines: Renewable energy sources in modern distributed power generation systems," IEEE Power Electronics Magazine, vol. 2, pp. 16-30, 9 2015.spa
dc.relation.referencesF. Rossouw, Analysis and design of a:rial JIua: permanent magnet wind generalor syslem for direct ballery charying applicnlions. PhD thesis, Stellenbosch University, South Africa, 2009.spa
dc.relation.referencesR. Lacal-Arántegui, "Materials use in electricity generators in wind turbines state-oL the-art and futuro specifications," Journal of Clenner Produclion, vol. 87, pp. 275—283, 1 2015.spa
dc.relation.referencesUPME and Minenergía, "Plan Nacional (le Energía 2020 - 2050," tech. rep., Bogota, 2019.spa
dc.relation.referencesJ. C. Kappatou, G. D. Zaloi«xsttus, and D. A. Spyratos, "3-1) FEM Analysis, Prototy- ping and Tests of an Axial Flux Permanent-Magnet Wind Generator," 2017.spa
dc.relation.referencesJavier Muntó Puig, Desarrollo y análisis de un generador de inducción de doble de- vanado en el eslálor aplicndo en sistemas eólicos de velocidad variable. PhD thesis, Universitat Rovira 1 Virgili, Tarragona, 2015.spa
dc.relation.referencesN. Mendoza, Diseño de un generador eólico de eje vertical lipo darrieus helicoidal de 3 kW. PhD th€xsis, Instituto tecnológico de Pachuca, Pachuca de Soto, 2017.spa
dc.relation.references"Historical Development of the Windmill," in Wind Turbine Technology: Fundamental Concrpls in Wind Turbine Engineering, Second Edilion, pp. IM6, ASME Press, 2()()9.spa
dc.relation.referencesL. V. Clementi and G. P. Jacinto, "Energía eólica distribuida: oportunidad(xs y desafíos en Argentina," Letras Verdes. Revista Latinoamericana de Estudios Socioambientales, pp. 48454, 3 2021.spa
dc.relation.referencesJ. Saenz and D. Macias, Diseño y cnnslrucr,ión de un prototipo de aerogenerador eólico de eje verticnl soportado por cojinetes magnéticos. PhD thesis, Universidad Distrital Francisco José de Caldas, Bogota, 2016.spa
dc.relation.referencesC. Espejo Marín and R. García Marín, "La energía eólica en la producción de electri- cidad en España," Revista de geografía Norte Grande, pp. 115—136, 5 2()12.spa
dc.relation.referencesM. Islam, S. Mekhilef, and R. Saidur, "Progress and recent trends of wind energy technology," Renewable and Sustainable Energy Reviews, vol. 21, pp. 456 468, 5spa
dc.relation.referencesWWEA, 'WWEA 2013 Small Wind World Report Update," tech. rep., World Wind Energy Association, 2013.spa
dc.relation.referencesF. Toja-Silva, A. Colmenar-Santos, and M. Castro-Gil, "Urban wind energy exploi- tation systems: Behaviour under multidirectional flow conditions—()pportunities and challenges," Renewable and Suslainable Energy Reviews, vol. 24, pp. 364—378, 8 2()13.spa
dc.relation.referencesS. R. Allen, G. P. Hammond, and M. C. McManus, "Prospectas for and barriers to domestic micro-generation: A United Kingdom perspectivo," Appliexl Energy, vol. 85, pp. 528-544, 6 2008.spa
dc.relation.referencesA. S. Bahaj, L. Myers, and P. A. James, "Urban energy generation: Influence of micro- wind turbine output on electricit,y consumption in buildings," Eneryy and Buildings, vol. 39, pp. 15E165, 2 2007.spa
dc.relation.referencesA. L. Heagle, G. F. Naterer, and K. Pope, "Small wind turbine energy policies for resi- dential and small business usage in Ontario, Canada," Energy Policy, vol. 39, pp. 1988 1999, 4 2011.spa
dc.relation.referencesB. Grieser, Y. Sunak, and R. Madlener, "Economic„s of small wind turbines in urban settings: An empirical investigation for Germany," Renewable Energy, vol. 78, pp. 334 350, 6 2015.spa
dc.relation.referencesQ. S. Li, Z. R. Silll, and F. B. Chen, "Performance assessment of tall building-integratcd wind turbines for power generat,ion," Applied Eneryy, vol. 165, pp. 777 788, 3 2016.spa
dc.relation.referencesG. M. Hopkins, R. S. Bridges, R. W. Dixon, J. H. Newman, E. B. Ptusey, H. P. Lid- don, and S. J. R. R. Reesl, The Collecled Works of Gerard Maniey Hopkins, Vol. 1: Cormspondence 1852—1881. Oxford University Press, 3 2013.spa
dc.relation.referencesN. A. Ahmed and M. Cameron, "The challenges and possible solutions of horizontal axis wind turbines as a clean energy solution for the futuro," Renewable and Suslainable Energy Reviews, vol. 38, pp. 439—460, 1() 2014.spa
dc.relation.referencesI. Khorsand, C. Kormos, E. G. Macdonald, and C. Crawford, "Wind energy in the city: An interurban comparison of social acceptance of wind energy projects," Energy Resenrch U Social Science, vol. 8, pp. 66-77, 7 2015.spa
dc.relation.referencesZ. Simic, J. G. Havelka, and M. Bozicevic Vrhovcak, "Small wind turbines — A unique segment of the wind power market," Renewable Eneryy, vol. 5(), pp. 1()27 1036, 2 2013.spa
dc.relation.referencesAnders Grauers, Design of Direcl-driven Permanent-magnel Generalors for Wind Turbines. PhD thesis, CHALMERS UNIVERSITY OF TECHNOLOGY, Góteborg, 1996.spa
dc.relation.referencesJ. M. Carrasco, E. Galván, and R. Portillo, "Wind Turbine Applications," Allernalive Energy in Power Elenlronics, pp. 177 23(), 1spa
dc.relation.referencesA. Tummala, R. K. Velamati, D. K. Sinha, V. Indraja, and V. H. Krishna, "A review on small scale wind turbines," Renewable and Sustainable Energy Reviews, vol. 56, pp. 135H371, 4 2016.spa
dc.relation.referencesS. Y. Liu and Y. F. Ho, "Wind energy applications for Taiwan buildings: are the challenges and strategies for small wind energy systems exploitation? " Renewable and Suslainable Energy Remiews, vol. 59, pp. 39—55, 6 2016.spa
dc.relation.referencesS. Eriksson, H. Bernhoff, and M. Leijon, "Evaluation of different, turbine concepts for wind power," Renewable and Suslainable Energy Reviews, vol. 12, pp. 1419—1434, (5 2008.spa
dc.relation.referencesD. S. Kumar, D. Srinivasan, and T. Reindl, "A Fast and Scalable Protection Scheme for Distribution Networks With Distributed Generation," IEEE Transaclions on Power Delivery, vol. 31, pp. 67 75, 2 2016.spa
dc.relation.referencesG. Bodon, E. G. Antonini, S. De Bella, M. Raciti and E. Benini, "Evaluation of the different aerodynamic databases for vertical axis wind turbine simulations," Renewable and Sustainable Energy Reviews, vol. 4(), pp. 386—399, 12spa
dc.relation.referencesM. Raciti Castelli, A. Englaro, and E. Benini, "The Darrieus wind turbine: Proposal for a new performance prediction model l)ased on CFD," Energy, vol. 36, pp. 4919—4934, 8 2011.spa
dc.relation.referencesK. Sharma, A. Biswas, and R. Gupta, "Performance Mcasuremcnt of a Thrcc-Bladcd Combincd Darricus-savonius Rotor," INTERNATIONAL JOURNAL of RENEWA- BLE ENERGY RESEARCII, vol. 3, 2013.spa
dc.relation.referencesA. Ghosh, A. Biswas, K. K. Sharma, and R. Gupta, "Computational analysis of flow physics of a combincd thrcc bladcd Darricus Savonius wind rotor," Journal of the Energy Institutc, vol. 88, pp. 425—437, 11 2015.spa
dc.relation.referencesJ. Serrano González, M. Burgos Payán, J. M. R. Santos, and F. Gonzálcz-Longatt, "A rcvicw and recent dcvclopmcnts in the optimal wind-turbinc micro-siting problcm," Renewable and Sustainable Energy Reviews, vol. 30, pp. 133—144, 2 2014.spa
dc.relation.referencesG. R. Collccutt and R. G. Flay, "The economic optimisation of horizontal axis wind turbine design," Journal of Wind Engineering and Industrial Aerodynamics, vol. 61, PP. 87-97, 6 1996.spa
dc.relation.referencesT. Christidis, G. Lewis, and P. Bigclow, "Undcrstanding support and opposition to wind turbine dcvclopmcnt in Ontario, Canada and possiblc stcps for futuro dcvclopmcnt," Remewable Energy, vol. 112, pp. 93—103, 11 2017.spa
dc.relation.referencesX. Sun, Y. Chen, Y. Cao, G. Wu, Z. Zhcng, and D. Iluang, "Rcscarch on thc acrody- namic charactcristics of a lift drag hybrid vertical axis wind turbine," Advances in Mechanical Engineering, vol. 8, p. 168781401662934, 1 2016.spa
dc.relation.referencesD. W. Wekcsa, C. Wang, Y. Wci, and W. Zhu, "Experimental and numerical study of turbulence cffcct on aerodynamic performance of a small-scalc vertical axis wind turbine," Journal of Wind Engineering and Industrial Aerodynamics, vol. 157, pp. 1 14, 10 2016.spa
dc.relation.referencesJ. L. Menet, "A doublc-stcp Savonius rotor for local production of electricity: a dcsigll study," Renewable Energy, vol. 29, pp. 1843—1862, 9 2004.spa
dc.relation.referencesX. Jin, G. Zhao, K. Gao, and W. Ju, "Darricus vertical axis wind turbine: Basic rcscarch mcthods," Renewablc and Sustainable Energy Reviews, vol. 42, pp. 212—225, 2 2015.spa
dc.relation.referencesF. Wenehenubun, A. Saputra, and II. Sutanto, "An Experimental Study on the Per- formancc of Savonius Wind Turbines Rclatcd With Thc Numbcr Of Blades," Energy Procedia, vol. 68, pp. 297—304, 4 2015.spa
dc.relation.referencesY. Wang, D. Ionel, D. G. Dorrell, and S. Strctz, "Establishing the Power Factor Li- mitations for Synchronous Reluctance Machines," IEEE Transactions on Magnetics, vol. 51, pp. 1-4, 11 2015.spa
dc.relation.referencesE. M. Alave-Vargas, R. Orellana Lafuente, and D. F. Sempértegui-Tapia, "Estado del arte de aerogeneradores verticales (Monografía)," Investigacion u desarrollo, vol. 22, 7 2022.spa
dc.relation.referencesP. J. Musgrove, "Energy form wind in rural and urban communities," pp. 290 309, 1 1985.spa
dc.relation.referencesL. E. Arango Jiménez and J. J. Gutiérrez Granada, "Máquinas de corriente alterna," 2011.spa
dc.relation.referencesM. Cheng and Y. Zhu, "The state of the art of wind energy conversion systems and technologies: A review," Energy Conversion and Management, vol. 88, pp. 332—347, 12 2014.spa
dc.relation.referencesZ. Alnasir and M. Kazerani, "Performance comparison of standalone SCIG and P MSG- based wind energy conversion systems," in 2014 IEEE 27th Canadian Conference on Electrical and Computer Engineering (CCECE), pp. IS, IEEE, 5 2014.spa
dc.relation.referencesK. Nakamura and O. Ichinokura, "Super-Multipolar Permanent Magnet Reluctance Generator Designed for Small-Scale Wind-Turbine Generation," IEEE Transactions on Magnetics, vol. 48, pp. 3311314, 11 2012.spa
dc.relation.referencesM. Abarzadeh, H. Madadi, and L. Chang, "Power Electronics in Small Scale Wind Thirbine Systems," in Advances in Wind Power, InTech, 11 2012.spa
dc.relation.referencesJ. Solís-Chaves, C. Rocha-Osorio, A. Murari, V. M. Lira, and A. J. Sguarezi Filho, "Extracting potable water from humid air plus electric wind generation: A possible application for a Brazilian prototype," Renewable Energy, vol. 121, pp. 102 115, 6 2018.spa
dc.relation.referencesA. Arifin, I. Al-Bahadly, and S. C. Mukhopadhyay, "State of the Art of Switched Reluctance Generator," Energy and Power Engineering, vol. 04, no. 06, pp. 447 458, 2012.spa
dc.relation.referencesL. H. Hansen, L. Helle, E. Blaabjerg, S. Ritchie, S. MunkNielsen, H. Bindner, P. So- rensen, and B. Bak-Jensen, Conceptual survey of Generators and Power Electronics for Wind Turbines. Risoe-R No. 1205, forskningscenter ed., 2001.spa
dc.relation.referencesS. Tokunaga and K. Kesamaru, "FEM simulation of novel small wind turbine genera- tion system with synchronous reluctance generator," in 2011 International Conference on Electrical Machines and Systems, pp. 145, IEEE, 8 2011.spa
dc.relation.referencesH. Khelifa, A. Bentounsi, F. Rebahi, and M. Machmoum, "FE Simulation and Expe- riment of a Self-Excited SynRel Generator Based on COMSOL Software," Journal of Electrical Engineering U Technology, vol. 16, pp. 899 905, 3 2021.spa
dc.relation.referencesN. Tesla, "Electro-magnetic motor," 1888.spa
dc.relation.referencesS. Khaliq, M. Modarres, T. A. Lipo, and B.-I. Kwon, "Design of Novel Axial-Flux Dual Stator Doubly Fed Reluctance Machine," IEEE Transactions on Magnetics, vol. 51, pp. IM, 11 2015.spa
dc.relation.referencesF. Marignetti, A. Vahedi, and S. M. Mirimani, "An Analytical Approach to Eccentricity in Axial Flux Permanent Magnet Synchronous Generators for Wind Thirbines," Electric Power Components and Systems, vol. 43, pp. 1039 1050, 6 2015.spa
dc.relation.referencesChen, L. He, J. Li, X. Cheng, and H. Lu, "An inexact bi-level simula- tion—optimization model for conjunctive regional renewable energy planning and air pollution control for electric power generation systems," Applied Energy, vol. 183, pp. 969 983, 12 2016.spa
dc.relation.referencesM. Aydin, "Magnet skew in cogging torque minimization of axial gap permanent mag- net motors," Procedings of the 2008 International Conference on Electrical Machines, ICEM'08, 2008.spa
dc.relation.referencesF. Crescimbini, A. Lidozzi, and L. Solero, "High-Speed Generator and Multilevel Con- verter for Energy Recovery in Automotive Systems," IEEE Transactions on Industrial Electronics, vol. 59, pp. 2678 2688, 6 2012.spa
dc.relation.referencesA. Di Gerlando, G. Foglia, M. F. lacchetti, and R. Perini, "Axial Flux PM Machines With Concentrated Armature Windings: Design Analysis and Test Validation of Wind Energy Generators," IEEE Transactions on Industrial Electronics, vol. 58, pp. 3795 3805, 9 2011.spa
dc.relation.referencesM. Aydin and M. Gulec, "Reduction of cogging torque in double-rotor axial-flux permanent-magnet disk motors: A review of cost-effective magnet-skewing techniques with experimental verification," IEEE Transactions on Industrial Electronics, vol. 61, no. 9, pp. 5025 5034, 2014.spa
dc.relation.referencesS. Kahourzade, A. Mahmoudi, H. W. Ping, and M. N. Uddin, "A Comprehensive Review of Axial-Flux Permanent-Magnet Machines," Canadian Journal of Electrical and Computer Engineering, vol. 37, pp. 19.33, 12 2014.spa
dc.relation.referencesM. Aydin, Z. Q. Zhu, T. A. Lipo, and D. Howe, "Minimization of cogging torque in axial-flux permanent-magnet machines: Design concepts," IEEE Transactions on Magnetics, vol. 43, no. 9, pp. 3614 3622, 2007.spa
dc.relation.referencesYicheng Chen and P. Pillay, "Axial-flux PM wind generator with a soft magnetic composite core," in Fourtieth IAS Annual Meeting. Conference Record of the 2005 Industry Applications Conference, 2005. , pp. 231237, IEEE.spa
dc.relation.referencesY. Wang, W. X. C. Chen, and Z. Dong, "A parametric magnetic network model for axial flux permanent magnet machine with coreless stator," in 2014 17th International Conference on Electrical Machines and Systems (ICEMS), pp. 1108 1113, IEEE, 10 2014.spa
dc.relation.referencesH. Lovatt, "Design of an in-wheel motor for a solar-powered electric vehicle," in Eighth International Conference on Electrical Machines and Drives, pp. 234-238, IEE, 1997.spa
dc.relation.referencesF. Giulii Capponi, G. De Donato, and F. Caricchi, "Recent Advances in Axial-Flux Permanent-Magnet Machine Technology," IEEE Transactions on Industry Applica- tions, vol. 48, pp. 219(E2205, 11 2012.spa
dc.relation.referencesVicent and G. González, "Integracion de energias renovables en redes electricas inteligentes," tech. rep.spa
dc.relation.referencesN. Chaker, I. B. Salah, S. Tounsi, and R. Neji, "Design of Axial-Flux Motor for 'fraction Application," Journal of Electromagnetic Analysis and Applications, vol. 01, no. 02, pp. 73 84, 2009.spa
dc.relation.referencesA. Parviainen, M. Niemela, J. Pyrhonen, and J. Mantere, "Performance comparison between low-speed axial-flux and radial-flux permanent-magnet machines including mechanical constraints," in IEEE International Conference on Electric Machines and Drives, 2005., pp. 1695 1702, IEEE, 2005.spa
dc.relation.referencesA. B. Letelier, D. A. Gonzalez, J. A. Tapia, R. Wallace, and M. A. Valenzuela, "Cogging Torque Reduction in an Axial Flux PM Machine via Stator Slot Displacement and Skewing," IEEE Transactions on Industry Applications, vol. 43, no. 3, pp. 685-693, 2007.spa
dc.relation.referencesI. Rahman, P. M. Vasant, B. S. Singh, M. Abdullah-Al-Wadud, and N. Adnan, "Review of recent trends in optimization techniques for plug-in hybrid, and electric vehicle char- ging infrastructures," Renewable and Sustainable Energy Reviews, vol. 58, pp. 1039 1047, 5 2016.spa
dc.relation.referencesParviainen, M. Niemela, J. Pyrhonen, and J. Mantere, "Performance comparison etween low-speed axial-flux and radial-flux permanent-magnet machines including echanical constraints," in IEEE International Conference on Electric Machines and mes, 2005., pp. 1695 1702, IEEE, 2005.spa
dc.relation.referencesL.F. Garcia-Rodriguez, J. Diego Rosero Ariza, J. Luis Chacón Velazco, and J. Ernesto Jaramillo Ibarra, "Vertical Axis Wind Turbine Design and Installation at Chicamocha Canyon," in Entropy and Exergy in Renewable Energy, IntechOpen, 1 2022.spa
dc.relation.referencesD. Han, Y. Heo, N. Choi, S. Nam, K. Choi, and K. Kim, "Design, Fabrication, and Performance Test of a 100-W Helical-Blade Vertical-Axis Wind frrbine at Low Tip- Speed Ratio," Energies, vol. 11, p. 1517, 6 2018.spa
dc.relation.referencesM. A. Miller, S. Duvvuri, I. Brownstein, M. Lee, J. O. Dabiri, and M. Hultmark, "Vertical-axis wind turbine experiments at full dynamic similarity," Journal of Fluid Mechanics, vol. 844, pp. 707 720, 6 2018.spa
dc.relation.referencesT. Letcher, Wind Energy Engineering A Handbook for Onshore and Offshore Wind Turbines. KwaZulu: Academic Press, 2 ed., 2017.spa
dc.relation.referencesE. A. Attia, H. Saber, and H. El Gamal, "Performance and dynamic characteristics of a multi stages vertical axis wind turbine," Journal of Vibroengineering, vol. 18, pp. 4015A032, 9 2016.spa
dc.relation.referencesL. Pan, Z. Zhu, H. Xiao, and L. Wang, "Numerical Analysis and Parameter Optimi- zation of J-Shaped Blade on Offshore Vertical Axis Wind frrbine," Energies, vol. 14, p. 6426, 10 2021.spa
dc.relation.referencesY. Wang, Blade Design of Verticnl Axis Wind Turbine at Low Tip-speed-ratios. PhD thesis, The Ohio State University, Ohio State, 2018.spa
dc.relation.referencesS. Brusca, R. Lanzafame, and M. Messina, "Design of a vertical-axis wind turbine: how the aspect ratio affects the turbine's performance," International Journal of Energy and Environmental Engineering, vol. 5, pp. 333—340, 12 2014.spa
dc.relation.referencesK. Pytel, S. Gumula, P. Dudek, S. Bielik, S. Szpin, W. Hudy, M. Piaskowska Silars- ka, and M. Kowalski, "Testing the performance characteristics of specific profiles for applications in wind turbines," E3S Web of Conferences, vol. 108, p. 01015, 7 2019.spa
dc.relation.referencesD. Hilewit, E. A. Matida, A. Fereidooni, H. Abo el Ella, and F. Nitzsche, "Power coefficient measurements of a novel vertical axis wind turbine," Energy Science (Y Engineeñng, vol. 7, pp. 2373 2382, 12 2019.spa
dc.relation.referencesF. Chabane, A. Arif, and M. Aymene Barkat, "Aerodynamic shape optimization of a vertical-axis wind turbine with effect number of blades," DYNA, vol. 89, pp. 154 162, 3 2022.spa
dc.relation.referencesM. A. Miller, S. Duvvuri, and M. Hultmark, "Solidity effects on the performance of vertical-axis wind turbines," Flow, vol. 1, p. E9, 9 2021.spa
dc.relation.referencesT. Mon and S. Worasinchai, "Performance modelling of the Darrieus wind turbine," E3S Web of Conferences, vol. 302, p. 01001, 9 2021.spa
dc.relation.referencesH. Salem, A. Mohammedredha, and A. Alawadhi, "High Power Output Augmented Vertical Axis Wind 'Ihlrbine," Fluids, vol. 8, p. 70, 2 2023.spa
dc.relation.referencesA. Bonfiglio, F. Delfino, F. Gonzalez-Longatt, and R. Procopio, "Steady-state assess- ments of PMSGs in wind generating units," International Journal of Electrical Power U Energy Systems, vol. 90, pp. 87 93, 9 2017.spa
dc.relation.referencesG. Frias, G. Catuogno, R. Moncada, and G. García, "Torque control with MPC applied to a SynRM," in 2020 IEEE Congreso Bienal de Argentina, ARGENCON 2020 - 2020 IEEE Biennial Congress of Argentina, ARGENC()N 2020, Institute of Electrical and Electronics Engineers Inc., 12 2020.spa
dc.relation.referencesG. Artetxe, J. Paredes, B. Prieto, M. Martinez-lturralde, and I. Elosegui, "Optimal pole number and winding designs for low speed-high torque synchronous reluctance machines," Energies, vol. 11, 1 2018.spa
dc.relation.referencesM. Bugsch and B. Piepenbreier, "High-Bandwidth Sensorless Control of Synchronous Reluctance Machines in the Low- and Zero-Speed Range," IEEE Transactions on In- dustry Applications, vol. 56, pp. 2663—2672, 5 2020.spa
dc.relation.referencesF.-J. Lin, M.-S. Huang, S.-G. Chen, and C.-W. Hsu, "Intelligent Maximum Torque per Ampere Tracking Control of Synchronous Reluctance Motor Using Recurrent Legendre Fuzzy Neural Network," IEEE Transactions on Power Electronics, vol. 34, pp. 12080 12094, 12 2019.spa
dc.relation.referencesF.-J. Lin, M.-S. Huang, S.-G. Chen, C.-W. Hsu, and C.-H. Liang, "Adaptive Backstep- ping Control for Synchronous Reluctance Motor Based on Intelligent Current Angle Control," IEEE Transactions on Power Electronics, vol. 35, pp. 7465 7479, 7 2020.spa
dc.relation.referencesV. Manzolini, D. Da Ru, and S. Bolognani, "An Effective Flux Weakening Control of a SylR,M Drive Including MTPV Operation," IEEE Transactions on Industry Applica- tions, vol. 55, pp. 270(E2709, 5 2019.spa
dc.relation.referencesH. Mahmoud, G. Bacco, M. Degano, N. Bianchi, and C. Gerada, "Synchronous Re- luctance Motor Iron Losses: Considering Machine Nonlinearity at MTPA, F W, and M T PV Operating Conditions," IEEE Transactions on Energy Conversion, vol. 33, pp. 1402 1410, 9 2018.spa
dc.relation.referencesM. Malinowski and A. Milczarek, "Monitoring and Control Algorithms Applied to Small Wind Turbine with Grid-Connected/Stand-Alone Mode of Operation," Prz. Elektrotechniczny, vol. 2, pp. 832S38, 2012.spa
dc.relation.referencesS. Hansen, M. Malinowski, F. Blaabjerg, and M. P. Kazmierkowski, "Sensorless control strategies for P W M rectifier," Fifteenth Annual IEEE, vol. 2, pp. 832S38, 2000.spa
dc.relation.referencesO. Gutfleisch, M. A. Willard, E. Briick, C. H. Chen, S. G. Sankar, and J. P. Liu, "Magnetic Materials and Devices for the 21st Century: Stronger, Lighter, and More Energy Efficient," Advanced Materials, vol. 23, pp. 821S42, 2 2011.spa
dc.relation.referencesE. Martínez, F. Sanz, S. Pellegrini, E. Jiménez, and J. Blanco, "Life cycle assessment of a multi-megawatt wind turbine," Renewable Energy, vol. 34, pp. 667 673, 3 2009.spa
dc.relation.referencesI. Anderson, R. McCallurn, and M. Kramer, "Development of improved powder for bonded permanent magnets," in Digest of INTERMAG 2003. International Magnetics Conference (Cat. No.03CH37401), pp. FBEF07, IEEE.spa
dc.relation.referencesD. Salazar, A. Martín-Cid, R. Madugundo, J. S. Garitaonandia, J. M. Barandiaran, and G. C. Hadjipanayis, "Effect of Nb and Cu on the crystallization behavior of under-stoichiometric Nd WB alloys," Journal of Physics D: Applied Physics, vol. 50, p. 015305, 1 2017.spa
dc.relation.referencesT. Vaimann, A. Kallaste, A. Kilk, and A. Belahcen, "Magnetic properties of reduced Dy NdFeB permanent magnets and their usage in electrical machines," in 2013 Africon, pp. 1<), IEEE, 9 2013.spa
dc.relation.referencesY. Yang, A. Walton, R. Sheridan, K. Giith, R. GauB, O. Gutfleisch, M. Buchert, B.-M. Steenari, T. Van Gerven, P. T. Jones, and K. Binnemans, "REE Recovery from End- of-Life NdFeB Permanent Magnet Scrap: A Critical Review," Journal of Sustainable Metallurgy, vol. 3, pp. 122 149, 3 2017.spa
dc.relation.referencesL. Z. Zhao, H. Y. Yu, W. T. Guo, J. S. Zhang, Z. Y. Zhang, M. Hussain, Z. W. Liu, and J. M. Greneche, "Phase and Hyperfine Structures of Melt-spun Nanocrystalline IEEE Transactions on Magnetics, vol. 53, pp. 1 5, 11 2017.spa
dc.relation.referencesP. J. Musgrove, “Wind energy conversion: Recent progress and future prospects,” Solar & Wind Technology, vol. 4, pp. 37–49, 1 1987.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.ddc670 - Manufactura::671 - Proceso de metalurgia y productos metálicos primariosspa
dc.subject.ddc530 - Física::537 - Electricidad y electrónicaspa
dc.subject.lembEnergía eólicaspa
dc.subject.lembWind powereng
dc.subject.lembTurbinas de airespa
dc.subject.lembAir-turbineseng
dc.subject.proposalmicro generacion eolicaspa
dc.subject.proposalMicro wind generationeng
dc.subject.proposalSymRMeng
dc.subject.proposalSymRMspa
dc.subject.proposalFEAspa
dc.subject.proposalFEAeng
dc.subject.proposalAFPMGeng
dc.subject.proposalAFPMGspa
dc.subject.proposalIMspa
dc.subject.proposalIMeng
dc.titleDiseño y construcción de generador eléctrico y drive de potencia para el control eléctrico en baja tension y potencia 1 Kw orientada a la micro-generación eólica urbana.spa
dc.title.translatedDesign and construction of an electrical generator and power drive for low-voltage electrical control and 1 kW power, oriented towards urban micro-wind power generation.eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1026278217.2023.pdf
Tamaño:
3.44 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería Electrónica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: