Relación de variables ambientales y de paisaje en la distribución de dos Magnolias andinas y sus visitantes florales

dc.contributor.advisorUrrego Giraldo, Ligia Estela
dc.contributor.advisorSerna González, Marcela
dc.contributor.authorSanta Ceballos, Juan Pablo
dc.contributor.orcidSanta Ceballos, Juan Pablo [0000-0002-4380-1276]spa
dc.date.accessioned2024-10-23T21:41:56Z
dc.date.available2024-10-23T21:41:56Z
dc.date.issued2024
dc.descriptionIlustraciones, fotografías, mapasspa
dc.description.abstractMagnolia jardinensis y M. yarumalensis, son especies con distribución restringida al Noroccidente de Colombia. Estas especies enfrentan una amenaza inminente de extinción, principalmente a causa de la degradación de su hábitat. En este estudio se plantean como objetivos: i) determinar los ambientes y coberturas vegetales donde se encuentran M. jardinensis y M. yarumalensis; ii) identificar las variables climáticas, topográficas y del paisaje más relevantes que afectan la distribución de estas especies; iii) Identificar cambios en la distribución de áreas potenciales bajo condiciones de cambio climático para su crecimiento; iv) analizar las diferencias en la composición y abundancia de las comunidades de visitantes florales de M. yarumalensis en distintos niveles de heterogeneidad del paisaje. Los resultados indican que M. jardinensis se distribuye entre 1995-2667 m s.n.m. y M. yarumalensis entre 1648-2760 m s.n.m. Magnolia jardinensis crece en zonas con precipitación media anual de 2364 mm/año, M. yarumalensis en zonas con 2465 mm/año. Una proporción considerable de los individuos se encuentra en sitios cubiertos por vegetación secundaria, pastos limpios y plantaciones forestales. El 10% del área de distribución corresponde a zonas con idoneidad ambiental alta para M. jardinensis y el 5% para M. yarumalensis. Se evidencia una reducción del área idónea para M. yarumalensis en los escenarios futuros cambio climático. Se encontraron nueve especies de visitantes florales en 17 flores de M. yarumalensis colectadas en tres sitios. Solo la especie Hoplandria sp., considerada como polinizador efectivo, fue encontrada en todos los sitios, en asociación a sitios con mayor diversidad de coberturas. Un herbívoro especializado del orden Lepidoptera se encuentra asociado a bosques densos (BD) y con alta biomasa (biomasa). (Tomado de la fuente)spa
dc.description.abstractMagnolia jardinensis and M. yarumalensis are species with a restricted distribution in the Northwest of Colombia. These species face an imminent threat of extinction, mainly due to habitat degradation. This study aims to: i) determine the environments and vegetation coverages where M. jardinensis and M. yarumalensis are found; ii) identify the most relevant climatic, topographic, and landscape variables affecting the distribution of these species; iii) Identify changes in the distribution of potential areas under climate change conditions for their growth; iv) analyze differences in the composition and abundance of floral visitor communities of M. yarumalensis at different levels of landscape heterogeneity. The results indicate that M. jardinensis is distributed between 1995-2667 m above sea level, and M. yarumalensis between 1648-2760 m above sea level. Magnolia jardinensis grows in areas with an average annual precipitation of 2364 mm/year, M. yarumalensis in areas with 2465 mm/year. A considerable proportion of individuals are found in sites covered by secondary vegetation, clean pastures, and forest plantations. 10% of the distribution area corresponds to zones with high environmental suitability for M. jardinensis and 5% for M. yarumalensis. There is evidence of a reduction in the suitable area for M. yarumalensis in future scenarios of climate change. Nine species of floral visitors were found on 17 flowers of M. yarumalensis collected at three sites. Only the species Hoplandria sp., considered an effective pollinator, was found in all sites, associated with areas of higher coverage diversity. A specialized herbivore of the Lepidoptera order is associated with dense forests (BD) and high biomass.eng
dc.description.curricularareaBosques Y Conservación Ambiental.Sede Medellínspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Bosques y Conservación Ambientalspa
dc.description.researchareaEcología de bosques tropicalesspa
dc.description.researchareaCambio climáticospa
dc.format.extent150 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87034
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Ciencias Agrariasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Ciencias Agrarias - Maestría en Bosques y Conservación Ambientalspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAdhikari D., R. Tiwary y S. K. Barik. 2015. Modelling hotspots for invasive alien plants in India. PLoS One 10(7): e0134665.spa
dc.relation.referencesAdhikari, D., P. P. Singh, R. Tiwari y S. K. Baril. 2019. Modelling the environmental niche and potential distribution of Magnolia campbelli Hook. f. and Thomson for its conservation in eastern Himalaya. Plants of commercial values, 79-88.spa
dc.relation.referencesAguilar-Cano, J., H. Mendoza-Cifuentes y M. Ayala-Joya. 2018. Dos nuevas especies de árboles molinillo (Magnolia: Magnoliaceae) de la Serranía de los Yariguíes, departamento de Santander, Colombia. Biota Colombiana, 19: 27–42. DOI: https://doi.org/10.21068/c2018.v19s1a04spa
dc.relation.referencesAguirre, A, R. Guevara y R. Dirzo. 2011. Effects of forest fragmentation on assemblages of pollinators and floral visitors to male- and female-phase inflorescences of Astrocaryum mexicanum (Arecaceae) in a Mexican rain forest. Journal of Tropical Ecology, 27(1): 25–33. DOI: Https://doi.org/10.1017/s0266467410000556 spa
dc.relation.referencesAhmad, I., S. Verma, S. Mushtaq, A. Abdullah, M. Nasser, M. Tariq y S. Pant. 2021. Ecological analysis and environmental niche modelling of Dactylorhiza hatagirea (D. Don) Soo: A conservation approach for critically endangered medicinal orchid. Saudi J. Biol. Sci., 28, 2109–2122.spa
dc.relation.referencesAizen, M.A., y P. Feinsinger. 1994. Habitat fragmentation, native insect pollinators, and feral honeybees in argentine Chaco Serrano. Ecological Applications, 4: 378-392spa
dc.relation.referencesAizen, M.A., y P. Feinsinger. 2003. Bees not to be? Responses of insect pollinator faunas and flower pollination to habitat fragmentation In: G.A. Bradshaw, P.A. Marquet, H.A. Mooney (Eds.), Disruptions and Variability: the Dynamics of Climate, Human Disturbance and Ecosystems in the Americas, Springer-Verlag, Berlin pp. 111-129.spa
dc.relation.referencesArnett, R. H. y M. C. Thomas (Eds.). 2000. American Beetles, Volume I: Archostemata, Myxophaga, Adephaga, Polyphaga: Staphyliniformia (Vol. 1). CRC press.spa
dc.relation.referencesArnett, R. H., Thomas, M. C., Skelley, P. E., y J. H. Frank, (Eds.). 2002. American Beetles, Volume II: Polyphaga: Scarabaeoidea through Curculionoidea (Vol. 2). CRC press.spa
dc.relation.referencesAshworth, L., R. Aguilar, L. Galetto y M.A. Aizen. 2004. Why do pollination generalist and specialist plant species show similar reproductive susceptibility to habitat fragmentation?. Journal of Ecology, 92: 717-719.spa
dc.relation.referencesAubry-Kientz, M., V. Rossi, F. Wagner y B. Hérault. 2015. Identifying climatic drivers of tropical forest dynamics. Biogeosciences 12(19): 5583-5596. DOI: http://doi.org/10.5194/bg-12-5583-2015spa
dc.relation.referencesBachman, S. P., R. Field, T. Reader, D. Raimondo, J. Donaldson, G. E. Schatz y E. N. Lughadha. 2019. Progress, challenges and opportunities for Red Listing. Biological Conservation, 234: 45–55. DOI: https://doi.org/10.1016/j.biocon.2019.03.002spa
dc.relation.referencesBachman, S., J. Moat, A. Hill, J. de la Torre y B. Scott. 2011. Supporting Red List threat assessments with GeoCAT: geospatial conservation assessment tool. In: Smith, V. and L. Penev (eds.). e-Infrastructures for data publishing in biodiversity science. ZooKeys 150: 117-126. DOI: http://doi.org/10.3897/zookeys.150.2109spa
dc.relation.referencesBarik, S. K., O. N. Tiwari, D. Adhikari, P. P. Singh, R. Tiwary y S. Barua. 2018. Geographic distribution pattern of threatened plants of India and steps taken for their conservation. Current Science 114(3): 470-503.spa
dc.relation.referencesBartomeus, I., D. P. Cariveau, T. Harrison y R. Winfree. 2018. On the inconsistency of pollinator species traits for predicting either response to land-use change or functional contribution. Oikos 127(2): 306-315. DOI: https://doi.org/10.1111/oik.04507spa
dc.relation.referencesBennett, A. B., y S. Lovell. 2019. Landscape and local site variables differentially influence pollinators and pollination services in urban agricultural sites. PLoS One, 14(2): e0212034.spa
dc.relation.referencesBray, J. R., y J. T. Curtis. 1957. An ordination of the upland forest communities of southern Wisconsin. Ecological monographs, 27(4): 326-349.spa
dc.relation.referencesBrown, B. V., A. Borkent, J. M. Cumming, D. M. Wood, N. E. Woodley y M. A. Zumbado. 2009. Manual of Central America Diptera. Volume 1. Ottawa, NRC Research Press, 714 p.spa
dc.relation.referencesBrown, B. V., A. Borkent, J. M. Cumming, D. M. Wood, N. E. Woodley y M. A. Zumbado. 2010. Manual of Central America Diptera. Volume 2. Ottawa, NRC Research Press, 715 -1442 pp.spa
dc.relation.referencesBrückmann, S. V., J. Krauss y I. Steffan-Dewenter. 2010. Butterfly and plant specialists suffer from reduced connectivity in fragmented landscapes. Journal of Applied Ecology, 47: 799–809spa
dc.relation.referencesBrummitt, N. A., S. P. Bachman, J. Griffiths-Lee, M. Lutz, J. F. Moat, A. Farjon, ... y E.M, Nic Lughadha. 2015. Green plants in the red: A baseline global assessment for the IUCN sampled Red List Index for plants. PloS one, 10(8): e0135152. DOI: https://doi.org/10.1371/journal.pone.0135152spa
dc.relation.referencesBuchhorn, M., B. Smets, L. Bertels, B. D. Roo, M. Lesiv, N. E. Tsendbazar, M. Herold, y S. Fritz. 2020. Copernicus Global Land Service: Land Cover 100m: collection 3: epoch 2019: Globe (Version V3.0.1) [Data set]. Zenodo.spa
dc.relation.referencesBurd, M. 1994. Bateman’s principle and plant reproduction: the role of pollen limitation in fruit and seed set. Botanical Reviews, 60: 83-139.spa
dc.relation.referencesCalderón, E., A. Cogollo, C. Velasquez-Rua, M. Serna-González, N. García y M. C. Rivers. 2016b. Magnolia yarumalensis. The IUCN Red List of Threatened Species 2016: e.T38863A2884340. DOI: https://doi.org/10.2305/IUCN.UK.2016-1.RLTS.T38863A2884340.enspa
dc.relation.referencesCalderón, E., A. Cogollo, M. C. Rivers y M. Serna-González. 2016a. Magnolia jardinensis. The IUCN Red List of Threatened Species 2016: e.T14050337A67514058. DOI: https://dx.doi.org/10.2305/IUCN.UK.2016-1.RLTS.T14050337A67514058.enspa
dc.relation.referencesCalderón-Caro, J. y A. M. Benavides. 2022. Deforestación y fragmentación en las áreas más biodiversas de la Cordillera Occidental de Antioquia (Colombia). Biota Colombiana, 23(1): e942spa
dc.relation.referencesChen, Y., G. Chen, J. Yang y W. Sun. 2016. Reproductive biology of Magnolia sinica (Magnoliaceae), a threatened species with extremely small populations in Yunnan, China. Plant Diversity, 38(5): 253–258. DOI: https://doi.org/10.1016/j.pld.2016.09.003spa
dc.relation.referencesClarke, K. R. 1993. Non‐parametric multivariate analyses of changes in community structure. Australian journal of ecology, 18(1), 117-143. DOI: https://doi.org/10.1111/j.1442-9993.1993.tb00438.xspa
dc.relation.referencesCogollo-Pacheco, A., S. Hoyos-Gómez, y M. Serna-González. 2019. Una nueva especie y otros registros de Magnoliaceae para Colombia. Brittonia, 71(1): 32–38. DOI: https://doi.org/10.1007/s12228-018-9554-0spa
dc.relation.referencesCorral-Aguirre, J., y L. R. Sánchez-Velásquez. 2006. Seed ecology and germination treatments in Magnolia dealbata: an endangered species. Flora-Morphology, Distribution, Functional Ecology of Plants 201(3): 227-232. DOI: https://doi.org/10.1016/j.flora.2005.07.004spa
dc.relation.referencesCoto, D. 1998. Estados inmaduros de insectos de los órdenes Coleoptera, Diptera y Lepidoptera: manual de reconocimiento. CATIE. Serie Técnica. Manual Técnico 27. 153 p.spa
dc.relation.referencesCunningham, S. A. 2000. Depressed pollination in habitat fragments causes low fruit set. Proceedings of the Royal Society of London B., 267: 1149-1152.spa
dc.relation.referencesDe Frenne, P., J. Lenoir, M. Luoto, B. R. Scheffers, F. Zellweger, J. Aalto, M. B. Ashcroft, D. M. Christiansen, G. Decocq, K. De Pauw, S. Govaert, C. Greiser, E. Gril, A. Hampe, T. Jucker, D. H. Klinges, I. A. Koeslemeijer, J. J. Lembrechts, R. Marrec, C. Meeussen, J. Ogée, V. Tyystjärvi, P. Vangansbeke y K. Hylander. 2021. Forest microclimates and climate change: Importance, drivers and future research agenda. Global Change Biology 27(11): 2279-2297. DOI: https://doi.org/10.1111/gcb.15569spa
dc.relation.referencesDeguines, N., R. Julliard, M. Flores y C. Fontaine. 2016. Functional homogenization of flower visitor communities with urbanization. Ecology and Evolution, 6, pp. 1967 - 1976. DOI: https://doi.org/10.1002/ece3.2009.spa
dc.relation.referencesDonaldson, J., I. Nanni, C. Zachariades y J. Kemper. 2002. Effects of habitat fragmentation on pollinator diversity and plant reproductive success in Renosterveld shrublands of South Africa. Conservation Biology, 16: 1267-1276.spa
dc.relation.referencesDubayah, R.O., J. Armston, S. P. Healey, Z. Yang, P. L. Patterson, S. Saarela, G. Stahl, L. Duncanson, J. R. Kellner, J. Bruening y A. Pascual. 2023. GEDI L4B Gridded Aboveground Biomass Density, Version 2.1. ORNL DAAC, Oak Ridge, Tennessee, USA. DOI: https://doi.org/10.3334/ORNLDAAC/2299spa
dc.relation.referencesDyer, L. A., M. S. Singer, J. T. Lill, J. O. Stireman, G. L. Gentry, R. J. Marquis, R. E. Ricklefs, H. F. Greeney, D. L. Wagner y H.C. Morais. 2007. Host specificity of Lepidoptera in tropical and temperate forests. 448(7154): 696–699. DOI: https://doi.org/10.1038/nature05884spa
dc.relation.referencesElith, J., S. J. Phillips, T. Hastie, M. Dudík, Y. E. Chee y C. J. Yates. 2011. A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 17: 43-57. DOI: https://doi.org/10.1111/j.1472-4642.2010.00725.xspa
dc.relation.referencesFahrig, L. 2003. Effects of habitat fragmentation on biodiversity. Annual review of Ecology, Evolution, and Systematics 34: 487-515. DOI: https://doi.org/10.1146/annurev.ecolsys.34.011802.132419spa
dc.relation.referencesFAO. 2009. Guía para la descripción de suelos. Organización de las Naciones Unidas para la Agricultura y la Alimentación. Roma, Italia. 111 pp.spa
dc.relation.referencesFiglar, R.B., y H.P. Nooteboom. 2004. Notes on Magnoliaceae IV. Blumea Biodiversity, Evolution and Biogeography of Plants, 49: 87–100. DOI: https://doi.org/10. 3767/00065 1904x 486214spa
dc.relation.referencesFletcher, R. J., T. A. H. Smith, N. Kortessis, E. M. Bruna y R. D. Holt. 2023. Landscape experiments unlock relationships among habitat loss, fragmentation, and patch-size effects. Ecology, March 1-16. DOI: https://doi.org/10.1002/ecy.4037spa
dc.relation.referencesFranklin, J. 2013. Species distribution models in conservation biogeography: developments and challenges. Diversity and distributions. 19(10): 1217-1223. DOI: https://doi.org/10.1111/ddi.12125spa
dc.relation.referencesFreeman, B. G., J. A. Lee‐Yaw, J. M. Sunday y A. L. Hargreaves. 2018. Expanding, shifting and shrinking: The impact of global warming on species’ elevational distributions. Global Ecology and Biogeography 27(11): 1268-1276. DOI: https://doi.org/10.1111/geb.12774spa
dc.relation.referencesGaviria, J., B. L. Turner y B. M. J. Engelbrecht. 2017. Drivers of tree species distribution across a tropical rainfall gradient. Ecosphere 8(2): e01712. DOI: https://doi.org/10.1002/ecs2.1712spa
dc.relation.referencesGBIF. 2023. Global Biodiversity Information Facility (GBIF) Occurrence Download. DOI: https://doi.org/10.15468/dl.d49vkgspa
dc.relation.referencesGe, Q., H. Wang, T. Rutishauser y J. Dai. 2015. Phenological response to climate change in China: a meta‐analysis. Global Change Biology, 21. DOI: https://doi.org/10.1111/gcb.12648.spa
dc.relation.referencesGonzález‐Robles, A., T. Salido, A. Manzaneda, F. Valera y P. Rey, 2020. Habitat loss and degradation due to farming intensification modify the floral visitor assemblages of a semiarid keystone shrub. Ecological Entomology, 45. DOI: https://doi.org/10.1111/een.12933.spa
dc.relation.referencesGottsberger, G., I. Silberbauer-Gottsberger, R. S. Seymour y S. Dötterl. 2012. Pollination ecology of Magnolia ovata may explain the overall large flower size of the genus. Flora, 207(2): 107–118. DOI: https://doi.org/10.1016/j.flora.2011.11.003spa
dc.relation.referencesGroom, M.J. 1998. Allee effects limit population viability of an annual plant. The American Naturalist, 151: 487-496.spa
dc.relation.referencesHammer, Ø., D. A. T. Harper y P.D. Ryan. 2001. PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4(1): 9pp.spa
dc.relation.referencesHarris, I., T. J. Osborn, P. Jones y D. Lister. 2020. Version 4 of the CRUTS monthly high-resolution gridded multivariate climate dataset. Scientific Data, 7(1): 1-18. DOI: https://doi.org/10.1038/s41597-020-0453-3spa
dc.relation.referencesHarrisson, T. 2021 CMIP6: The next generation of climate models explained, CMIP6: the next generation of climate models explained. https://www.carbonbrief.org/cmip6-the-next-generation-of-climate-models-explained/ (consultado diciembre 15 de 2023).spa
dc.relation.referencesHernández-Vera, G., J. L. Navarrete-Heredia y J.A. Vázquez-García. 2021. Beetles as floral visitors in the Magnoliaceae: an evolutionary perspective. Arthropod-Plant Interactions 15: 273–283. DOI: https://doi.org/10.1007/s11829-021-09819-3spa
dc.relation.referencesHijmans, R. J., S. Cameron y J. Parra. 2017. WorldClim - Global Climate Data | Free climate data for ecological modeling and GIS. https://worldclim.org/ (consultado julio de 2023)spa
dc.relation.referencesHoldridge, L. R. 1947. Determination of world plant formations from simple climate data. Science 105(2727): 367-368. DOI: https://doi.org/10.1126/science.105.2727.36spa
dc.relation.referencesIDEAM. 2021. Mapa de Cobertura de la Tierra. Adaptación Corine Land Cover. República de Colombia. Escala 1:100.000. Periodo 2018. Instituto de Hidrología, Meteorología y Estudios Ambientales. Colombia. https://www.colombiaenmapas.gov.co/?e=-92.48484485351355,-9.347822580715487,-56.01023547852323,19.283565789165777,4686&b=igac&u=0&t=43&servicio=881 (consultado julio, 2023).spa
dc.relation.referencesIGAC. 2011. Modelo Digital de Elevación. SRTM 30 Metros. Instituto geográfico Agustín Codazzi. Colombia. https://www.colombiaenmapas.gov.co/?e=-92.48484485351355,-9.347822580715487,-56.01023547852323,19.283565789165777,4686&b=igac&u=0&t=23&servicio=159 (consultado julio, 2023).spa
dc.relation.referencesIGAC. 2014. Base de datos vectorial básica. Colombia. Escala 1:500.000. Año 2014. Instituto geográfico Agustín Codazzi. Colombia. https://www.colombiaenmapas.gov.co/?e=-87.3432432910149,-6.999782382052668,-61.15183704102185,17.112163412738656,4686&b=igac&u=0&t=23&servicio=204 (consultado julio10 de 2023).spa
dc.relation.referencesIPBES. 2019. Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) secretariat. Bonn, Germany. 56 pp. DOI: https://doi.org/10.5281/zenodo.3553579spa
dc.relation.referencesIralu, V., A. H. Mir, D. Adhikari, H. Choudhury, y K. Upadhaya. 2023. Complementing habitat distribution model with land use land cover for conservation of the rare and threatened tree Magnolia punduana Hk. f & Th. in northeast India. Landscape and Ecological Engineering, 19: 617-632. DOI: https://doi.org/10.1007/s11355-023-00567-5spa
dc.relation.referencesIUCN. 2022. Guidelines for Using the IUCN Red List Categories and Criteria. Version 15.1. Prepared by the Standards and Petitions Committee. https://www.iucnredlist.org/documents/RedListGuidelines.pdf. (consultado julio, 2023).spa
dc.relation.referencesIUCN. 2023. The IUCN Red List of Threatened Species. https://www.iucnredlist.org (consultado julio, 2023).spa
dc.relation.referencesIverson R.L. y A. M. Prasad. 1998. Predicting abundance of 80 tree species following climate change in the Eastern United States. Ecological Monographs 68:465-485.spa
dc.relation.referencesKinho, J., D. I. D. Arini, L. Abdulah, R. Susanti, A. Irawan, M. Yulianti, ... y A. Tampang. 2022. Habitat characteristics of magnolia based on spatial analysis: Landscape protection to conserve endemic and endangered Magnolia sulawesiana Brambach, Noot., and Culmsee. Forests, 13(5): 802. DOI: https://doi.org/10.3390/f13050802spa
dc.relation.referencesKlimaszewski, J., R. O. Webster, D. W. Langor, A. Brunke, A. Davies, C. Bourdon, M. Labrecque, A. F. Newton, J. A. Dorval y J. H. Frank. 2018. Aleocharine Rove Beetles of Eastern Canada (Coleoptera, Staphylinidae, Aleocharinae): A Glimpse of Megadiversity. Cham: Springer International Publishing. 901 pp. DOI: https://doi.org/10.1007/978-3-319-77344-5_9spa
dc.relation.referencesKlimaszewski, J., y H. Sturm. 1991. Four new species of the oxypodine genus Polylobus solier (Coleoptera: Staphylinidae: Aleocharinae) collected on the flower heads of some high Andean giant rosette plants (Espeletiinae: Asteraceae). The Coleopterists Bulletin, 45(1), 1–13spa
dc.relation.referencesLa Sorte, F. A. y W. Jetz. 2010. Projected range contractions of montane biodiversity under global warming. Proceedings of the Royal Society B: Biological Sciences 277(1699): 3401-3410. DOI: https://doi.org/10.1098/rspb.2010.0612spa
dc.relation.referencesLal, R., S. Chauhan, A. Kaur, V. Jaryan, R. K. Kohli, R. Singh, ... y D. R. Batish. 2023. Projected Impacts of Climate Change on the Range Expansion of the Invasive Straggler Daisy (Calyptocarpus vialis) in the Northwestern Indian Himalayan Region. Plants, 13(1): 68. DOI: https://doi.org/10.3390/plants13010068spa
dc.relation.referencesLamont, B.B., P. G. L. Klinkhamer y E.T.F Witkowski. 1993. Population fragmentation may reduce fertility to zero in Banksia goodii – a demonstration of the Allee effect. Oecologia, 94: 446-450spa
dc.relation.referencesLang, N., W. Jetz, K. Schindler y J.D. Wegner. 2023. A high-resolution canopy height model of the Earth. Nature Ecology & Evolution, 7(11): 1778-1789.spa
dc.relation.referencesLeidner, A., N. Haddad y T. Lovejoy. 2010. Does Tropical Forest Fragmentation Increase Long-Term Variability of Butterfly Communities?. PLoS ONE, 5. DOI: https://doi.org/10.1371/journal.pone.0009534.spa
dc.relation.referencesLindenmayer, D. B., y J. F. Franklin. 2013. Conserving Forest biodiversity: a comprehensive multiscaled approach. Island press. Washington. United States of America. 351 pp.spa
dc.relation.referencesLinsky, J., D. Crowley, E. Beckman-Bruns y E. E. D. Coffey. 2022b. Global Conservation Gap Analysis of Magnolia. Atlanta Botanical Garden. https://www.globalconservationconsortia.org/resources/global-conservation-gap-analysis-of-magnolia/ (consultado enero, 2024).spa
dc.relation.referencesLinsky, J., E. E. Coffey, E. Beech, M. Rivers, D. Cicuzza, S. Oldfield y D. Crowley. 2022. Assessing Magnoliaceae through time: Major global efforts to track extinction risk status and ex situ conservation. Plants, People, Planet, 5(4): 496-501.spa
dc.relation.referencesLozano-Contreras, G. 1994. Dugandiodendron and Talauma (Magnoliaceae) en el Neotrópico. Academia Colombiana de Ciencias Exactas, Físicas y Naturales. Editora Guadalupe Ltda. Colombia, Colombia. 147 pp.spa
dc.relation.referencesLuck, M., y J. Wu. 2002. A gradient analysis of urban landscape pattern: a case study from the Phoenix metropolitan region, Arizona, USA. Landscape ecology, 17: 327-339.spa
dc.relation.referencesLughadha, N. E., S. P. Bachman, T. C. Leão, F. Forest, J. M. Halley, J. Moat, ... y B. E. Walker. 2020. Extinction risk and threats to plants and fungi. Plants, People, Planet, 2(5): 389-408. DOI: https://doi.org/10.1002/ppp3.10146spa
dc.relation.referencesMellanby, K.1939. Low Temperature and Insect Activity. Proceedings of The Royal Society B: Biological Sciences, 127, pp. 473-487. DOI: https://doi.org/10.1098/RSPB.1939.0035.spa
dc.relation.referencesMementoDB Inc. 2023. Memento database (Versión 5.1.0) (Software). MementoDB Inc. https://mementodatabase.com/ (consultado julio, 2023).spa
dc.relation.referencesMenéndez, R., A. González‐Megías, P. Jay‐Robert y R. Marquéz‐Ferrando. 2014. Climate change and elevational range shifts: Evidence from dung beetles in two European mountain ranges. Global Ecology and Biogeography 23(6): 646-657. DOI: https://doi.org/10.1111/geb.12142spa
dc.relation.referencesMIROC6 AGCM Document Writing Team. 2021, Description of MIROC6 AGCM, CCSR Report No. 65, Division of Climate System Research, Atmosphere and Ocean Research Institute, The University of Tokyo. DOI: https://doi.org/10.15083/0002000180spa
dc.relation.referencesMontoya-López, A. F. y C. A. Bota-Sierra. 2023. Magnolia unicarmensis (Magnolia subsect. Dugandiodendron; Magnoliaceae): a new species from tropical montane forests of Antioquia, Colombia. Phytotaxa 626(1): 41-50. DOI: https://doi.org/10.11646/PHYTOTAXA.626.1.5spa
dc.relation.referencesMoritz, C., J. L. Patton, C. J. Conroy, J. L. Parra, G. C. White y S. R. Beissinger. 2008. Impact of a century of climate change on small-mammal communities in Yosemite National Park, USA. Science 322(5899): 261-264. DOI: https://doi.org/10.1126/science.1163428spa
dc.relation.referencesMountain Research Initiative EDW Working Group. 2015. Elevation-dependent warming in mountain regions of the world. Nature Climate Change 5: 424-430. DOI: https://doi.org/10.1038/nclimate2563spa
dc.relation.referencesMyers, N., R. A. Mittermeler, C. G. Mittermeler, G. A. B. Da Fonseca y J. Kent. 2000. Biodiversity hotspots for conservation priorities. Nature 403(6772): 853-858. DOI: https://doi.org/10.1038/35002501spa
dc.relation.referencesNavarrete-Heredia, J.L., Newton, A.F., Thayer, M.K. y D. S. Chandler, D.S. 2002. Guía Ilustrada Para los Generos de Staphylinidae (Coleoptera) deMexico; Universidad de Guadalajara y CONABIO: Coyoacan, Mexico. pp. 1–371.spa
dc.relation.referencesNeuschulz, E. L., T. Mueller, M. Schleuning y K. Böhning-Gaese. 2016. Pollination and seed dispersal are the most threatened processes of plant regeneration. Scientific Reports 6(1): 29839. DOI: https://doi.org/10.1038/srep29839spa
dc.relation.referencesNúñez-Avellaneda, L. A., y R. Rojas-Robles. 2008. Biología reproductiva y ecología de la polinización de la palma milpesos Oenocarpus bataua en los Andes colombianos. Caldasia, 30(1): 101-125.spa
dc.relation.referencesPautasso, M., y M. L. McKinney. 2007. The botanist effect revisited: plant species richness, county area, and human population size in the United States. Conservation Biology, 21(5): 1333-1340.spa
dc.relation.referencesPearson R.G. 2007. Species' distribution modeling for conservation educators and practitioners. Synthesis. American Museum of Natural History. http://ncep.amnh.orgspa
dc.relation.referencesPepin, N., R. S. Bradley, H. F. Diaz, M. Baraer, E. B. Caceres, N. Forsythe, ... y D. Q. Yang. 2015. Elevation-dependent warming in mountain regions of the world. Nature Climate Changr, 5: 424–430spa
dc.relation.referencesPhillips, S. J., M. Dudík y R. E. Schapire. 2020. Maxent software for modeling species niches and distributions (Version 3.4.4) [Software]. http://biodiversityinformatics.amnh.org/open_source/maxent/.spa
dc.relation.referencesPhillips, S. J., R. P. Anderson y R. E. Schapire. 2006. Maximum entropy modeling of species geographic distributions. Ecological modelling 190(3-4): 231-259. DOI: https://doi.org/10.1016/j.ecolmodel.2005.03.026spa
dc.relation.referencesPlanet Labs PCB. 2023. Planet Application Program Interface: In Space for Life on Earth. Planet. https://api.planet.comspa
dc.relation.referencesPronaturaleza. 2021. Perfil de Ecosistema del Hotspot de Biodiversidad de los Andes Tropicales. Critical Ecosystem Partnership Fund. 60 pp.spa
dc.relation.referencesQGIS Development Team. 2022. QGIS Geographic Information System (Version 3.26.3) [Software]. Open Source Geospatial Foundation (OSGeo). https://qgis.org.spa
dc.relation.referencesR Core Team. 2022. R: A language and environment for statistical computing (Version 4.2.2) [Software]. R Foundation for Statistical Computing. https://www.R-project.org/.spa
dc.relation.referencesRebetez, M. y M. Reinhard. 2008. Monthly air temperature trends in Switzerland 1901-2000 and 1975-2004. Theoretical and Applied Climatology 91: 27-34.spa
dc.relation.referencesRivers, M., E. Beech, L. Murphy y S. Oldfield. 2016. The Red List of Magnoliaceae-revised and extended. Botanic Gardens Conservation International (BGCI). Richmond, UK. 63 pp.spa
dc.relation.referencesRodríguez-Duque, D. L., M. Escobar-Alba, J. D. García-González, J. E. Carvajal-Cogollo y G. A. Aymard-Corredor. 2022. A new Andean species of Magnolia (section Talauma, Magnolioideae, Magnoliaceae), and a key to the species found in Colombia. Harvard Papers in Botany 27(2): 131-141. DOI: https://doi.org/10.3100/hpib.v27iss2.2022.n1spa
dc.relation.referencesRowe, K. C., K. M. C. Rowe, M. W. Tingley, M. S. Koo, J. L. Patton, C. J. Conroy, J. D. Perrine, S. R. Beissinger y C. Moritz. 2015. Spatially heterogeneous impact of climate change on small mammals of montane California. Proceedings of the Royal Society B: Biological Sciences 282(1799): 20141857. DOI: https://doi.org/10.1098/rspb.2014.1857spa
dc.relation.referencesSantos, T. y J. Tellería. 2006. Pérdida y fragmentación del hábitat: efecto sobre la conservación de las especies. Ecosistemas 15(2): 3-12.spa
dc.relation.referencesSerna, M., C. Velásquez y A. Cogollo. 2009. Novedades taxonómicas y un nuevo registro de Magnoliaceae para Colombia. Brittonia 61: 35-40. DOI: https://doi.org/10.1007/s12228-008-9055-7spa
dc.relation.referencesSerna‐González, M., L. E. Urrego‐Giraldo, J. P. Santa‐Ceballos y H. Suzuki‐Azuma. 2022. Flowering, floral visitors and climatic drivers of reproductive phenology of two endangered magnolias from neotropical endangered magnolias from neotropical Andean forests. Plant Species Biology 37(1): 20-37. DOI: https://doi.org/10.1111/1442-1984.12351spa
dc.relation.referencesSetsuko, S., T. Nagamitsu y N. Tomaru. 2013. Pollen flow and effects of population structure on selfing rates and female and male reproductive success in fragmented Magnolia stellata populations. BMC Ecology 13: 1-12. DOI: https://doi.org/10.1186/1472-6785-13-10spa
dc.relation.referencesSeymour, R.S., I. Silberbauer-Gottsberger y G. Gottsberger. 2010. Respiration and temperature patterns in thermogenic flowers of Magnolia ovata under natural conditions in Brazil. Functional Plant Biology, 37: 870–878. DOI: https://doi.org/10.1071/fp10039spa
dc.relation.referencesShahbazi, A., S. Matinkhah, J. Khajeali, H. Bashari y M.T. Esfahani. 2016. The effects of pollinators and seed predators (Bruchidius koenigi Schilsky) on the breeding biology of Hedysarum criniferum Boiss. Plant Species Biology, 32(1): 36–44. DOI: https://dpi.org/10.1111/1442-1984.12126spa
dc.relation.referencesShapiro, S. S. y M. B. Wilk. 1965. An Analysis of Variance Test for Normality (Complete Samples). Biometrika 52(3/4): 591-611. DOI: https://doi.org/10.2307/2333709spa
dc.relation.referencesShi, X., Q. Yin, Z. Sang, Z. Zhu, Z. Jia y L. Ma. 2021. Prediction of potentially suitable areas for the introduction of Magnolia wufengensis under climate change. Ecological Indicators 127: 107762. DOI: https://doi.org/10.1016/j.ecolind.2021.107762spa
dc.relation.referencesSilva, L., A. Rocha y C. Silva. 2022. Surface temperature behavior in view of the conversion of tropical dry forest into anthropic uses, northern Minas Gerais–Brazil. PLoS ONE, 17. DOI: https://doi.org/10.1371/journal.pone.0270991.spa
dc.relation.referencesSteffan‐Dewenter, I., y T. Tscharntke. 2002. Insect communities and biotic interactions on fragmented calcareous grasslands - a mini review. Biological Conservation, 104, 275-284. https://doi.org/10.1016/S0006-3207(01)00192-6.spa
dc.relation.referencesSteffan-Dewenter, I., y T. Tscharntke. 1999. Effects of habitat isolation on pollinator communities and seed set. Oecologia, 121: 432-440.spa
dc.relation.referencesSteffan-Dewenter, I., U. Münzenberg, C. Bürger, C. Thies y T. Tscharntke. 2002a. Scale-dependent effects of landscape context on three pollinator guilds. Ecology, 83: 1421-1432.spa
dc.relation.referencesSuárez-Castro, A. F., M. M. Mayfield, M. G. E. Mitchell, L. Cattarino, M. Maron y J. R. Rhodes. 2020. Correlations and variance among species traits explain contrasting impacts of fragmentation and habitat loss on functional diversity. Landscape Ecology 35(10): 2239-2253. DOI: https://doi.org/10.1007/s10980-020-01098-2spa
dc.relation.referencesSun, W. B., Y. P. Ma y S. Blackmore. 2019. How a new conservation action concept has accelerated plant conservation in China. Trends in Plant Science 24(1): 4-6. DOI: https://doi.org/10.1016/j.tplants.2018.10.009spa
dc.relation.referencesTerlau, J., U. Brose, N. Eisenhauer, A. Amyntas, T. Boy, A. Dyer, A. Gebler, C. Hof, T. Liu, C. Scherber, U Schlägel, A. Schmidt y M. Hirt. 2023. Microhabitat conditions remedy heat stress effects on insect activity. Global Change Biology, 29, pp. 3747 - 3758. DOI: https://doi.org/10.1111/gcb.16712.spa
dc.relation.referencesThien, L.B. 1974. Floral biology of Magnolia. American Journal of Botany, 61(10): 1037–1045. DOI: https://doi.org/10.1002/j.1537-2197.1974.tb12321.xspa
dc.relation.referencesTraveset, A., R. Castro-Urgal,X. Rotllan-Puig y A. Lázaro. 2018. Effects of habitat loss on the plant–flower visitor network structure of a dune community. Oikos, 127, 45-55. DOI: https://doi.org/10.1111/OIK.04154.spa
dc.relation.referencesTurner, M. G. 2010. Disturbance and landscape dynamics in a changing world. Ecology 91(10): 2833-2849. DOI: https://doi.org/10.1890/10-0097.1spa
dc.relation.referencesVásquez-Morales, S. G., O. Téllez-Valdés, M. D. R. Pineda-López, L. R. Sánchez-Velásquez, N. Flores-Estevez y H. Viveros-Viveros. 2014. Effect of climate change on the distribution of Magnolia schiedeana: a threatened species. Botanical Sciences, 92(4): 575-585.spa
dc.relation.referencesVázquez-García, J. A., D. A. Neill, M. Asanza, A. J. Pérez, A. Dahua-Machoa, E. Merino-Santi, A. F. Delgado-Chaves y S. M. Urbano-Apraez. 2017. Magnolia mindoensis (subsect. Talauma, Magnoliaceae): Una especie nueva del Chocó biogeográfico premontano en Colombia y Ecuador. Brittonia, 69: 197–208. DOI: https://doi.org/10.1007/s12228-016-9449-xspa
dc.relation.referencesVranckx, G., J. Mergeay, K. Cox, B. Muys, H. Jacquemyn y O. Honnay. 2014. Tree density and population size affect pollen flow and mating patterns in small fragmented forest stands of pedunculate oak (Quercus robur L.). Forest Ecology and Management, 328: 254-261.spa
dc.relation.referencesWalters, M. y R. J. Scholes (eds.). 2017. The GEO Handbook on Biodiversity Observation Networks. Springer. Cham, Switzerland. DOI: https://doi.org/10.1007/978-3-319-27288-7spa
dc.relation.referencesWang, R., H. Jia, J. Wang y Z. Zhang. 2010. Flowering and pollination patterns of Magnolia denudata with emphasis on anatomical changes in ovule and seed development. Flora, 205(4): 259–265. DOI: https://doi.org/10.1016/j.flora.2009.04.003spa
dc.relation.referencesWang, R., S. Sai-Xu, X. Liu, Y. Zhang, J. Wang y Z. Zhang. 2014. Thermogenesis, flowering and the association with variation in floral odour attractants in Magnolia sprengeri (Magnoliaceae). PLoS ONE, 9(6): e99356. DOI: https://doi.org/10.1371/journal.pone.0099356spa
dc.relation.referencesWang, R., y Z. Zhang. 2015. Floral thermogenesis: An adaptive strategy of pollination biology in Magnoliaceae. Communicative and Integrative Biology, 8(1): e992746. DOI: https://dx.doi.org/10.4161%2F19420889.2014.992746spa
dc.relation.referencesWani, I. A., S. Verma, S. Mushtaq, A. A. Alsahli, M. N. Alyemeni, M. Tariq y S. Pant. 2021. Ecological analysis and environmental niche modelling of Dactylorhiza hatagirea (D. Don) Soo: A conservation approach for critically endangered medicinal orchid. Saudi Journal of Biological Sciences, 28(4): 2109-2122. DOI: https://doi.org/10.1016/j.sjbs.2021.01.054spa
dc.relation.referencesWilcock, C., y R. Neiland. 2002. Pollination failure in plants: why it happens and when it matters. Trends in Plant Sciences, 7: 270-277spa
dc.relation.referencesWilcoxon, F. 1945. Individual Comparisons by Ranking Methods. Biometrics Bulletin 1(6): 80-83. DOI: https://doi.org/10.2307/3001968spa
dc.relation.referencesYang, J. T., Jiang, X., Chen, H., Jiang, P., Liu, M., and Y. Huang. 2022. Predicting the Potential Distribution of the Endangered Plant Magnolia wilsonii Using MaxEnt under Climate Change in China. Polish Journal of Environmental Studies, 31(5).spa
dc.relation.referencesYoung, N., L. Carter y P. Evangelista. 2011. A MaxEnt Model v3.3.3e Tutorial (ArcGIS v10). Natural Resource Ecology Laboratory. Colorado State University. http://ibis.colostate.edu/webcontent/ws/coloradoview/tutorialsdownloads/a_maxent_model_v7.pdf (consultado septiembre 25 de 2023)spa
dc.relation.referencesZambrano, J., C. X. Garzon-Lopez, L. Yeager, C. Fortunel, N. J. Cordeiro y N. G. Beckman. 2019. The effects of habitat loss and fragmentation on plant functional traits and functional diversity: what do we know so far? Oecologia 191(3): 505-518. DOI: https://doi.org/10.1007/s00442-019-04505-xspa
dc.relation.referencesZhang, M. y X. Yi. 2021. Seedling recruitment in response to artificial gaps: predicting the ecological consequence of forest disturbance. Plant Ecology 222: 81-92. DOI: https://doi.org/10.1007/s11258-020-01089-yspa
dc.relation.referencesZu, K., Z. Wang, X. Zhu, J. Lenoir, N. Shrestha, T. Lyu, A. Luo, Y. Li, C. Ji, S. Peng, J. Meng y J. Zhou. 2021. Upward shift and elevational range contractions of subtropical mountain plants in response to climate change. Science of the Total Environment 783: 146896. DOI: https://doi.org/10.1016/j.scitotenv.2021.146896spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc570 - Biología::577 - Ecologíaspa
dc.subject.ddc580 - Plantas::584 - Monocotiledóneas, angiospermas basales, clorantales, magnoliasspa
dc.subject.ddc580 - Plantas::581 - Temas específicos en historia natural de las plantasspa
dc.subject.ddc570 - Biología::578 - Historia natural de los organismos y temas relacionadosspa
dc.subject.ddc500 - Ciencias naturales y matemáticas::508 - Historia naturalspa
dc.subject.lembEcosistemas vulnerables - Colombia
dc.subject.lembPlantas - Hábitat - Colombia
dc.subject.lembFlores - Conservación
dc.subject.lembCambios climáticos
dc.subject.proposalAndes tropicalesspa
dc.subject.proposalespecies amenazadasspa
dc.subject.proposalconservaciónspa
dc.subject.proposalnicho ecológicospa
dc.subject.proposalpolinizadoresspa
dc.subject.proposalTropical Andeseng
dc.subject.proposalEndangered specieseng
dc.subject.proposalConservationeng
dc.subject.proposalEcological nicheeng
dc.subject.proposalPollinatorseng
dc.titleRelación de variables ambientales y de paisaje en la distribución de dos Magnolias andinas y sus visitantes florales
dc.title.translatedInteraction of environmental and landscape variables in the distribution of two Andean Magnolias and their floral visitorseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentGrupos comunitariosspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentResponsables políticosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleEfectos de la fragmentación en la conservación de dos Magnolias andinasspa
oaire.fundernameCODEI -TdeA I.U.spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1041328891.2024.pdf
Tamaño:
5.23 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Bosques y Conservación Ambiental

Bloque de licencias

Mostrando 1 - 2 de 2
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
No hay miniatura disponible
Nombre:
JuanPabloSantaCeballos.pdf
Tamaño:
464.51 KB
Formato:
Adobe Portable Document Format
Descripción:
Licencia tesis