Identificación de modelos relevantes al control de glicemia en personas con diabetes mellitus tipo 1

dc.contributor.advisorRivadeneira Paz, Pablo Santiagospa
dc.contributor.advisorVallejo Velásquez, Mónica Aydespa
dc.contributor.authorHoyos Giraldo, Juan Davidspa
dc.contributor.corporatenameUniversidad Nacional de Colombia - Sede Medellínspa
dc.contributor.researchgroupGRUPO DE INVESTIGACIÓN EN TECNOLOGÍAS APLICADAS - GITAspa
dc.date.accessioned2020-09-09T19:23:49Zspa
dc.date.available2020-09-09T19:23:49Zspa
dc.date.issued2020-09-08spa
dc.description.abstractEn este trabajo se propone aplicar técnicas de identificación en modelos relevantes al control, para representar la glicemia considerando la administración de insulina e ingesta de carbohidratos en pacientes con diabetes mellitus tipo 1. Se realizó un estudio observacional analítico, utilizando el simulador metabólico UVA/Padova para generar 33 pacientes virtuales, además se recolectaron datos de 75 pacientes reales tratados en Medellín-Colombia entre los años 2017-2019. Se compararon diferentes modelos matemáticos existentes en la literatura y el modelo propuesto, realizando un análisis de identificabilidad estructural y práctica de estos modelos para garantizar la unicidad de la solución, así como la capacidad de estimar los parámetros que expliquen la dinámica interna del sistema. También se plantearon varios tipos discretización, funciones de costo y técnicas de optimización determinísticas y no convencionales. En los pacientes virtuales, se obtuvo un ajuste promedio del 52.2% en la etapa de calibración, y una diferencia en la estimación de las herramientas de la insulinoterapia del 16.5%, estos resultados fueron obtenidos en un periodo de 3 días. Mientras que en la cohorte de 75 pacientes reales, inicialmente se obtuvo un ajuste promedio del 30.5% y una diferencia del 46.9% entre las herramientas de la terapia definidas por el modelo y las configuradas en la bomba, sin embargo se propuso un algoritmo de corrección para mitigar el efecto de factores como la omisión de bolo, mal conteo de carbohidratos y anuncios a destiempo, corrigiendo los datos de entrada de forma fuera de línea. Al corregir los datos mediante reglas y un algoritmo genético, se obtuvo en promedio un ajuste del 47.8% y una diferencia en las herramientas del 35.1%.spa
dc.description.abstractOn this thesis, identification techniques in relevant control models are applied, in order to represent glycemia considering the insulin administration and carbohydrate intake in patients with type 1 diabetes mellitus. An analytical observational study was carried out, using the UVA / Padova metabolic simulator to generate 33 virtual patients, alsa real data was collected from 75 real patients treated in Medellín-Colombia between years 2017-2019. Different mathematical models existing in the literature and the proposed model were compared, carrying out an analysis of the structural and practical identifiability of these models to guarantee the uniqueness of the solution, as well as the ability to estimate the parameters that explain the internal dynamics of the system. Various types of discretization, cost functions, deterministic and unconventional optimization techniques were also considered. In virtual patients, an average adjustment of 52.2% was obtained in the calibration stage, and a difference in the estimation of insulin therapy tools of 16.5%, these results were obtained during a 3 days period. While in the cohort of 75 real patients, an average fit of 30.5% was initially obtained and a difference of 46.9% between the therapy tools defined by the model and those configured in the pump, however, a correction algorithm was proposed to mitigate the effect of factors such as bolus skipping, poor carbohydrate counting, and untimely advertisements, correcting the input data offline. Correcting the data using rules and a genetic algorithm, an average adjustment of 47.8% and a difference in the tools of 35.1% were obtained.spa
dc.description.additionalLínea de Investigación: Sistemas dinámicos y controlspa
dc.description.degreelevelMaestríaspa
dc.format.extent119spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78431
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de Ingeniería Eléctrica y Automáticaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Automatización Industrialspa
dc.relation.references[Association, 2011] Association, A. (2011). Diagnosis and classi cation of diabetes mellitus. Diabetes Care, 36:S67{S74.spa
dc.relation.references[Balsa-Canto et al., 2010] Balsa-Canto, E., Alonso, A., and Banga, J. (2010). An iterative identi cation procedure for dynamic modeling of biochemical networks. BMC systems biology, 4:11.spa
dc.relation.references[Bellman and Astr om, 1970] Bellman, R. and Astr om, K. (1970). On structural identi ability. Mathematical Biosciences, 7:329{339.spa
dc.relation.references[Bellu et al., 2007] Bellu, G., Saccomani, M. P., Audoly, S., and D'Angi o, L. (2007). Daisy: A new software tool to test global identi ability of biological and physiological systems. Computer Methods and Programs in Biomedicine, 88(1):52 { 61.spa
dc.relation.references[Ben Sasi and Elmalki, 2013] Ben Sasi, A. and Elmalki, M. (2013). A fuzzy controller for blood glucose-insulin system. Journal of Signal and Information Processing, 04:111{117.spa
dc.relation.references[Bergman et al., 1979] Bergman, R., Ider, Y., Bowden, C., and Cobelli, C. (1979). Quantitative estimation of insulin sensitivity. The American journal of physiology, 236:E667{77.spa
dc.relation.references[Bode et al., 2012] Bode, B. W., Kyllo, J., and Kaufman, F. R. (2012). Pumping protocol: A guide to insulin pump therapy initiation. Medtronic.spa
dc.relation.references[Brun et al., 2001] Brun, R., Reichert, P., and K unsch, H. (2001). Practical identi ability analysis of large environmental simulation models. Water Resources Research - WATER RESOUR RES, 37:1015{1030.spa
dc.relation.references[Cappon et al., 2017] Cappon, G., Acciaroli, G., Vettoretti, M., Facchinetti, A., and Sparacino, G. (2017). Wearable continuous glucose monitoring sensors: A revolution in diabetes treatment. Electronics (Switzerland), 6.spa
dc.relation.references[Chi s et al., 2011] Chi s, O., Banga, J., and Balsa-Canto, E. (2011). Genssi: A software toolbox for structural identi ability analysis of biological models. Bioinformatics (Oxford, England), 27:2610{1.spa
dc.relation.references[Clarke et al., 2009] Clarke, W., Anderson, S., Breton, M., Patek, S., Kashmer, L., and Kovatchev, B. (2009). Closed-loop arti cial pancreas using subcutaneous glucose sensing and insulin delivery and a model predictive control algorithm: The virginia experience. Journal of diabetes science and technology, 3:1031{8.spa
dc.relation.references[Cobelli et al., 2011] Cobelli, C., Renard, E., and Kovatchev, B. (2011). Arti cial pancreas: Past, present, future. Diabetes, 60:2672{82.spa
dc.relation.references[Dalla Man et al., 2014] Dalla Man, C., Micheletto, F., Lv, D., Breton, M., Kovatchev, B., and Cobelli, C. (2014). The uva/padova type 1 diabetes simulator: New features. Journal of diabetes science and technology, 8:26{34.spa
dc.relation.references[El Youssef et al., 2011] El Youssef, J., Castle, J., Branigan, D., Massoud, R., Breen, M., Jacobs, P., Bequette, B., and Ward, W. (2011). A controlled study of the e ectiveness of an adaptive closed-loop algorithm to minimize corticosteroid-induced stress hyperglycemia in type 1 diabetes. Journal of diabetes science and technology, 5:1312{26.spa
dc.relation.references[Ellingsen et al., 2009] Ellingsen, C., Dassau, E., Zisser, H., Grosman, B., Percival, M., Jovanovic, L., and Doyle, F. (2009). Safety constraints in an arti cial pancreatic cell: An implementation of model predictive control with insulin on board. Journal of diabetes science and technology, 3:536{44.spa
dc.relation.references[Facchinetti et al., 2013] Facchinetti, A., Del Favero, S., Sparacino, G., Castle, J., Ward, W., and Cobelli, C. (2013). Modeling the glucose sensor error. IEEE transactions on bio-medical engineering, 61.spa
dc.relation.references[Galias and Yu, 2008] Galias, Z. and Yu, X. (2008). Analysis of zero-order holder discretization of two-dimensional sliding-mode control systems. IEEE Transactions on Circuits and Systems II: Express Briefs, 55(12):1269{1273.spa
dc.relation.references[Garcia-Tirado et al., 2018] Garcia-Tirado, J., Zuluaga-Bedoya, C., and Breton, M. (2018). Identi ability analysis of three control-oriented models for use in arti cial pancreas systems. Journal of diabetes science and technology, 12:937{952.spa
dc.relation.references[Grosman et al., 2018] Grosman, B., Wu, D., Miller, D., Lintereur, L., Roy, A., Parikh, N., and Kaufman, F. (2018). Sensor-augmented pump-based customized mathematical model for type 1 diabetes. Diabetes Technology and Therapeutics, 20:207{221.spa
dc.relation.references[Haidar, 2016] Haidar, A. (2016). The arti cial pancreas: How closed-loop control is revolutionizing diabetes. IEEE Control Systems, 36:28{47.spa
dc.relation.references[Hassan K., 1992] Hassan K., K. (1992). Nonlinear Systems. Macmillan, New York.spa
dc.relation.references[Hong et al., 2018] Hong, H., Ovchinnikov, A., Pogudin, G., and Yap, C. (2018). Global identi ability of di erential models.spa
dc.relation.references[Jeandidier et al., 2008] Jeandidier, N., Riveline, J.-P., Tubiana-Ru , N., Vambergue, A., Catargi, B., Melki, V., Charpentier, G., and Guerci, B. (2008). Treatment of diabetes mellitus using an external insulin pump in clinical practice. Diabetes & Metabolism, 34:425{438.spa
dc.relation.references[Kalman, 1960] Kalman, R. E. (1960). On the general theory of control systems. IFAC Proceedings Volumes, 1(1):471{502.spa
dc.relation.references[Kaya and Mart nez, 2007] Kaya, C. and Mart nez, J. (2007). Euler discretization and inexact restoration for optimal control. Journal of Optimization Theory and Applications, 134:191{206.spa
dc.relation.references[Kirchsteiger et al., 2011] Kirchsteiger, H., Castillo Estrada, G., P olzer, S., Renard, E., and del Re, L. (2011). Estimating interval process models for type 1 diabetes for robust control design. In Proceedings of the 18th World Congress The International Federation of Automatic Control, pages 11761{11766.spa
dc.relation.references[Li et al., 2018] Li, Z., Lu, P., Daijun, Z., and Zhang, T. (2018). Practical identi ability analysis and optimal experimental design for the parameter estimation of the asm2d-based ebpr anaerobic submodel. Mathematical Problems in Engineering, 2018:1{9.spa
dc.relation.references[Ljung and Glad, 1994] Ljung, L. and Glad, T. (1994). On global identi ability for arbitrary model parametrizations. Automatica, 30(2):265 { 276.spa
dc.relation.references[Magdelaine et al., 2016] Magdelaine, N., Chaillous, L., Guilhem, I., Poirier, J.-Y., Krempf, M., Anne-Laure, F.-G., and Moog, C. H. (2016). Wavelets for CGM o -line Denoising. Diabetes Technology and Therapeutics, 18 (S1):A{137.spa
dc.relation.references[Magdelaine et al., 2015] Magdelaine, N., Chaillous, L., Guilhem, I., Poirier, J.-Y., Krempf, M., Moog, C. H., and Le Carpentier, E. (2015). A long-term model of the glucose-insulin dynamics of type 1 diabetes. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEE- RING, 62(6):1546{1552.spa
dc.relation.references[Magni et al., 2007] Magni, L., Raimondo, D., Bossi, L., Dalla Man, C., Nicolao, G., Kovatchev, B., and Cobelli, C. (2007). Model predictive control of type 1 diabetes: An in silico trial. Journal of diabetes science and technology, 1:804{12.spa
dc.relation.references[Meng et al., 2016] Meng, X., Li, J., Zhou, M., Dai, X., and Dou, J. (2016). Population-based incremental learning algorithm for a serial colored traveling salesman problem. IEEE Transactions on Systems, Man, and Cybernetics: Systems, PP:1{12.spa
dc.relation.references[Meshkat et al., 2014] Meshkat, N., Kuo, C. E.-z., and DiStefano, III, J. (2014). On nding and using identi able parameter combinations in nonlinear dynamic systems biology models and combos: A novel web implementation. PLOS ONE, 9(10):1{14.spa
dc.relation.references[Miao et al., 2011] Miao, H., Xia, X., Perelson, A., and Wu, H. (2011). On identi ability of nonlinear ode models and applications in viral dynamics. SIAM review. Society for Industrial and Applied Mathematics, 53:3{39.spa
dc.relation.references[Mizuno et al., 1993] Mizuno, S., Todd, M., and Ye, Y. (1993). On adaptive-step primal-dual interior-point algorithms for linear programming. Mathematics of Operations Research - MOR, 18:964{981.spa
dc.relation.references[Mueckler and Thorens, 2013] Mueckler, M. and Thorens, B. (2013). The slc2 (glut) family of membrane transporters. Molecular aspects of medicine, 34:121{138.spa
dc.relation.references[Nathan et al., 1993] Nathan, D. M., Genuth, S. M., Lachin, J. M., Cleary, P., Cro ord, O. B., Davis, M. I., Rand, L. L., and Siebert, C. (1993). The e ect of intensive treatment of diabetes on the development and progression of long-term complications in insulindependent diabetes mellitus. The New England journal of medicine, 329 14:977{86.spa
dc.relation.references[Parker et al., 2000] Parker, R., III, F., Ward, J., and Peppas, N. (2000). Robust h-inf glucose control in diabetes using a physiological model. AIChE Journal, 46:2537 { 2549.spa
dc.relation.references[Pickup, 2012] Pickup, J. (2012). Insulin-pump therapy for type 1 diabetes mellitus. The New England journal of medicine, 366:1616{24.spa
dc.relation.references[Pinsker et al., 2016] Pinsker, J., Lee, J., Dassau, E., Seborg, D., Bradley, P., Gondhalekar, R., Bevier, W., Huyett, L., Zisser, H., and Doyle, F. (2016). Randomized crossover comparison of personalized mpc and pid control algorithms for the arti cial pancreas. Diabetes Care, 39:dc152344.spa
dc.relation.references[Pohjanpalo, 1978] Pohjanpalo, H. (1978). System identi ability based on the power series expansion of the solution. volume 41, pages 21{23.spa
dc.relation.references[Poretsky, 2010] Poretsky, L. (2010). Principles of Diabetes Mellitus.spa
dc.relation.references[Ramkissoon et al., 2018] Ramkissoon, C., Herrero, P., Bondia, J., and Veh , J. (2018). Unannounced meals in the arti cial pancreas: Detection using continuous glucose monitoring. Sensors (Basel, Switzerland), 18.spa
dc.relation.references[Ramprasad et al., 2004] Ramprasad, Y., Rangaiah, G., and Lakshminarayanan, S. (2004). Robust pid controller for blood glucose regulation in type i diabetics. Industrial and Engineering Chemistry Research - IND ENG CHEM RES, 43.spa
dc.relation.references[Raue et al., 2013] Raue, A., Kreutz, C., Maiwald, T., Bachmann, J., Schilling, M., Klingm uller, U., and Timmer, J. (2013). Structural and practical identi ability analysis of partially observed dynamical models by exploiting the pro le likelihood. Bioinformatics, 25:1923{1929.spa
dc.relation.referencesRaviv and Djaja, 1999] Raviv, D. and Djaja, E. W. (1999). Technique for enhancing the performance of discretized controllers. IEEE Control Systems Magazine, 19(3):52{57.spa
dc.relation.references[R oder et al., 2016] R oder, P., Wu, B., Liu, Y., and Han, W. (2016). Pancreatic regulation of glucose homeostasis. Experimental and Molecular Medicine, 48:e219.spa
dc.relation.references[Reiband et al., 2014] Reiband, H., Schmidt, S., Ranjan, A., Holst, J., Madsbad, S., and N rgaard, K. (2014). Dual-hormone treatment with insulin and glucagon in patients with type 1 diabetes. Diabetes/Metabolism Research and Reviews, 31.spa
dc.relation.references[Rodriguez-Fernandez et al., 2012] Rodriguez-Fernandez, M., Banga, J., and III, F. (2012). Novel global sensitivity analysis methodology accounting for the crucial role of the distribution of input parameters: Application to systems biology models. International Journal of Robust and Nonlinear Control, 22:1082{1102.spa
dc.relation.references[Ruan et al., 2017] Ruan, Y., Wilinska, M. E., Thabit, H., and Hovorka, R. (2017). Modeling day-to-day variability of glucose{insulin regulation over 12-week home use of closedloop insulin delivery. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 64(6):1412{1419.spa
dc.relation.references[Saeedi et al., 2019] Saeedi, P., Petersohn, I., Salpea, P., Malanda, B., Karuranga, S., Unwin, N., Colagiuri, S., Guariguata, L., Motala, A., Ogurtsova, K., Shaw, J., Bright, D., and Williams, R. (2019). Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the international diabetes federation diabetes atlas, 9th edition. Diabetes Research and Clinical Practice, 157:107843.spa
dc.relation.references[S eborg et al., 2011] S eborg, T., Rasmussen, C., Mosekilde, E., and Colding-J rgensen, M. (2011). Bioavailability and variability of biphasic insulin mixtures. European journal of pharmaceutical sciences : o cial journal of the European Federation for Pharmaceutical Sciences, 46:198{208.spa
dc.relation.references[Shapira et al., 2010] Shapira, G., Yodfat, O., HaCohen, A., Feigin, P., and Rubin, R. (2010). Bolus guide: A novel insulin bolus dosing decision support tool based on selection of carbohydrate ranges. Journal of diabetes science and technology, 4:893{902.spa
dc.relation.references[Thompson et al., 2008] Thompson, D., Capes, S., Feig, D., Kader, T., Keely, E., and Kozak, S. (2008). Canadian diabetes association 2008 clinical practice guidelines for the prevention and management of diabetes in canada. Can J Diabetes, 32:S168{S180.spa
dc.relation.references[Tiham er et al., 2003] Tiham er, d., Dadvandipour, S., and Fut as, J. (2003). In uence of discretization method on the digital control system performance. Acta Montanistica Slovaca, 8.spa
dc.relation.references[Todd, 2010] Todd, J. (2010). Etiology of type 1 diabetes. Immunity, 32:457{67.spa
dc.relation.references[Tuncer and Le, 2018] Tuncer, N. and Le, T. (2018). Structural and practical identi ability analysis of outbreak models. Mathematical biosciences, 299.spa
dc.relation.references[Turksoy et al., 2015] Turksoy, K., Samadi, S., Feng, J., Littlejohn, E., Quinn, L., and Cinar, A. (2015). Meal-detection in patients with type 1 diabetes: A new module for the multivariable adaptive arti cial pancreas control system. IEEE journal of biomedical and health informatics, 20.spa
dc.relation.references[Vajda et al., 1989] Vajda, S., Godfrey, K. R., and Rabitz, H. (1989). Similarity transformation approach to identi ability analysis of nonlinear compartmental models. Mathematical Biosciences, 93(2):217 { 248.spa
dc.relation.references[Villaverde and Barreiro, 2016] Villaverde, A. and Barreiro, A. (2016). Identi ability of large nonlinear biochemical networks. MATCH Communications in Mathematical and in Computer Chemistry, 76:259{296.spa
dc.relation.references[Villaverde et al., 2016] Villaverde, A., Barreiro, A., and Papachristodoulou, A. (2016). Structural identi ability of dynamic systems biology models. PLOS Comput Biol, 12.spa
dc.relation.references[Villaverde, 2019] Villaverde, A. F. (2019). Observability and structural identi ability of nonlinear biological systems. Computational Methods for Identi cation and Modelling of Complex Biological Systems, 2019.spa
dc.relation.references[Walsh et al., 2011] Walsh, J., Roberts, R., and Bailey, T. (2011). Guidelines for optimal bolus calculator settings in adults. Journal of diabetes science and technology, 5:129{35.spa
dc.relation.references[Walter and Lecourtier, 1982] Walter, E. and Lecourtier, Y. (1982). Global approaches to identi ability testing for linear and nonlinear state space models. Mathematics and Com- puters in Simulation, 24(6):472 { 482.spa
dc.relation.references[Walter and Pronzato, 1997] Walter, E. and Pronzato, L. (1997). Identi cation of Parame- tric Models from Experimental Data. Springer, London.spa
dc.relation.references[Yuen et al., 2019] Yuen, L., Saeedi, P., Riaz, M., Karuranga, S., Divakar, H., Levitt, N., Yang, X., and Simmons, D. (2019). Idf diabetes atlas: Projections of the prevalence of hyperglycaemia in pregnancy in 2019 and beyond: Results from the international diabetes federation diabetes atlas, 9th edition. Diabetes Research and Clinical Practice, 157:107841.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc610 - Medicina y salud::616 - Enfermedadesspa
dc.subject.ddc500 - Ciencias naturales y matemáticasspa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.proposalDiabetesspa
dc.subject.proposalDiabeteseng
dc.subject.proposalInsulinoterapiaspa
dc.subject.proposalInsulin therapyeng
dc.subject.proposalBomba de infusiónspa
dc.subject.proposalInfusion pumpeng
dc.subject.proposalArtificial pancreaseng
dc.subject.proposalPáncreas artificialspa
dc.subject.proposalAlgoritmo genéticospa
dc.subject.proposalGenetic algorithmeng
dc.titleIdentificación de modelos relevantes al control de glicemia en personas con diabetes mellitus tipo 1spa
dc.title.alternativeIdentification of relevant-control glycemic models for people with type 1 diabetes mellitusspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1216719560.2020.pdf
Tamaño:
11.41 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Automatización Industrial

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.8 KB
Formato:
Item-specific license agreed upon to submission
Descripción: