Aproximación a la actividad inmunotóxica de sustancias per y poli fluoroalquiladas (PFAs) consignadas en la lista CosIng, mediante un modelo de Aprendizaje Automático
dc.contributor.advisor | Niño Vasquez, Luis Fernando | |
dc.contributor.advisor | Quevedo Buitrago, William Giovanni | |
dc.contributor.author | Díaz Bambagüé, Lici Damar Cristina | |
dc.contributor.researchgroup | Toxicología Ambiental y Ocupacional Toxicao | |
dc.contributor.researchgroup | laboratorio de Investigación en Sistemas Inteligentes Lisi | |
dc.date.accessioned | 2025-08-25T16:45:31Z | |
dc.date.available | 2025-08-25T16:45:31Z | |
dc.date.issued | 2025-07-23 | |
dc.description | ilustraciones a color, diagramas, tablas | spa |
dc.description.abstract | La industria cosmética es un sector global de gran importancia, Colombia es líder en la región andina. Las agencias reguladoras buscan garantizar la seguridad de los productos cosméticos, pero algunas sustancias perfluoroalquiladas y polifluoroalquiladas (PFAs), incluidas en la lista europea CosIng, siguen sin estar reguladas a pesar de su potencial toxicidad. Las pruebas tradicionales de inmunotoxicidad requieren altos recursos y están limitadas en Colombia por la Ley 2047 de 2020, que prohíbe la experimentación cosmética con animales. Por ello, este estudio empleó herramientas de aprendizaje automático para evaluar la inmunotoxicidad de PFAs usando datos públicos de la base CompTox de la Agencia Ambiental de EE. UU. Se construyó un conjunto de datos con 1701 sustancias etiquetadas como activas o inactivas y se calcularon descriptores moleculares para alimentar modelos de clasificación. Se entrenaron y compararon modelos como árboles de decisión, bosques aleatorios, XGboost y máquinas de soporte vectorial. El mejor modelo fue interpretado mediante gráficos SHAP para identificar las variables químicas más influyentes. Finalmente, el modelo fue aplicado a los PFAs listados en CosIng, encontrando que las sustancias con estructuras cíclicas tienen mayor probabilidad de ser inmunotóxicas. Estos resultados no reemplazan la experimentación, pero ofrecen una herramienta útil para priorizar sustancias y orientar futuras decisiones regulatorias y estudios toxicológicos. Adicionalmente, se solicitó al INVIMA información sobre PFAs en cosméticos en Colombia y se analizaron 115 productos autorizados. La perfluorodecalina fue clasificada como inmunotóxica; otras no se clasificaron por falta de datos (Texto tomado de la fuente). | spa |
dc.description.abstract | The cosmetic industry is a globally significant sector, and Colombia is a leader in the Andean region. Regulatory agencies aim to ensure the safety of cosmetic products; however, some per- and polyfluoroalkyl substances (PFAs), included in the European CosIng list, remain unregulated despite their potential toxicity. Traditional immunotoxicity testing requires significant resources and is restricted in Colombia by Law 2047 of 2020, which prohibits animal testing for cosmetics. Therefore, this study employed machine learning tools to evaluate the immunotoxicity of PFAs using public data from the U.S. Environmental Protection Agency's CompTox database. A dataset of 1,701 substances labeled as active or inactive was constructed, and molecular descriptors were calculated to train classification models. Decision trees, random forests, XGBoost, and support vector machines were trained and compared. The best-performing model was interpreted using SHAP plots to identify the most influential chemical variables. Finally, the model was applied to PFAs listed in CosIng, revealing that substances with cyclic structures are more likely to be immunotoxic. These results do not replace experimental testing but provide a valuable tool for prioritizing substances and guiding future regulatory decisions and toxicological studies. Additionally, INVIMA was asked to provide information on PFAs in cosmetics authorized in Colombia, and 115 approved products were analyzed. Perfluorodecalin was classified as immunotoxic; others could not be classified due to lack of data. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magister en Toxicología | spa |
dc.description.methods | El diseño metodológico del proyecto propende por el alcance de los objetivos planteados (Ver. Pág. XX), el cual consistió en cuatro fases principales las cuales son: recolección de la información, preprocesamiento y obtención de características estructurales relacionadas con la inmunotoxicidad, desarrollo del modelo de clasificación y evaluación de los modelos. | |
dc.description.researcharea | Efectos adversos en la salud por exposición ocupacional y ambiental a sustancias químicas | |
dc.format.extent | 289 páginas | |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88451 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Medicina | spa |
dc.publisher.place | Bogotá, Colombia | |
dc.publisher.program | Bogotá - Medicina - Maestría en Toxicología | spa |
dc.relation.references | Mondello A, Salomone R, Mondello G. Exploring circular economy in the cosmetic industry: Insights from a literature review. Vol. 105, Environmental Impact Assessment Review. 2024. | |
dc.relation.references | Comisión Europea. Reglamento (CE) 1907/2006 del Parlamento Europeo y del Consejo, relativo al registro, la evaluación y la restricción de las sustancias y preparados químicos (REACH). Diario Oficial de la Unión Europea. 2006;L396 | |
dc.relation.references | European Commission. CosIng cosmetics ingredients & substances. Internal Market, Industry, Entrepreneurship and SMEs. 2020 | |
dc.relation.references | ECHA. Guidance on Information Requirements and Chemical Safety Assessment. Chapter R11: PBT/vPvB assessment. 2017;3.0(June) | |
dc.relation.references | Gobierno Nacional - República de Colombia. LEY 2047 DE 2020. 10 de agosto 2020. | |
dc.relation.references | Sickler J. Vol. 15, Terakeet. 2021 [cited 2025 Jan 2]. Beauty Industry: Cosmetics Market Share, Trends, and Statistics. Available from: https://terakeet.com/blog/beauty-industry/ | |
dc.relation.references | Knight J, Rovida C, Kreiling R, Zhu C, Knudsen M, Hartung T. Continuing Animal Tests on Cosmetic Ingredients for REACH in the EU. ALTEX. 2021;38(4). | |
dc.relation.references | Cosmetics Market Size, Share & Trends Analysis Report By Product (Skin Care, Hair Care), By End-user (Men, Women), By Distribution Channel (Offline, Online), By Region (North America, Europe), And Segment Forecasts, 2024 - 2030. Market Analysis Report | |
dc.relation.references | Elder A, Cappelli MOD, Ring C, Saedi N. Artificial intelligence in cosmetic dermatology: An update on current trends. Clin Dermatol. 2024 May 1;42(3):216–20. | |
dc.relation.references | Consejo PE y del. Reglamento (CE) no 1223/2009. Reglamento (CE) No 1223/2009 DEL PARLAMENTO EUROPEO Y DEL CONSEJO de 30 de noviembre de 2009. 2019 | |
dc.relation.references | U.S Food and Drug Administration. Food and Drug Administration Cosmetic Labeling Guide. 2022 | |
dc.relation.references | Ferreira M, Matos A, Couras A, Marto J, Ribeiro H. Overview of Cosmetic Regulatory Frameworks around the World. Vol. 9, Cosmetics. 2022 | |
dc.relation.references | European Commission. Cosmetic Ingredient Database. List of Regulation Annexes [Internet]. 2021 [cited 2025 Jan 2]; Available from: https://single-market-economy.ec.europa.eu/sectors/cosmetics/cosmetic-ingredient-database_en?prefLang=es | |
dc.relation.references | Chinese Cosmetic Ingredient Regulatory Database. [Internet]. [cited 2025 Jan 2]. Available from: https://www.chinacosing.com | |
dc.relation.references | Sherrow V. Personal Care Products Council (PCPC). In: Encyclopedia of Hair. 2023. | |
dc.relation.references | Informe anual 2020. Natura & Co. . 2020 [cited 2025 Jan 2]; Available from: https://static.rede.natura.net/html/sitecf/br/06_2021/relatorio_anual/Informe_Anual_Natura_GRI_2020.pdf | |
dc.relation.references | Cámara de la Industria Cosmética y de Aseo de la ANDI. Cada colombiano gasta un promedio de $449.000 al año en productos de belleza, cuidado personal y aseo del hogar. 2023 [cited 2025 Jan 2]; Available from: https://www.andi.com.co/Home/Noticia/17696-cada-colombiano-gasta-un-promedio-de-44 | |
dc.relation.references | Muñoz A. Análisis del sector cosmético colombiano en época Covid-19. [cited 2025 Jan 2]; Available from: 9. https://h2gconsulting.com/how2go-colombia/analisis-del-sector-cosmetico-colombiano-enep oca-covid-19/ | |
dc.relation.references | Cámara de Comercio de Cali. Ritmo Cluster [Internet]. 2024 [cited 2025 Jan 3]. Available from: https://www.ccc.org.co/inc/uploads/2024/12/Informe-Econo%CC%81mico-Belleza-2024-43.pdf | |
dc.relation.references | RODRIGUEZ HERNANDEZ CATERINE, RIOS VALENCIA JENNY. LA EVOLUCIÓN DEL MERCADO COSMÉTICO EN MEDELLÍN Y SU ÁREA METROPOLITANA. UN ANÁLISIS DEL PAPEL DE LAS MARCAS EMERGENTES [Internet]. [Medellin]: Tecnológico de Antioquia; 2024 [cited 2025 Jan 3]. Available from: https://dspace.tdea.edu.co/bitstream/handle/tdea/6664/La%20evoluci%C3%B3n%20del%20mercado%20cosm%C3%A9tico%20en%20Medell%C3%ADn%20y%20su%20%C3%A1rea%20Metropolitana.pdf?sequence=1&isAllowed=y | |
dc.relation.references | Comunidad Andina de Naciones. DECISION 833/2018 “Armonización de Legislaciones en materia de Productos Cosméticos.” Comision de la Comunidad Andina. 2018; | |
dc.relation.references | Comunidad Andina de Naciones. DECISION 833/2018 “Armonización de Legislaciones en materia de Productos Cosméticos.” Comision de la Comunidad Andina. 2018; | |
dc.relation.references | MINISTERIO DE SALUD Y PROTECCIÓN SOCIAL. Decreto Número 2078 De 2012. J Chem Inf Model. 2012 | |
dc.relation.references | Instituto Nacional de Vigilancia de Medicamentos y Alimentos. Informe Demuestre la Calidad [Internet]. 2019 [cited 2025 Jan 3]. Available from: https://www.invima.gov.co/documents/20143/449339/INFORME+DEMUESTRA+LA+CALI A D+COSM%C3%89TICOS+2019+PARA+PUBLICACI%C3%93N.pdf | |
dc.relation.references | Abraham K, Monien BH. Transdermal absorption of 13C4-perfluorooctanoic acid (13C4-PFOA) from a sunscreen in a male volunteer – What could be the contribution of cosmetics to the internal exposure of perfluoroalkyl substances (PFAS)? Environ Int. 2022;169. | |
dc.relation.references | OECD/UNEP. Toward a new comprehensive global database of per- and polyfluoroalkyl substances (PFASs): Summary report on updating the OECD 2007 list of per- and polyfluoroalkyl substances (PFASs). Vol. No. 39., Organisation for Economic Co-operation and Development. 2018. | |
dc.relation.references | Simona A Bălan, Et. al. The Total Mass of Per- and Polyfluoroalkyl Substances (PFASs) in California Cosmetic. Environ Sci Technol [Internet]. 2024 [cited 2025 Jan 3];12101-12112. Available from: https://pubmed.ncbi.nlm.nih.gov/38935436/ | |
dc.relation.references | Simona A Bălan, Et. al. The Total Mass of Per- and Polyfluoroalkyl Substances (PFASs) in California Cosmetic. Environ Sci Technol [Internet]. 2024 [cited 2025 Jan 3];12101-12112. Available from: https://pubmed.ncbi.nlm.nih.gov/38935436/ | |
dc.relation.references | Organisation for Economic Co-operation and Development. PFASs and alternatives in cosmetics: report on commercial availability and current uses [Internet]. Paris; 2024 [cited 2025 Jan 6]. Available from: https://www.oecd.org/content/dam/oecd/en/publications/reports/2024/02/per-and-polyfluoroalkyl-substances-and-alternatives-in-cosmetics-report-on-commercial-availability-and-current-uses_dcdcacbc/baa236f5-en.pdf | |
dc.relation.references | Bertocchio Renacu e Lambert Patric. Synthesis of perfluoroalkyl iodides. J Fluor Chem. 1998;87(1). | |
dc.relation.references | Johnson W, Bergfeld WF, Belsito D V., Hill RA, Klaassen CD, Liebler DC, et al. Safety Assessment of Polyfluorinated Polymers as Used in Cosmetics. Int J Toxicol. 2023;42(3). | |
dc.relation.references | Joiner A. The Cleaning of Teeth. In: Handbook for Cleaning/Decontamination of Surfaces. 2007 | |
dc.relation.references | Tomiyuki Nanba, Kazunori Yamazaki, Takabayashi Kuniko Kunihiko. A lipstick composition [Internet]. Japón; 1997 [cited 2025 Jan 6]. Available from: https://patents.google.com/patent/EP0829254A1/en?oq=EP0829254A1 | |
dc.relation.references | Schultes L, Vestergren R, Volkova K, Westberg E, Jacobson T, Benskin JP. Per- and polyfluoroalkyl substances and fluorine mass balance in cosmetic products from the Swedish market: Implications for environmental emissions and human exposure. Environ Sci Process Impacts. 2018;20(12). | |
dc.relation.references | Pütz KW, Namazkar S, Plassmann M, Benskin JP. Are cosmetics a significant source of PFAS in Europe? product inventories, chemical characterization and emission estimates. Environ Sci Process Impacts. 2022;24(10). | |
dc.relation.references | Danish Environmental Protection Agency. Risk Assessment of Fluorinated Substances in Cosmetic Products [Internet]. 2018 [cited 2025 Jan 6]. Available from: https://www2.mst.dk/Udgiv/publications/2018/10/978-87-93710-94-8.pdf | |
dc.relation.references | Harris KJ, Munoz G, Woo V, Sauvé S, Rand AA. Targeted and Suspect Screening of Per- and Polyfluoroalkyl Substances in Cosmetics and Personal Care Products. Environ Sci Technol. 2022;56(20). | |
dc.relation.references | Whitehead HD, Venier M, Wu Y, Eastman E, Urbanik S, Diamond ML, et al. Fluorinated Compounds in North American Cosmetics. Environ Sci Technol Lett. 2021;8(7). | |
dc.relation.references | The European Commission. Commission Regulation (EU) 2017/1000 of 13 June 2017. Official Journal of the European Union. 2017;L 150(June). | |
dc.relation.references | The European Commission. Commission Regulation (EU) 2021/1297 of 4 August 2021 [Internet]. Official Journal of the European Union . 2021 [cited 2025 Jan 6]. Available from: https://eur-lex.europa.eu/eli/reg/2021/1297/oj/eng | |
dc.relation.references | Buck RC, Franklin J, Berger U, Conder JM, Cousins IT, Voogt P De, et al. Perfluoroalkyl and polyfluoroalkyl substances in the environment: Terminology, classification, and origins. Integr Environ Assess Manag. 2011;7(4). | |
dc.relation.references | Rudin E, Glüge J, Scheringer M. Per- and polyfluoroalkyl substances (PFASs) registered under REACH—What can we learn from the submitted data and how important will mobility be in PFASs hazard assessment? Science of The Total Environment. 2023 Jun 15;877:162618 | |
dc.relation.references | Glüge J, Scheringer M, Cousins IT, Dewitt JC, Goldenman G, Herzke D, et al. An overview of the uses of per- And polyfluoroalkyl substances (PFAS). Environ Sci Process Impacts. 2020;22(12). | |
dc.relation.references | Dhore R, Murthy GS. Per/polyfluoroalkyl substances production, applications and environmental impacts. Vol. 341, Bioresource Technology. 2021. | |
dc.relation.references | Sznajder-Katarzyńska K, Surma M, Cieślik I. A Review of Perfluoroalkyl Acids (PFAAs) in terms of Sources, Applications, Human Exposure, Dietary Intake, Toxicity, Legal Regulation, and Methods of Determination. Vol. 2019, Journal of Chemistry. 2019. | |
dc.relation.references | The Interstate Technology & Regulatory Council (ITRC). Technical/Regulatory Guidance Per - polyfluoroalquil substances (PFAs) [Internet]. 2020 [cited 2025 Jan 6]. Available from: https://www.enviro.wiki/images/7/74/ITRC_PFAs-1_092020.pdf | |
dc.relation.references | Buck RC, Korzeniowski SH, Laganis E, Adamsky F. Identification and classification of commercially relevant per- and poly-fluoroalkyl substances (PFAS). Integr Environ Assess Manag. 2021;17(5). | |
dc.relation.references | Rice PA, Cooper J, Koh-Fallet SE, Kabadi S V. Comparative analysis of the physicochemical, toxicokinetic, and toxicological properties of ether-PFAS. Vol. 422, Toxicology and Applied Pharmacology. 2021. | |
dc.relation.references | ECHA. Annex A to the Annex XV restriction report proposal for a restriction of per- and polyfluoroalkyl substances (PFASs) [Internet]. 2023 [cited 2025 Jan 7]. Available from: https://echa.europa.eu/documents/10162/d2f7fce1-b089-c4fd-1101-2601f53a07d1 | |
dc.relation.references | OECD. PER- AND POLYFLUORINATED OECD / UNEP Global PFC Group Synthesis paper on per- and polyfluorinated chemicals ( PFCs ). Environment, Health and Safety, Environment Directorate, OECD. 2013; | |
dc.relation.references | Fujii Y, Harada KH, Koizumi A. Occurrence of perfluorinated carboxylic acids (PFCAs) in personal care products and compounding agents. Chemosphere. 2013;93(3). | |
dc.relation.references | Fujii Y, Harada KH, Koizumi A. Occurrence of perfluorinated carboxylic acids (PFCAs) in personal care products and compounding agents. Chemosphere. 2013;93(3). | |
dc.relation.references | Krafft MP, Riess JG. Selected physicochemical aspects of poly- and perfluoroalkylated substances relevant to performance, environment and sustainability-Part one. Chemosphere. 2015;129. | |
dc.relation.references | ITRC. PFAs — Per- and Polyfluoroalkyl Substances. [Internet]. 2020 [cited 2025 Jan 7]. Available from: https://PFAs-1.itrcweb.org/4-physical-and-chemical-properties/ | |
dc.relation.references | European Chemical Agency. Inclusion of substances of very high concern in the Candidate List for eventual inclusion in Annex XIV (Decision of the European Chemicals Agency) [Internet]. Helsinki; 2020 [cited 2025 Jan 7]. Available from: https://echa.europa.eu/documents/10162/079c04a0-2464-4168-f132-a22ffb04d910 | |
dc.relation.references | NTP. National Toxicology Program (NTP) Monograph Immunotoxicity Associated with Exposure to Perfluorooctanoic Acid or Perfluorooctane Sulfonate. National Institute of Environmental Health Sciences. 2016;(September). | |
dc.relation.references | Antoniou. Evangelia E, Dekant Wolfgang. Childhood PFAS exposure and immunotoxicity: a systematic review and meta-analysis of human studies. Springer Nature Link [Internet]. 2024 [cited 2025 Jan 7]; Available from: file:///C:/Users/licit/Downloads/s13643-024-02596-z.pdf | |
dc.relation.references | Harada K, Inoue K, Morikawa A, Yoshinaga T, Saito N, Koizumi A. Renal clearance of perfluorooctane sulfonate and perfluorooctanoate in humans and their species-specific excretion. Environ Res. 2005;99(2). | |
dc.relation.references | DeWitt JC, Butenhoff JL, Rodricks J V. Toxicological Effects of Perfluoroalkyl and Polyfluoroalkyl Substances. Molecular and Integrative Toxicology. 2015. | |
dc.relation.references | East A, Dawson DE, Brady S, Vallero DA, Tornero-Velez R. A Scoping Assessment of Implemented Toxicokinetic Models of Per- and Polyfluoro-Alkyl Substances, with a Focus on One-Compartment Models. Vol. 11, Toxics. 2023. | |
dc.relation.references | Dawson DE, Lau C, Pradeep P, Sayre RR, Judson RS, Tornero-Velez R, et al. A Machine Learning Model to Estimate Toxicokinetic Half-Lives of Per- and Polyfluoro-Alkyl Substances (PFAS) in Multiple Species. Toxics. 2023;11(2). | |
dc.relation.references | De Silva AO, Armitage JM, Bruton TA, Dassuncao C, Heiger-Bernays W, Hu XC, et al. PFAS Exposure Pathways for Humans and Wildlife: A Synthesis of Current Knowledge and Key Gaps in Understanding. Vol. 40, Environmental Toxicology and Chemistry. 2021. | |
dc.relation.references | Maerten A, Callewaert E, Sanz-Serrano J, Devisscher L, Vinken M. Effects of per- and polyfluoroalkyl substances on the liver: Human-relevant mechanisms of toxicity. Science of The Total Environment. 2024 Dec 1;954:176717. | |
dc.relation.references | Xia C, Diamond ML, Peaslee GF, Peng H, Blum A, Wang Z, et al. Per- and Polyfluoroalkyl Substances in North American School Uniforms. Environ Sci Technol. 2022;56(19). | |
dc.relation.references | Thépaut E, Dirven HAAM, Haug LS, Lindeman B, Poothong S, Andreassen M, et al. Per- and polyfluoroalkyl substances in serum and associations with food consumption and use of personal care products in the Norwegian biomonitoring study from the EU project EuroMix. Environ Res. 2021;195 | |
dc.relation.references | Ragnarsdóttir O, Abou-Elwafa Abdallah M, Harrad S. Dermal bioavailability of perfluoroalkyl substances using in vitro 3D human skin equivalent models. Environ Int. 2024 Jun 1;188:108772. | |
dc.relation.references | Chen Q, Yi S, Ye Q, Zhu Y, Zhong W, Zhu L. Insights into the Dermal Absorption, Deposition, and Elimination of Poly- and Perfluoroalkyl Substances in Rats: The Importance of Skin Exposure. Environ Sci Technol. 2022;56(23). | |
dc.relation.references | Weschler CJ, Nazaroff WW. Dermal uptake of organic vapors commonly found in indoor air. Environ Sci Technol. 2014;48(2). | |
dc.relation.references | Law RM, Ngo MA, Maibach HI. Twenty Clinically Pertinent Factors/Observations for Percutaneous Absorption in Humans. Vol. 21, American Journal of Clinical Dermatology. 2020. | |
dc.relation.references | Franko J, Meade BJ, Frasch HF, Barbero M, Anderson SE. Dermal penetration potential of perfluorooctanoic acid (PFOA) in human and mouse skin. Journal of Toxicology and Environmental Health - Part A: Current Issues. 2012;75(1). | |
dc.relation.references | Poothong S, Thomsen C, Padilla-Sanchez JA, Papadopoulou E, Haug LS. Distribution of Novel and Well-Known Poly- and Perfluoroalkyl Substances (PFASs) in Human Serum, Plasma, and Whole Blood. Environ Sci Technol. 2017;51(22). | |
dc.relation.references | Ng CA, Hungerbühler K. Bioconcentration of perfluorinated alkyl acids: How important is specific binding? Environ Sci Technol. 2013;47(13). | |
dc.relation.references | Alesio JL, Slitt A, Bothun GD. Critical new insights into the binding of poly- and perfluoroalkyl substances (PFAS) to albumin protein. Chemosphere. 2022;287. | |
dc.relation.references | Forsthuber M, Kaiser AM, Granitzer S, Hassl I, Hengstschläger M, Stangl H, et al. Albumin is the major carrier protein for PFOS, PFOA, PFHxS, PFNA and PFDA in human plasma. Vol. 137, Environment International. 2020. | |
dc.relation.references | Salvalaglio M, Muscionico I, Cavallotti C. Determination of energies and sites of binding of PFOA and PFOS to human serum albumin. Journal of Physical Chemistry B. 2010;114(46). | |
dc.relation.references | Butenhoff JL, Pieterman E, Ehresman DJ, Gorman GS, Olsen GW, Chang SC, et al. Distribution of perfluorooctanesulfonate and perfluorooctanoate into human plasma lipoprotein fractions. Toxicol Lett. 2012;210(3). | |
dc.relation.references | Andersen ME, Hagenbuch B, Apte U, Corton JC, Fletcher T, Lau C, et al. Why is elevation of serum cholesterol associated with exposure to perfluoroalkyl substances (PFAS) in humans? A workshop report on potential mechanisms. In: Toxicology. 2021. | |
dc.relation.references | Khazaee M, Christie E, Cheng W, Michalsen M, Field J, Ng C. Perfluoroalkyl acid binding with peroxisome proliferator-activated receptors α, γ, and δ, and fatty acid binding proteins by equilibrium dialysis with a comparison of methods. Toxics. 2021;9(3). | |
dc.relation.references | ATSDR. Toxicological profile for Perfluoroalkyls. (Draft for Public Comment). Public Health. 2018. | |
dc.relation.references | Sadrabadi F, Alarcan J, Sprenger H, Braeuning A, Buhrke T. Impact of perfluoroalkyl substances (PFAS) and PFAS mixtures on lipid metabolism in differentiated HepaRG cells as a model for human hepatocytes. Arch Toxicol. 2024;98(2). | |
dc.relation.references | Guo P, Furnary T, Vasiliou V, Yan Q, Nyhan K, Jones DP, et al. Non-targeted metabolomics and associations with per- and polyfluoroalkyl substances (PFAS) exposure in humans: A scoping review. Vol. 162, Environment International. 2022. | |
dc.relation.references | Schillemans T, Bergdahl IA, Hanhineva K, Shi L, Donat-Vargas C, Koponen J, et al. Associations of PFAS-related plasma metabolites with cholesterol and triglyceride concentrations. Environ Res. 2023;216. | |
dc.relation.references | Alderete TL, Jin R, Walker DI, Valvi D, Chen Z, Jones DP, et al. Perfluoroalkyl substances, metabolomic profiling, and alterations in glucose homeostasis among overweight and obese Hispanic children: A proof-of-concept analysis. Environ Int. 2019;126. | |
dc.relation.references | Zhao W, Zitzow JD, Ehresman DJ, Chang SC, Butenhoff JL, Forster J, et al. Na+/taurocholate cotransporting polypeptide and apical sodium-dependent bile acid transporter are involved in the disposition of perfluoroalkyl sulfonates in humans and rats. Toxicological Sciences. 2015;146(2). | |
dc.relation.references | Pizzurro DM, Seeley M, Kerper LE, Beck BD. Interspecies differences in perfluoroalkyl substances (PFAS)toxicokinetics and application to health-based criteria. Vol. 106, Regulatory Toxicology and Pharmacology. 2019. | |
dc.relation.references | Fischer FC, Ludtke S, Thackray C, Pickard HM, Haque F, Dassuncao C, et al. Binding of Per- and Polyfluoroalkyl Substances (PFAS) to Serum Proteins: Implications for Toxicokinetics in Humans. Environ Sci Technol. 2024;58(2). | |
dc.relation.references | Droge STJ. Membrane-Water Partition Coefficients to Aid Risk Assessment of Perfluoroalkyl Anions and Alkyl Sulfates. Environ Sci Technol. 2019;53(2). | |
dc.relation.references | Maerten A, Callewaert E, Sanz-Serrano J, Devisscher L, Vinken M. Effects of per- and polyfluoroalkyl substances on the liver: Human-relevant mechanisms of toxicity. Science of The Total Environment. 2024 Dec 1;954:176717. | |
dc.relation.references | Zhao W, Zitzow JD, Weaver Y, Ehresman DJ, Chang SC, Butenhoff JL, et al. Organic anion transporting polypeptides contribute to the disposition of perfluoroalkyl acids in humans and rats. Toxicological Sciences. 2017;156(1). | |
dc.relation.references | Hanvoravongchai J, Laochindawat M, Kimura Y, Mise N, Ichihara S. Clinical, histological, molecular, and toxicokinetic renal outcomes of per-/polyfluoroalkyl substances (PFAS) exposure: Systematic review and meta-analysis. Chemosphere. 2024 Nov 1;368:143745. | |
dc.relation.references | Wei Z, Liu J, Wang N, Wei K. Kidney function mediates the association of per- and poly-fluoroalkyl substances (PFAS) and heavy metals with hepatic fibrosis risk. Environ Res. 2024 Dec 15;263:120092. | |
dc.relation.references | Jain RB, Ducatman A. Associations between the concentrations of α-klotho and selected perfluoroalkyl substances in the presence of eGFR based kidney function and albuminuria: Data for US adults aged 40–79 years. Science of the Total Environment. 2022;838. | |
dc.relation.references | Han X, Snow TA, Kemper RA, Jepson GW. Binding of perfluorooctanoic acid to rat and human plasma proteins. Chem Res Toxicol. 2003;16(6). | |
dc.relation.references | Bogdanska J, Borg D, Sundström M, Bergström U, Halldin K, Abedi-Valugerdi M, et al. Tissue distribution of 35S-labelled perfluorooctane sulfonate in adult mice after oral exposure to a low environmentally relevant dose or a high experimental dose. Toxicology. 2011;284(1–3). | |
dc.relation.references | Han X, Kemper R, Jepson G. Subcellular Distribution and Protein Binding of Perfluorooctanoic Acid in Rat Liver and Kidney. Drug Chem Toxicol. 2005;28(2). | |
dc.relation.references | Glynn A, Berger U, Bignert A, Ullah S, Aune M, Lignell S, et al. Perfluorinated alkyl acids in blood serum from primiparous women in Sweden: Serial sampling during pregnancy and nursing, and temporal trends 1996-2010. Environ Sci Technol. 2012;46(16). | |
dc.relation.references | Goecke CM, Jarnot BM, Reo N V. A Comparative Toxicological Investigation of Perfluorocarboxylic Acids in Rats by Fluorine-19 NMR Spectroscopy. Chem Res Toxicol. 1992;5(4). | |
dc.relation.references | Licul-Kucera V, Ragnarsdóttir O, Frömel T, van Wezel AP, Knepper TP, Harrad S, et al. Interspecies comparison of metabolism of two novel prototype PFAS. Chemosphere. 2024 Mar 1;351:141237. | |
dc.relation.references | Han X, Nabb DL, Russell MH, Kennedy GL, Rickard RW. Renal elimination of perfluorocarboxylates (PFCAs). Vol. 25, Chemical Research in Toxicology. 2012. | |
dc.relation.references | Ducatman A, Luster M, Fletcher T. Perfluoroalkyl substance excretion: Effects of organic anion-inhibiting and resin-binding drugs in a community setting. Environ Toxicol Pharmacol. 2021;85. | |
dc.relation.references | Li Y, Fletcher T, Mucs D, Scott K, Lindh CH, Tallving P, et al. Half-lives of PFOS, PFHxS and PFOA after end of exposure to contaminated drinking water. Occup Environ Med. 2018;75(1). | |
dc.relation.references | Kudo N, Kawashima Y. Toxicity and toxicokinetics of perfluorooctanoic acid in humans and animals. Vol. 28, Journal of Toxicological Sciences. 2003. | |
dc.relation.references | Abraham K, Mertens H, Richter L, Mielke H, Schwerdtle T, Monien BH. Kinetics of 15 per- and polyfluoroalkyl substances (PFAS) after single oral application as a mixture – A pilot investigation in a male volunteer. Environ Int. 2024 Nov 1;193:109047. | |
dc.relation.references | Nakagawa H, Terada T, Harada KH, Hitomi T, Inoue K, Inui KI, et al. Human organic anion transporter hOAT4 is a transporter of perfluorooctanoic acid. Basic Clin Pharmacol Toxicol. 2009;105(2). | |
dc.relation.references | Lau C, Anitole K, Hodes C, Lai D, Pfahles-Hutchens A, Seed J. Perfluoroalkyl acids: A review of monitoring and toxicological findings. Vol. 99, Toxicological Sciences. 2007. | |
dc.relation.references | Li Y, Andersson A, Xu Y, Pineda D, Nilsson CA, Lindh CH, et al. Determinants of serum half-lives for linear and branched perfluoroalkyl substances after long-term high exposure—A study in Ronneby, Sweden. Environ Int. 2022;163. | |
dc.relation.references | Semwal R, Semwal RB, Lehmann J, Semwal DK. Recent advances in immunotoxicity and its impact on human health: causative agents, effects and existing treatments. Int Immunopharmacol. 2022 Jul 1;108:108859. | |
dc.relation.references | Ehrlich V, Bil W, Vandebriel R, Granum B, Luijten M, Lindeman B, et al. Consideration of pathways for immunotoxicity of per- and polyfluoroalkyl substances (PFAS). Vol. 22, Environmental Health: A Global Access Science Source. 2023. | |
dc.relation.references | U. S. Department of Health and Human Services. Toxicological Profile for Perfluoroalkyls. Agency for Toxic Substances and Disease Registry. 2021;(May). | |
dc.relation.references | von Holst H, Nayak P, Dembek Z, Buehler S, Echeverria D, Fallacara D, et al. Perfluoroalkyl substances exposure and immunity, allergic response, infection, and asthma in children: review of epidemiologic studies. Heliyon. 2021;7(10). | |
dc.relation.references | Dalsager L, Christensen N, Halekoh U, Timmermann CAG, Nielsen F, Kyhl HB, et al. Exposure to perfluoroalkyl substances during fetal life and hospitalization for infectious disease in childhood: A study among 1,503 children from the Odense Child Cohort. Environ Int. 2021;149. | |
dc.relation.references | Knutsen HK, Alexander J, Barregård L, Bignami M, Brüschweiler B, Ceccatelli S, et al. Risk to human health related to the presence of perfluorooctane sulfonic acid and perfluorooctanoic acid in food. EFSA Journal. 2018;16(12). | |
dc.relation.references | Szilagyi JT, Freedman AN, Kepper SL, Keshava AM, Bangma JT, Fry RC. Per- And polyfluoroalkyl substances differentially inhibit placental trophoblast migration and invasion in vitro. Toxicological Sciences. 2020;175(2). | |
dc.relation.references | Han R, Zhang F, Wan C, Liu L, Zhong Q, Ding W. Effect of perfluorooctane sulphonate-induced Kupffer cell activation on hepatocyte proliferation through the NF-ΚB/TNF-Α/IL-6-dependent pathway. Chemosphere. 2018;200. | |
dc.relation.references | Bommarito PA, Ferguson KK, Meeker JD, McElrath TF, Cantonwine DE. Maternal levels of perfluoroalkyl substances (Pfas) during early pregnancy in relation to preeclampsia subtypes and biomarkers of preeclampsia risk. Environ Health Perspect. 2021;129(10). | |
dc.relation.references | Zarei MH, Shirazi SFH, Aghvami M, Pourahmad J. Perfluorooctanesulfonate (PFOS) induces apoptosis signaling and proteolysis in human lymphocytes through ROS mediated mitochondrial dysfunction and lysosomal membrane labialization. Iranian Journal of Pharmaceutical Research. 2018;17(3). | |
dc.relation.references | Gundacker C, Audouze K, Widhalm R, Granitzer S, Forsthuber M, Jornod F, et al. Reduced Birth Weight and Exposure to Per- and Polyfluoroalkyl Substances: A Review of Possible Underlying Mechanisms Using the AOP-HelpFinder. Vol. 10, Toxics. 2022. | |
dc.relation.references | Vetvicka V, Vetvickova J. Reversal of perfluorooctanesulfonate-induced immunotoxicity by a glucan-resveratrol-vitamin C combination. Orient Pharm Exp Med. 2013;13(1). | |
dc.relation.references | Dong GH, Zhang YH, Zheng L, Liu W, Jin YH, He QC. Chronic effects of perfluorooctanesulfonate exposure on immunotoxicity in adult male C57BL/6 mice. Arch Toxicol. 2009;83(9). | |
dc.relation.references | Zheng L, Dong GH, Jin YH, He QC. Immunotoxic changes associated with a 7-day oral exposure to perfluorooctanesulfonate (PFOS) in adult male C57BL/6 mice. Arch Toxicol. 2009;83(7). | |
dc.relation.references | Ryu MH, Jha A, Ojo OO, Mahood TH, Basu S, Detillieux KA, et al. Chronic exposure to perfluorinated compounds: Impact on airway hyperresponsiveness and inflammation. Am J Physiol Lung Cell Mol Physiol. 2014;307(10). | |
dc.relation.references | Singh TSK, Lee S, Kim HH, Choi JK, Kim SH. Perfluorooctanoic acid induces mast cell-mediated allergic inflammation by the release of histamine and inflammatory mediators. Toxicol Lett. 2012;210(1). | |
dc.relation.references | Lee JK, Kim SH. Correlation between mast cell-mediated allergic inflammation and length of perfluorinated compounds. Journal of Toxicology and Environmental Health - Part A: Current Issues. 2018;81(9). | |
dc.relation.references | Lee JK, Lee S, Choi YA, Jin M, Kim YY, Kang BC, et al. Perfluorooctane sulfonate exacerbates mast cell-mediated allergic inflammation by the release of histamine. Mol Cell Toxicol. 2018;14(2). | |
dc.relation.references | Yang M, Li LY, Qin X Di, Ye XY, Yu S, Bao Q, et al. Perfluorooctanesulfonate and perfluorooctanoate exacerbate airway inflammation in asthmatic mice and in vitro. Science of the Total Environment. 2021;766. | |
dc.relation.references | Naidenko O V., Andrews DQ, Temkin AM, Stoiber T, Uche UI, Evans S, et al. Investigating molecular mechanisms of immunotoxicity and the utility of toxcast for immunotoxicity screening of chemicals added to food. Int J Environ Res Public Health. 2021;18(7). | |
dc.relation.references | Stein CR, Ge Y, Wolff MS, Ye X, Calafat AM, Kraus T, et al. Perfluoroalkyl substance serum concentrations and immune response to FluMist vaccination among healthy adults. Environ Res. 2016;149. | |
dc.relation.references | Amstutz VH, Sijm DTHM, Vrolijk MF. Perfluoroalkyl substances and immunotoxicity: An in vitro structure-activity relationship study in THP-1-derived monocytes and macrophages. Chemosphere. 2024 Sep 1;364:143075. | |
dc.relation.references | Pappalardo F, Russo G, Corsini E, Paini A, Worth A. Translatability and transferability of in silico models: Context of use switching to predict the effects of environmental chemicals on the immune system. Comput Struct Biotechnol J. 2022;20. | |
dc.relation.references | Lankveld DP, Van Loveren H, Baken KA, Vandebriel RJ. In vitro testing for direct immunotoxicity: state of the art. Methods Mol Biol. 2010;598. | |
dc.relation.references | Richard AM, Huang R, Waidyanatha S, Shinn P, Collins BJ, Thillainadarajah I, et al. The Tox21 10K Compound Library: Collaborative Chemistry Advancing Toxicology. Vol. 34, Chemical Research in Toxicology. 2021. | |
dc.relation.references | CompTox Chemicals Dashboard. In: Encyclopedia of Toxicology, Fourth Edition: Volume 1-9. 2023. | |
dc.relation.references | Davis AP, Wiegers TC, Johnson RJ, Sciaky D, Wiegers J, Mattingly CJ. Comparative Toxicogenomics Database (CTD): update 2023. Nucleic Acids Res. 2023;51(D1). | |
dc.relation.references | Sayers EW, Bolton EE, Brister JR, Canese K, Chan J, Comeau DC, et al. Database resources of the National Center for Biotechnology Information in 2023. Nucleic Acids Res. 2023;51(D1). | |
dc.relation.references | Health & Environmental Research Online (HERO). Choice Reviews Online. 2010;48(01). | |
dc.relation.references | EPA. CompTox Chemistry Dashboard. United States Environmental Protection Agency. 2017; | |
dc.relation.references | Krewski D, Acosta D, Andersen M, Anderson H, Bailar JC, Boekelheide K, et al. Toxicity testing in the 21st century: A vision and a strategy. Vol. 13, Journal of Toxicology and Environmental Health - Part B: Critical Reviews. 2010. | |
dc.relation.references | Ryan N. A User’s Guide for Accessing and Interpreting ToxCastTM . 2017. | |
dc.relation.references | United States Environmental Protection Agency. Generating ToxCast Data: ToxCast Assays [Internet]. 2023 [cited 2025 Jan 11]. Available from: https://www.epa.gov/comptox-tools/generating-toxcast-data | |
dc.relation.references | Hur J, Danes L, Hsieh JH, McGregor B, Krout D, Auerbach S. Tox21 Enricher: Web-based Chemical/Biological Functional Annotation Analysis Tool Based on Tox21 Toxicity Screening Platform. Vol. 37, Molecular Informatics. 2018. | |
dc.relation.references | United States Environmental Protection Agency. Toxicology Testing in the 21st Century (Tox21) [Internet]. 2023 [cited 2025 Jan 11]. Available from: https://www.epa.gov/chemical-research/toxicology-testing-21st-century-tox21 | |
dc.relation.references | United States Environmental Defense. Chemical Testing in the 21st Century:A Primer [Internet]. 2012 [cited 2025 Jan 11]. Available from: https://www.edf.org/sites/default/files/FullChemicalTestingReformPrimer.pdf | |
dc.relation.references | Houck KA, Dix DJ, Judson RS, Kavlock RJ, Yang J, Berg EL. Profiling Bioactivity of the ToxCast Chemical Library Using BioMAP Primary Human Cell Systems. J Biomol Screen. 2009;14(9). | |
dc.relation.references | Simms L, Mason E, Berg EL, Yu F, Rudd K, Czekala L, et al. Use of a rapid human primary cell-based disease screening model, to compare next generation products to combustible cigarettes. Curr Res Toxicol. 2021;2. | |
dc.relation.references | BioSeeek. BioSeek: Economic Impact of BioMAP® Profiling Bridging the Gap from In Vitro to In Vivo [Internet]. [cited 2025 Jan 11]. Available from: : https://www.discoverx.com/DiscoveRx/media/ContentFiles/Document%20Resource%20Library/BioSeek_Economic-Impact-Case-Study_080312_FINAL.pdf?ext=.pdf | |
dc.relation.references | Božo Radić, Saša Radić, Tomislav Mašek, Jelena Šuran. Anti-wrinkle efficacy of standardized phenolic acids polymer extract (PAPE) from propolis: Implications for antiaging and skin health. J Cosmet Dermatol. 2024 May 15;23(10):3372-3381. | |
dc.relation.references | Filer D, Patisaul HB, Schug T, Reif D, Thayer K. Test driving ToxCast: Endocrine profiling for 1858 chemicals included in phase II. Vol. 19, Current Opinion in Pharmacology. 2014. | |
dc.relation.references | Williams AJ, Grulke CM, Edwards J, McEachran AD, Mansouri K, Baker NC, et al. The CompTox Chemistry Dashboard: A community data resource for environmental chemistry. J Cheminform. 2017;9(1). | |
dc.relation.references | Williams AJ, Lambert JC, Thayer K, Dorne JLCM. Sourcing data on chemical properties and hazard data from the US-EPA CompTox Chemicals Dashboard: A practical guide for human risk assessment. Environ Int. 2021 Sep 1;154:106566. | |
dc.relation.references | Inglese J, Auld DS, Jadhav A, Johnson RL, Simeonov A, Yasgar A, et al. Quantitative high-throughput screening: A titration-based approach that efficiently identifies biological activities in large chemical libraries. Proc Natl Acad Sci U S A. 2006;103(31). | |
dc.relation.references | Jiang C, Yang H, Di P, Li W, Tang Y, Liu G. In silico prediction of chemical reproductive toxicity using machine learning. Journal of Applied Toxicology. 2019;39(6). | |
dc.relation.references | Xu Y, Liu X, Cao X, Huang C, Liu E, Qian S, et al. Artificial intelligence: A powerful paradigm for scientific research. Vol. 2, Innovation. 2021. | |
dc.relation.references | Tonoyan L, Siraki AG. Machine learning in toxicological sciences: opportunities for assessing drug toxicity. Frontiers in Drug Discovery. 2024;4. | |
dc.relation.references | Wang MWH, Goodman JM, Allen TEH. Machine Learning in Predictive Toxicology: Recent Applications and Future Directions for Classification Models. Vol. 34, Chemical Research in Toxicology. 2021. | |
dc.relation.references | Baskin II. Machine learning methods in computational toxicology. In: Methods in Molecular Biology. 2018. | |
dc.relation.references | Vora LK, Gholap AD, Jetha K, Thakur RRS, Solanki HK, Chavda VP. Artificial Intelligence in Pharmaceutical Technology and Drug Delivery Design. Vol. 15, Pharmaceutics. 2023. | |
dc.relation.references | Trisciuzzi D, Alberga D, Mansouri K, Judson R, Cellamare S, Catto M, et al. Docking-based classification models for exploratory toxicology studies on high-quality estrogenic experimental data. Future Med Chem. 2015;7(14). | |
dc.relation.references | Sidey-Gibbons JAM, Sidey-Gibbons CJ. Machine learning in medicine: a practical introduction. BMC Med Res Methodol. 2019;19(1). | |
dc.relation.references | Gajewicz-Skretna A, Furuhama A, Yamamoto H, Suzuki N. Generating accurate in silico predictions of acute aquatic toxicity for a range of organic chemicals: Towards similarity-based machine learning methods. Chemosphere. 2021;280. | |
dc.relation.references | Cao H, Peng J, Zhou Z, Sun Y, Wang Y, Liang Y. Insight into the defluorination ability of per- and polyfluoroalkyl substances based on machine learning and quantum chemical computations. Science of the Total Environment. 2022;807. | |
dc.relation.references | Ospino I, Lans I, Olivero J, Vivas R. MODELO QSAR PARA LA PREDICCIÓN DE LOS TIEMPOS DE VIDA MEDIA DE BIFENILOS POLICLORADOS EN HUMANOS. Vitae. 2005;12(1). | |
dc.relation.references | Jaramillo C. BE, Martelo E. I, Duarte R. E. Toxicidad aguda de pesticidas organofosforados y análisis de la relación cuantitativa de estructura actividad (QSAR). Biotecnología en el Sector Agropecuario y Agroindustrial. 2013 Jun;12. | |
dc.relation.references | Mendoza Valencia CY. Composición química de DOC, 25B-NBOMe, 25C-NBOMe y modelación in silico de permeabilidad de la barrera hematoencefálica (BHE). [Bogotá]: Universidad Nacional de Colombia; 2017. | |
dc.relation.references | Azhagiya Singam ER, Tachachartvanich P, Fourches D, Soshilov A, Hsieh JCY, La Merrill MA, et al. Structure-based virtual screening of perfluoroalkyl and polyfluoroalkyl substances (PFASs) as endocrine disruptors of androgen receptor activity using molecular docking and machine learning. Environ Res. 2020;190. | |
dc.relation.references | Zhang Y, Wong YS, Deng J, Anton C, Gabos S, Zhang W, et al. Machine learning algorithms for mode-of-action classification in toxicity assessment. BioData Min. 2016;9(1). | |
dc.relation.references | Yu X. Support vector machine-based model for toxicity of organic compounds against fish. Regulatory Toxicology and Pharmacology. 2021;123. | |
dc.relation.references | Guo W, Liu J, Dong F, Song M, Li Z, Khan MKH, et al. Review of machine learning and deep learning models for toxicity prediction. Vol. 248, Experimental Biology and Medicine. 2023. | |
dc.relation.references | Dutta P, Paul S, Kumar A. Comparative analysis of various supervised machine learning techniques for diagnosis of COVID-19. Electronic Devices, Circuits, and Systems for Biomedical Applications: Challenges and Intelligent Approach. 2021 Jan 1;521–40. | |
dc.relation.references | Wang H, Liu Y, Zhou B, Li C, Cao G, Voropai N, et al. Taxonomy research of artificial intelligence for deterministic solar power forecasting. Vol. 214, Energy Conversion and Management. 2020. | |
dc.relation.references | Mohammed A, Kora R. A comprehensive review on ensemble deep learning: Opportunities and challenges. Vol. 35, Journal of King Saud University - Computer and Information Sciences. 2023. | |
dc.relation.references | Sun Z, Wang G, Li P, Wang H, Zhang M, Liang X. An improved random forest based on the classification accuracy and correlation measurement of decision trees. Expert Syst Appl. 2024;237. | |
dc.relation.references | Yao S, Kronenburg A, Shamooni A, Stein OT, Zhang W. Gradient boosted decision trees for combustion chemistry integration. Applications in Energy and Combustion Science. 2022;11. | |
dc.relation.references | Altman N, Krzywinski M. Points of Significance: Ensemble methods: Bagging and random forests. Vol. 14, Nature Methods. 2017. | |
dc.relation.references | Arif Ali Z, H. Abduljabbar Z, A. Tahir H, Bibo Sallow A, Almufti SM. eXtreme Gradient Boosting Algorithm with Machine Learning: a Review. Academic Journal of Nawroz University. 2023;12(2). | |
dc.relation.references | Zopluoglu C. Detecting Examinees With Item Preknowledge in Large-Scale Testing Using Extreme Gradient Boosting (XGBoost). Educ Psychol Meas. 2019;79(5). | |
dc.relation.references | Wang R, Zhang J, Shan B, He M, Xu J. XGBoost Machine Learning Algorithm for Prediction of Outcome in Aneurysmal Subarachnoid Hemorrhage. Neuropsychiatr Dis Treat. 2022;18. | |
dc.relation.references | Guido R, Ferrisi S, Lofaro D, Conforti D. An Overview on the Advancements of Support Vector Machine Models in Healthcare Applications: A Review. 2024 Apr 19 [cited 2025 Apr 7];5(Computer Vision, Pattern Recognition and Machine Learning in Italy). Available from: https://www.mdpi.com/2078-2489/15/4/235 | |
dc.relation.references | Zhu W, Zeng N, Wang N. Sensitivity, specificity, accuracy, associated confidence interval and ROC analysis with practical SAS® implementations. Northeast SAS Users Group 2010: Health Care and Life Sciences. 2010; | |
dc.relation.references | Dehmer M, Basak SC. Statistical and Machine Learning Approaches for Network Analysis. Statistical and Machine Learning Approaches for Network Analysis. 2012. | |
dc.relation.references | Rainio O, Teuho J, Klén R. Evaluation metrics and statistical tests for machine learning. Sci Rep. 2024;14(1). | |
dc.relation.references | Emmert-Streib F, Moutari S, Dehmer M. Elements of Data Science, Machine Learning, and Artificial Intelligence Using R. Elements of Data Science, Machine Learning, and Artificial Intelligence Using R. 2023. | |
dc.relation.references | Chicco D, Jurman G. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genomics. 2020;21(1). | |
dc.relation.references | Sokolova M, Japkowicz N, Szpakowicz S. Beyond accuracy, F-score and ROC: A family of discriminant measures for performance evaluation. In: AAAI Workshop - Technical Report. 2006. | |
dc.relation.references | Parthasarathi R, Dhawan A. In Silico Approaches for Predictive Toxicology. In Vitro Toxicol. 2018;91–109. | |
dc.relation.references | Todeschini R, Consonni V, Gramatica P. Chemometrics in QSAR. Comprehensive Chemometrics. 2009 Jan 1;4:129–72. | |
dc.relation.references | Wu X, Gong J, Ren S, Tan F, Wang Y, Zhao H. A machine learning-based QSAR model reveals important molecular features for understanding the potential inhibition mechanism of ionic liquids to acetylcholinesterase. Science of the Total Environment. 2024;915. | |
dc.relation.references | Weininger D. SMILES, a Chemical Language and Information System: 1: Introduction to Methodology and Encoding Rules. J Chem Inf Comput Sci. 1988;28(1). | |
dc.relation.references | Schmidt R, Ehmki ESR, Ohm F, Ehrlich HC, Mashychev A, Rarey M. Comparing Molecular Patterns Using the Example of SMARTS: Theory and Algorithms. J Chem Inf Model. 2019;59(6). | |
dc.relation.references | Jaganathan K, Tayara H, Chong KT. An Explainable Supervised Machine Learning Model for Predicting Respiratory Toxicity of Chemicals Using Optimal Molecular Descriptors. Pharmaceutics. 2022;14(4). | |
dc.relation.references | Chandrasekaran B, Abed SN, Al-Attraqchi O, Kuche K, Tekade RK. Computer-Aided Prediction of Pharmacokinetic (ADMET) Properties. Dosage Form Design Parameters. 2018 Jan 1;2:731–55. | |
dc.relation.references | Wildman SA, Crippen GM. Prediction of physicochemical parameters by atomic contributions. J Chem Inf Comput Sci. 1999;39(5). | |
dc.relation.references | Roskoski R. Properties of FDA-approved small molecule protein kinase inhibitors. Pharmacol Res. 2019 Jun 1;144:19–50. | |
dc.relation.references | Strazielle N, Ghersi-Egea JF. Factors affecting delivery of antiviral drugs to the brain. Vol. 15, Reviews in Medical Virology. 2005. | |
dc.relation.references | Li S, He H, Parthiban LJ, Yin H, Serajuddin ATM. IV-IVC considerations in the development of immediate-release oral dosage form. Vol. 94, Journal of Pharmaceutical Sciences. 2005. | |
dc.relation.references | Prasanna S, Doerksen R. Topological Polar Surface Area: A Useful Descriptor in 2D-QSAR. Curr Med Chem. 2008;16(1). | |
dc.relation.references | Ertl P, Rohde B, Selzer P. Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. J Med Chem. 2000;43(20). | |
dc.relation.references | Todeschini R, Consonni V, Gramatica P. Chemometrics in QSAR. In: Comprehensive Chemometrics. 2009. | |
dc.relation.references | Aboalroub AA, Al-Najjar BO. In-silico identification of 3,4-Diarylpyrazoles-based small molecules as potential Hsp90 inhibitors. Results Chem. 2024 Oct 1;11:101757. | |
dc.relation.references | Braun J., Gregory A., Riniker L., Katzberger P. Understanding and Quantifying Molecular Flexibility: Torsion Angular Bin Strings. J Chem Inf Model. 2024 Oct 10;64(24):7917–24. | |
dc.relation.references | Caron G, Digiesi V, Solaro S, Ermondi G. Flexibility in early drug discovery: focus on the beyond-Rule-of-5 chemical space. Vol. 25, Drug Discovery Today. 2020. | |
dc.relation.references | Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD. Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem. 2002;45(12). | |
dc.relation.references | Kier LB. An Index of Molecular Flexibility from Kappa Shape Attributes. Quantitative Structure‐Activity Relationships. 1989;8(3). | |
dc.relation.references | Moriwaki H, Tian YS, Kawashita N, Takagi T. Mordred: A molecular descriptor calculator. J Cheminform. 2018;10(1). | |
dc.relation.references | Comesana AE, Huntington TT, Scown CD, Niemeyer KE, Rapp VH. A systematic method for selecting molecular descriptors as features when training models for predicting physiochemical properties. Fuel. 2022;321. | |
dc.relation.references | Chaube S, Goverapet Srinivasan S, Rai B. Applied machine learning for predicting the lanthanide-ligand binding affinities. Sci Rep. 2020;10(1). | |
dc.relation.references | Gasteiger J, Marsili M. Iterative partial equalization of orbital electronegativity-a rapid access to atomic charges. Tetrahedron. 1980;36(22). | |
dc.relation.references | He L, Xiao K, Zhou C, Li G, Yang H, Li Z, et al. Insights into pesticide toxicity against aquatic organism: QSTR models on Daphnia Magna. Ecotoxicol Environ Saf. 2019;173. | |
dc.relation.references | Ahmad N, Eid G, El-Toony MM, Mahmood A. Harnessing machine learning for the rational design of high-performance fluorescent dyes. Spectrochim Acta A Mol Biomol Spectrosc [Internet]. 2025 Jun 5 [cited 2025 Feb 20];334:125918. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1386142525002240 | |
dc.relation.references | Berinde ZM. Qspr models for the molar refraction, polarizability and refractive index of aliphatic carboxylic acids using the zep topological index. Symmetry (Basel). 2021;13(12). | |
dc.relation.references | Capecchi A, Probst D, Reymond JL. One molecular fingerprint to rule them all: Drugs, biomolecules, and the metabolome. J Cheminform. 2020;12(1). | |
dc.relation.references | Yang J, Cai Y, Zhao K, Xie H, Chen X. Concepts and applications of chemical fingerprint for hit and lead screening. Vol. 27, Drug Discovery Today. 2022 | |
dc.relation.references | Morgan HL. The Generation of a Unique Machine Description for Chemical Structures—A Technique Developed at Chemical Abstracts Service. J Chem Doc. 1965;5(2). | |
dc.relation.references | Daood Nada J, Russo Daniel P, Chung Elena, Qin Xuebin, Zhu Hao. Predicting Chemical Immunotoxicity through Data-Driven QSAR Modeling of Aryl Hydrocarbon Receptor Agonism and Related Toxicity Mechanisms. Environ Health. 2024 May 28;2(7):474–85. | |
dc.relation.references | Cavasotto CN, Scardino V. Machine Learning Toxicity Prediction: Latest Advances by Toxicity End Point. Vol. 7, ACS Omega. 2022. | |
dc.relation.references | Meng L, Zhou B, Liu H, Chen Y, Yuan R, Chen Z, et al. Advancing toxicity studies of per- and poly-fluoroalkyl substances (pfass) through machine learning: Models, mechanisms, and future directions. Science of The Total Environment. 2024 Oct 10;946:174201. | |
dc.relation.references | Manelfi C, Tazzari V, Lunghini F, Cerchia C, Fava A, Pedretti A, et al. “DompeKeys”: a set of novel substructure-based descriptors for efficient chemical space mapping, development and structural interpretation of machine learning models, and indexing of large databases. J Cheminform. 2024;16(1). | |
dc.relation.references | Ucak U V., Ashyrmamatov I, Lee J. Reconstruction of lossless molecular representations from fingerprints. J Cheminform. 2023;15(1). | |
dc.relation.references | Rogers D, Hahn M. Extended-connectivity fingerprints. J Chem Inf Model. 2010;50(5). | |
dc.relation.references | Bae SY, Lee J, Jeong J, Lim C, Choi J. Effective data-balancing methods for class imbalanced genotoxicity datasets using machine learning algorithms and molecular fingerprints. Computational Toxicology. 2021;20. | |
dc.relation.references | Mellor CL, Marchese Robinson RL, Benigni R, Ebbrell D, Enoch SJ, Firman JW, et al. Molecular fingerprint-derived similarity measures for toxicological read-across: Recommendations for optimal use. Regulatory Toxicology and Pharmacology. 2019;101. | |
dc.relation.references | Huajian Zhao, Gengshen Song. AVP-GPT2: A Transformer-Powered Platform for De Novo Generation, Screening, and Explanation of Antiviral Peptides. Viruses [Internet]. 2024 Dec 17 [cited 2025 Mar 9];1(14). Available from: https://pubmed.ncbi.nlm.nih.gov/39861804/#:~:text=AVP%2DGPT2%20has%20the%20po tential,into%20existing%20drug%20development%20pipelines. | |
dc.relation.references | Jaganathan K, Tayara H, Chong KT. An Explainable Supervised Machine Learning Model for Predicting Respiratory Toxicity of Chemicals Using Optimal Molecular Descriptors. Pharmaceutics. 2022;14(4). | |
dc.relation.references | Lundberg SM, Lee SI. A unified approach to interpreting model predictions. In: Advances in Neural Information Processing Systems. 2017. | |
dc.relation.references | Fan D, Xue K, Zhang R, Zhu W, Zhang H, Qi J, et al. Application of interpretable machine learning models to improve the prediction performance of ionic liquids toxicity. Science of the Total Environment. 2024;908. | |
dc.relation.references | Yu H, Zhao Z, Cheng F. Predicting and investigating cytotoxicity of nanoparticles by translucent machine learning. Chemosphere. 2021;276. | |
dc.relation.references | Lou S, Yu Z, Huang Z, Wang H, Pan F, Li W, et al. In Silico Prediction of Chemical Acute Dermal Toxicity Using Explainable Machine Learning Methods. Chem Res Toxicol. 2024;37(3). | |
dc.relation.references | Wilm A, de Lomana MG, Stork C, Mathai N, Hirte S, Norinder U, et al. Predicting the skin sensitization potential of small molecules with machine learning models trained on biologically meaningful descriptors. Pharmaceuticals. 2021;14(8). | |
dc.relation.references | Matt Swain. PubChemPy documentation. 2014 [cited 2025 Jan 13]; Available from: https://pubchempy.readthedocs.io/en/latest/ | |
dc.relation.references | Habiballah S, Heath LS, Reisfeld B. A deep-learning approach for identifying prospective chemical hazards. Toxicology. 2024;501. | |
dc.relation.references | Klaassen CD, Watkins JB. Fundamentos em toxicologia de Casarett e Doull (Lange). Toxicologia. 2012. | |
dc.relation.references | Garzón Barrero J, Sánchez Pineda NE, Londoño Pinilla DF. Evaluación comparativa de los algoritmos de aprendizaje automático Support Vector Machine y Random Forest. Ciencia e Ingeniería Neogranadina. 2023;33(2). | |
dc.relation.references | Rezvani S, Wang X. A broad review on class imbalance learning techniques. Vol. 143, Applied Soft Computing. 2023. | |
dc.relation.references | Srivastava R. Theoretical Studies on the Molecular Properties, Toxicity, and Biological Efficacy of 21 New Chemical Entities. ACS Omega. 2021;6(38). | |
dc.relation.references | Chen L, Han L, Saib O, Lian G. In Silico Prediction of Percutaneous Absorption and Disposition Kinetics of Chemicals. Pharm Res. 2015;32(5). | |
dc.relation.references | Wolf HU, Schwenk M. Importance of physical-chemical properties for toxicological risk assessment. In: Regulatory Toxicology. 2014. | |
dc.relation.references | Nhlapho S, Lotriet N, Linah B, Dube T, Telukdarie A, Munien I, et al. Druggability of Pharmaceutical Compounds Using Lipinski Rules with Machine Learning. Sciences of Pharmacy. 2024 Nov 1;3(4):177–92. | |
dc.relation.references | Chen X, Li H, Tian L, Li Q, Luo J, Zhang Y. Analysis of the Physicochemical Properties of Acaricides Based on Lipinski’s Rule of Five. Journal of Computational Biology. 2020;27(9). | |
dc.relation.references | Chakri P, Pratap S, Lakshay, Gouda SK. An exploratory data analysis approach for analyzing financial accounting data using machine learning. Decision Analytics Journal. 2023 Jun 1;7:100212. | |
dc.relation.references | Silva DH da, Souza LR da S, Ribeiro CT, Brasileiro SH da S, Nardo JRM, Pereira AA, et al. A Web Application for exploratory data analysis and classification of Parkinson’s Disease patients using machine learning models on different datasets. Software Impacts. 2025 Mar 1;23:100737 | |
dc.relation.references | Subasi A. Data preprocessing. Practical Machine Learning for Data Analysis Using Python. 2020 Jan 1;27–89. | |
dc.relation.references | Javaheri SH, Sepehri MM, Teimourpour B. Response Modeling in Direct Marketing: A Data Mining-Based Approach for Target Selection. Data Mining Applications with R. 2014 Jan 1;153–80. | |
dc.relation.references | Wang X, Liesaputra V, Liu Z, Wang Y, Huang Z. An in-depth survey on Deep Learning based Motor Imagery Electroencephalogram (EEG) classification. Artif Intell Med. 2024 Jan 1;147:102738. | |
dc.relation.references | Akanbi OA, Amiri IS, Fazeldehkordi E. Feature Extraction. A Machine-Learning Approach to Phishing Detection and Defense [Internet]. 2015 Jan 1 [cited 2025 Jan 28];45–54. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780128029275000046 | |
dc.relation.references | Singh D, Singh B. Investigating the impact of data normalization on classification performance. Appl Soft Comput. 2020;97. | |
dc.relation.references | Subasi A. Data preprocessing. Practical Machine Learning for Data Analysis Using Python. 2020 Jan 1;27–89 | |
dc.relation.references | Janet JP, Kulik HJ. Resolving Transition Metal Chemical Space: Feature Selection for Machine Learning and Structure-Property Relationships. Journal of Physical Chemistry A. 2017;121(46). | |
dc.relation.references | Khaire UM, Dhanalakshmi R. Stability of feature selection algorithm: A review. Vol. 34, Journal of King Saud University - Computer and Information Sciences. 2022. | |
dc.relation.references | Wichitaksorn N, Kang Y, Zhang F. Random feature selection using random subspace logistic regression. Expert Syst Appl. 2023;217. | |
dc.relation.references | URGANCI TEKIN K, MESTAV B, İYİT N. Robust Logistic Modelling for Datasets with Unusual Points. Journal of New Theory. 2021;(36). | |
dc.relation.references | Meloun M, Militký J. Detection of single influential points in OLS regression model building. Anal Chim Acta. 2001;439(2). | |
dc.relation.references | Sarkar K, Midi H, Rana S. Detection of outliers and influential observations in binary Logistic regression: An empirical study. Journal of Applied Sciences. 2011;11(1). | |
dc.relation.references | Voss DS. Multicollinearity. Encyclopedia of Social Measurement, Three-Volume Set. 2005 Jan 1;2:759–70. | |
dc.relation.references | Banks DL, Fienberg SE. Statistics, Multivariate. Encyclopedia of Physical Science and Technology. 2003 Jan 1;851–89. | |
dc.relation.references | Kim JH. Multicollinearity and misleading statistical results. Korean J Anesthesiol. 2019;72(6). | |
dc.relation.references | scikit-learn developers. Feature importances with a forest of trees. scikit-learn. 2025 [cited 2025 Feb 4]; Available from: learn.org/stable/auto_examples/ensemble/plot_forest_importances.html | |
dc.relation.references | Neumayer S, Nimmer M, Setzer S, Steidl G. On the Robust PCA and Weiszfeld’s Algorithm. Appl Math Optim. 2020;82(3). | |
dc.relation.references | Mejia AF, Nebel MB, Eloyan A, Caffo B, Lindquist MA. PCA leverage: Outlier detection for high-dimensional functional magnetic resonance imaging data. Biostatistics. 2017;18(3). | |
dc.relation.references | Rimal Y, Sharma N. Hyperparameter optimization: a comparative machine learning model analysis for enhanced heart disease prediction accuracy. Multimed Tools Appl. 2024;83(18). | |
dc.relation.references | Srinivas P, Katarya R. hyOPTXg: OPTUNA hyper-parameter optimization framework for predicting cardiovascular disease using XGBoost. Biomed Signal Process Control. 2022;73. | |
dc.relation.references | Ministerio de Salud. Resolucion numero 8430 de 1993 (octubre 4). MINSALUD. 1993; | |
dc.relation.references | CAF, Colombia G de. Marco ético para la inteligencia artificial. بثبثبث. 2020;ث قثقق. | |
dc.relation.references | Google Developers. Datasets: Imbalanced datasets [Internet]. [cited 2025 Jan 15]. Available from: https://developers.google.com/machine-learning/crash-course/overfitting/imbalanced datasets | |
dc.relation.references | National Center for Biotechnology Information. PubChem Compound Summary for CID 444913, alpha-CYCLODEXTRIN. 2025 [cited 2025 Jan 15]; Available from: https://pubchem.ncbi.nlm.nih.gov/compound/alpha-CYCLODEXTRIN | |
dc.relation.references | National Center for Biotechnology Information. PubChem Compound Summary for CID 9917025, YM 218. 2025 [cited 2025 Jan 15]; Available from: https://pubchem.ncbi.nlm.nih.gov/compound/ym-218. | |
dc.relation.references | Korinth G, Wellner T, Schaller KH, Drexler H. Potential of the octanol-water partition coefficient (logP) to predict the dermal penetration behaviour of amphiphilic compounds in aqueous solutions. Toxicol Lett. 2012;215(1). | |
dc.relation.references | Fratello G, Marchini S, Zucco F, Sapora O, Stammati A. Cytotoxicity of halogenated benzenes and its relationship with logP. Toxicology in Vitro. 1997;11(5). | |
dc.relation.references | Chatzopoulou M, Emer E, Lecci C, Rowley JA, Casagrande AS, Moir L, et al. Decreasing HepG2 Cytotoxicity by Lowering the Lipophilicity of Benzo[d]oxazolephosphinate Ester Utrophin Modulators. ACS Med Chem Lett. 2020;11(12). | |
dc.relation.references | Kathuria H, Handral HK, Cha S, Nguyen DTP, Cai J, Cao T, et al. Enhancement of skin delivery of drugs using proposome depends on drug lipophilicity. Pharmaceutics. 2021;13(9). | |
dc.relation.references | Ramli AH, Jayathilaka EHTT, Dias MKHM, Abdul Malek E, Jain N, An J, et al. Antifungal activity of synthetic xanthenone against fluconazole-resistant Candida auris and its mechanism of action. Microb Pathog. 2024 Sep 1;194:106797. | |
dc.relation.references | National Center for Biotechnology Information. PubChem Compound Summary for CID 9864, Cyanamide. 2025 [cited 2025 https://pubchem.ncbi.nlm.nih.gov/compound/9864 | |
dc.relation.references | National Center for Biotechnology Information. PubChem Compound Summary for CID 16129778, Gallotannin. 2025 [cited 2025 Jan https://pubchem.ncbi.nlm.nih.gov/compound/Gallotannin. | |
dc.relation.references | Houck KA, Friedman KP, Feshuk M, Patlewicz G, Smeltz M, Scott Clifton M, et al. Evaluation of 147 Perfluoroalkyl Substances for Immunotoxic and Other (Patho)physiological Activities through Phenotypic Screening of Human Primary Cells. ALTEX. 2023;40(2). | |
dc.relation.references | Tolg C, Telmer P, Turley E. Specific sizes of hyaluronan oligosaccharides stimulate fibroblast migration and excisional wound repair. PLoS One. 2014;9(2). | |
dc.relation.references | Desai P V., Raub TJ, Blanco MJ. How hydrogen bonds impact P-glycoprotein transport and permeability. Vol. 22, Bioorganic and Medicinal Chemistry Letters. 2012. | |
dc.relation.references | Levitt M, Perutz MF. Aromatic rings act as hydrogen bond acceptors. J Mol Biol. 1988;201(4). | |
dc.relation.references | Huang HJ, Lee YH, Chou CL, Zheng CM, Chiu HW. Investigation of potential descriptors of chemical compounds on prevention of nephrotoxicity via QSAR approach. Comput Struct Biotechnol J. 2022;20. | |
dc.relation.references | Zeki NM, Mustafa YF. Digital alchemy: Exploring the pharmacokinetic and toxicity profiles of selected coumarin-heterocycle hybrids. Results Chem. 2024 Aug 1;10:101754. | |
dc.relation.references | Jagannathan R. Characterization of Drug-like Chemical Space for Cytotoxic Marine Metabolites Using Multivariate Methods. ACS Omega. 2019;4(3). | |
dc.relation.references | Jimenez R, Salazart G, Baldridge KK, Romesberg FE. Flexibility and molecular recognition in the immune system. Proc Natl Acad Sci U S A. 2003;100(1). | |
dc.relation.references | Zhang Y, Wu W, Li Q, Zhou P, Wen K, Shen J, et al. The hapten rigidity improves antibody performances in immunoassay for rifamycins: Immunovalidation and molecular mechanism. J Hazard Mater. 2024;469. | |
dc.relation.references | Jones E, Oliphant T, Peterson P, Others. SciPy: Open Source Scientific Tools for Python, 2001 (http://www.scipy.org/). Http://Www.Scipy.Org/. 2015. | |
dc.relation.references | Meloun M, Militký J. The exploratory and confirmatory analysis of univariate data. Statistical Data Analysis. 2011 Jan 1;25–71. | |
dc.relation.references | Mishra P, Pandey CM, Singh U, Gupta A, Sahu C, Keshri A. Descriptive statistics and normality tests for statistical data. Ann Card Anaesth. 2019;22(1). | |
dc.relation.references | de la Rubia JM. Standardized Distance from the Mean to the Median as a Measure of Skewness. Open J Stat. 2023;13(03). | |
dc.relation.references | Dash CSK, Behera AK, Dehuri S, Ghosh A. An outliers detection and elimination framework in classification task of data mining. Decision Analytics Journal. 2023;6. | |
dc.relation.references | National Center for Biotechnology Information. PubChem Compound Summary for CID 16961, Dexamethasone Sodium Phosphate. 2025 [cited 2025 Jan 15]; Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Dexamethasone-Sodium-Phosphate | |
dc.relation.references | Cheng SM, Lin WH, Lin CS, Ho LJ, Tsai TN, Wu CH, et al. Modulation of both activator protein-1 and nuclear factor-kappa B signal transduction of human T cells by amiodarone. Exp Biol Med. 2015;240(1). | |
dc.relation.references | Hess AD, Colombani PM, Esa AH. Cyclosporine and the immune response: basic aspects. Vol. 6, Critical reviews in immunology. 1986. | |
dc.relation.references | Maltzman JS, Koretzky GA. Azathioprine: old drug, new actions. Journal of Clinical Investigation. 2003;111(8). | |
dc.relation.references | Mishra K, Pramanik S, Sandal R, Jandial A, Sahu KK, Singh K, et al. Safety and efficacy of azathioprine in immune thrombocytopenia. Am J Blood Res. 2021;11(3). | |
dc.relation.references | National Center for Biotechnology Information. PubChem Compound Summary for CID 31340, Sucrose Octaacetate. [Internet]. 2025 [cited 2025 Jan 25]. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Sucrose-Octaacetate | |
dc.relation.references | Egan WJ, Morgan SL. Outlier Detection in Multivariate Analytical Chemical Data. Anal Chem. 1998;70(11). | |
dc.relation.references | Benkendorf DJ, Schwartz SD, Cutler DR, Hawkins CP. Correcting for the effects of class imbalance improves the performance of machine-learning based species distribution models. Ecol Modell. 2023 Sep 1;483:110414. | |
dc.relation.references | Kelleher C, Braswell A. Introductory overview: Recommendations for approaching scientific visualization with large environmental datasets. Environmental Modelling and Software. 2021;143. | |
dc.relation.references | Fernández CM. Quimiometría. Vol. 1, Journal of Chemical Information and Modeling. 2011. | |
dc.relation.references | Pudjihartono N, Fadason T, Kempa-Liehr AW, O’Sullivan JM. A Review of Feature Selection Methods for Machine Learning-Based Disease Risk Prediction. Vol. 2, Frontiers in Bioinformatics. 2022. | |
dc.relation.references | Wright DP, Thyer M, Westra S, Renard B, McInerney D. A generalised approach for identifying influential data in hydrological modelling. Environmental Modelling and Software. 2019; | |
dc.relation.references | Eledum H. Leverage and influential observations on the Liu type estimator in the linear regression model with the severe collinearity. Heliyon. 2021;7(8). | |
dc.relation.references | Altman N, Krzywinski M. Analyzing outliers: influential or nuisance? Nat Methods. 2016;13(4). | |
dc.relation.references | Zhengliang Lin, Jingze Liu, Kristine Ching-Ling Hsiao, Xi Chen. Machine-learning prediction of exciton binding energies intwo-dimensional materials for photonics application. 2023 Apr 23; | |
dc.relation.references | Barnett V, Neter J, Wasserman W. Applied Linear Statistical Models. J R Stat Soc Ser A. 1975;138(2). | |
dc.relation.references | Rousseeuw PJ, Christmann A. Robustness against separation and outliers in logistic regression. Comput Stat Data Anal. 2003;43(3). | |
dc.relation.references | Howel D, Kleinbaum DG. Logistic Regression: A Self Learning Text. The Statistician. 1995;44(3). | |
dc.relation.references | Schreiber-Gregory D, Bader K. Logistic and Linear Regression Assumptions: Violation Recognition and Control. SESUG Paper 247. 2018;(May). | |
dc.relation.references | Labute P. Derivation and applications of molecular descriptors based on approximate surface area. Methods Mol Biol. 2004;275. | |
dc.relation.references | Petitjean M. Applications of the Radius-Diameter Diagram to the Classification of Topological and Geometrical Shapes of Chemical Compounds. J Chem Inf Comput Sci. 1992;32(4). | |
dc.relation.references | Abbasi Jannat Abadi E, Sahu H, Javadpour SM, Goharimanesh M. Interpretable machine learning for developing high-performance organic solar cells. Mater Today Energy. 2022;25. | |
dc.relation.references | Kotu V, Deshpande B. Classification. Data Science [Internet]. 2019 Jan 1 [cited 2025 Mar 8];65–163. Available https://linkinghub.elsevier.com/retrieve/pii/B9780128147610000046 | |
dc.relation.references | Baldomero-Naranjo M, Martínez-Merino LI, Rodríguez-Chía AM. A robust SVM-based approach with feature selection and outliers detection for classification problems. Expert Syst Appl. 2021;178. | |
dc.relation.references | Richardson E, Trevizani R, Greenbaum JA, Carter H, Nielsen M, Peters B. The receiver operating characteristic curve accurately assesses imbalanced datasets. Patterns. 2024 Jun 14;5(6):100994. | |
dc.relation.references | Thölke P, Mantilla-Ramos YJ, Abdelhedi H, Maschke C, Dehgan A, Harel Y, et al. Class imbalance should not throw you off balance: Choosing the right classifiers and performance metrics for brain decoding with imbalanced data. Neuroimage. 2023;277. | |
dc.relation.references | Chung NC, Miasojedow BZ, Startek M, Gambin A. Jaccard/Tanimoto similarity test and estimation methods for biological presence-absence data. BMC Bioinformatics. 2019;20. | |
dc.relation.references | Nakamura T, Sakaue S, Fujii K, Harabuchi Y, Maeda S, Iwata S. Selecting molecules with diverse structures and properties by maximizing submodular functions of descriptors learned with graph neural networks. Sci Rep. 2022;12(1). | |
dc.relation.references | Xia Z, Yan A. Computational models for the classification of mPGES-1 inhibitors with fingerprint descriptors. Mol Divers. 2017;21(3). | |
dc.relation.references | O’Hagan S, Kell DB. MetMaxStruct: A Tversky-similarity-based strategy for analysing the (sub)structural similarities of drugs and endogenous metabolites. Front Pharmacol. 2016;7(AUG). | |
dc.relation.references | Yifan Wu, Aron Walsh, Alex M. Ganose. Race to the bottom: Bayesian optimisation for chemical problems. Digital Discovery [Internet]. 2024 [cited 2025 Feb 18];3:1086–100. Available from: https://pubs.rsc.org/en/content/articlehtml/2024/dd/d3dd00234a | |
dc.relation.references | Nohara Y, Matsumoto K, Soejima H, Nakashima N. Explanation of machine learning models using shapley additive explanation and application for real data in hospital. Comput Methods Programs Biomed. 2022 Feb 1;214:106584. | |
dc.relation.references | Lamane H, Mouhir L, Moussadek R, Baghdad B, Kisi O, El Bilali A. Interpreting machine learning models based on SHAP values in predicting suspended sediment concentration. International Journal of Sediment Research. 2025 Feb 1;40(1):91–107. | |
dc.relation.references | Ehrt C, Krause B, Schmidt R, Ehmki ESR, Rarey M. SMARTS.plus – A Toolbox for Chemical Pattern Design. Vol. 39, Molecular Informatics. 2020. | |
dc.relation.references | RDKit. MACCSkeys.py. 2023 [cited 2025 Feb 24]; Available from: https://github.com/rdkit/rdkit/blob/master/rdkit/Chem/MACCSkeys.py | |
dc.relation.references | Comunidad Andina de Naciones. Resolución 2108 de 2019 "Reglamento de la Decisión 833 “Armonización de Legislaciones en materia de Productos Cosméticos” . 2019 | |
dc.relation.references | Allen CHG, Koutsoukas A, Cortés-Ciriano I, Murrell DS, Malliavin TE, Glen RC, et al. Improving the prediction of organism-level toxicity through integration of chemical, protein target and cytotoxicity qHTS data. Toxicol Res (Camb). 2016;5(3). | |
dc.relation.references | Kalish RS, Wood JA, LaPorte A. Processing of urushiol (poison ivy) hapten by both endogenous and exogenous pathways for presentation to T cells in vitro. Journal of Clinical Investigation. 1994;93(5). | |
dc.relation.references | Wahlkvist H, Masjedi K, Gruvberger B, Zuber B, Karlberg AT, Bruze M, et al. The lipophilic hapten parthenolide induces interferon-γ and interleukin-13 production by peripheral blood derived CD8+ T cells from contact allergic subjects in vitro. British Journal of Dermatology. 2008;158(1). | |
dc.relation.references | Dockrell HM. Roitt’s essential immunology. Trans R Soc Trop Med Hyg. 2002;96(1). | |
dc.relation.references | Innate Immunity. Immunology for Pharmacy [Internet]. 2012 Jan 1 [cited 2025 Mar 5];15 22. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780323069472100021 | |
dc.relation.references | López Marín LM, Valdemar Aguilar CM. Patrones moleculares asociados a patógenos – ¿héroes o villanos en Nanomedicina? Mundo Nano Revista Interdisciplinaria en Nanociencia y Nanotecnología. 2018;11(20). | |
dc.relation.references | Re F, Strominger JL. Toll-like Receptor 2 (TLR2) and TLR4 Differentially Activate Human Dendritic Cells. Journal of Biological Chemistry. 2001;276(40). | |
dc.relation.references | Schmitt E, Hoehn P, Huels C, Goedert S, Palm N, Rüde E, et al. T helper type 1 development of naive CD4+ T cells requires the coordinate action of interleukin‐12 and interferon‐γ and is inhibited by transforming growth factor‐β. Eur J Immunol. 1994;24(4). | |
dc.relation.references | Liu YY, Lin TC, Wang YJ, Ho WL. Carbonyl compounds and toxicity assessments of emissions from a diesel engine running on biodiesels. J Air Waste Manage Assoc. 2009;59(2). | |
dc.relation.references | Koleva YK, Madden JC, Cronin MTD. Formation of categories from structure-activity relationships to allow read-across for risk assessment: Toxicity of α,β-unsaturated carbonyl compounds. Chem Res Toxicol. 2008;21(12). | |
dc.relation.references | Aptula AO, Roberts DW. Mechanistic applicability domains for nonanimal-based prediction of toxicological end points: General principles and application to reactive toxicity. Chem Res Toxicol. 2006;19(8). | |
dc.relation.references | Marciani DJ. Elucidating the Mechanisms of Action of Saponin-Derived Adjuvants. Vol. 39, Trends in Pharmacological Sciences. 2018. | |
dc.relation.references | Castro-Díaz N, Salaun B, Perret R, Sierro S, Romero JF, Fernández JA, et al. Saponins from the Spanish saffron Crocus sativus are efficient adjuvants for protein-based vaccines. Vaccine. 2012;30(2). | |
dc.relation.references | John Richard Rhodes. Immunopotentiatory agents and physiologically acceptable salts thereof [Internet]. Canada; CA2124677C, 1993 [cited 2025 Mar 9]. p. 1–50. Available from: https://patentimages.storage.googleapis.com/85/ee/cc/1f503c3a95b88e/CA2124677C.pdf | |
dc.relation.references | Rhodes J, Zheng B, Lifely MR. Inhibition of specific T-cell activation by monosaccharides is through their reactivity as aldehydes. Immunology. 1992;75(4). | |
dc.relation.references | Chen H, Rhodes J. Schiff base forming drugs: Mechanisms of immune potentiation and therapeutic potential. Vol. 74, Journal of Molecular Medicine. 1996. | |
dc.relation.references | Wang X, Kong B, He B, Wei L, Zhu J, Jin Y, et al. 8:2 Fluorotelomer alcohol causes immunotoxicity and liver injury in adult male C57BL/6 mice. Environ Toxicol. 2019;34(2). | |
dc.relation.references | Middlebrook AJ, Lebsack T, DeLuca D. TNF-α mediated modulation of T cell development and exacerbation of in vitro T1DM in fetal thymus organ culture. J Autoimmun. 2007;29(2 3). | |
dc.relation.references | Ritchie TJ, Macdonald SJF. Heterocyclic replacements for benzene: Maximising ADME benefits by considering individual ring isomers. Eur J Med Chem. 2016;124. | |
dc.relation.references | Kalgutkar A, Gardner I, Obach R, Shaffer C, Callegari E, Henne K, et al. A Comprehensive Listing of Bioactivation Pathways of Organic Functional Groups. Curr Drug Metab. 2005;6(3). | |
dc.relation.references | Malle E, Furtmüller PG, Sattler W, Obinger C. Myeloperoxidase: A target for new drug development? Vol. 152, British Journal of Pharmacology. 2007. | |
dc.relation.references | Zhang XY, Elfarra AA. Potential roles of myeloperoxidase and hypochlorous acid in metabolism and toxicity of alkene hydrocarbons and drug molecules containing olefinic moieties. Vol. 13, Expert Opinion on Drug Metabolism and Toxicology. 2017. | |
dc.relation.references | Viswanathan B, Gulam Razul MS. Electronegativity provides the relationship between formal charge, oxidation state, and actual charge. Found Chem. 2023;25(1). | |
dc.relation.references | Buglak AA, Zherdev A V., Lei HT, Dzantiev BB. QSAR analysis of immune recognition for triazine herbicides based on immunoassay data for polyclonal and monoclonal antibodies. PLoS One. 2019;14(4). | |
dc.relation.references | Di Gioacchino M, Verna N, Di Giampaolo L, Di Claudio F, Turi MC, Perrone A, et al. Immunotoxicity and sensitizing capacity of metal compounds depend on speciation. Vol. 20, International journal of immunopathology and pharmacology. 2007 | |
dc.relation.references | Egorova KS, Ananikov VP. Toxicity of Metal Compounds: Knowledge and Myths. Organometallics. 2017;36(21). | |
dc.relation.references | Bellama J. Organometallic Compounds in the Environment. Organometallics. 1987;6(4). | |
dc.relation.references | Auerbach S, Parham F, Wolfe M, Bucher J. NTP Research Report on National Toxicology Program Approach to Genomic Dose-Response Modeling Research Report 5. Vol. NTP-RR 5, NTP Research Report Series. 2018. | |
dc.relation.references | De Silva AO, Spencer C, Scott BF, Backus S, Muir DCG. Detection of a cyclic perfluorinated acid, perfluoroethylcyclohexane sulfonate, in the great lakes of North America. Environ Sci Technol. 2011;45(19). | |
dc.relation.references | Wang LS, Gopalakrishnan S, Luther DC, Rotello VM. Protein-Based Films as Antifouling and Drug-Eluting Antimicrobial Coatings for Medical Implants. ACS Appl Mater Interfaces. 2021;13(40). | |
dc.relation.references | Blinder KJ, Peyman GA, Paris CL, Dailey JP, Alturki W, Lui KR, et al. Vitreon, a new perfluorocarbon. British Journal of Ophthalmology. 1991;75(4). | |
dc.relation.references | Berglin L, Ren J, Algvere P V. Retinal detachment and degeneration in response to subretinal perfluorodecalin in rabbit eyes. Graefe’s Archive for Clinical and Experimental Ophthalmology. 1993;231(4). | |
dc.relation.references | Forman MB, Pitarys CJ, Vildibill HD, Lambert TL, Ingram DA, Virmani R, et al. Pharmacologic perturbation of neutrophils by Fluosol results in a sustained reduction in infarct size in the canine model of reperfusion. J Am Coll Cardiol. 1992;19(1). | |
dc.relation.references | Muir D, Bossi R, Carlsson P, Evans M, De Silva A, Halsall C, et al. Levels and trends of poly- and perfluoroalkyl substances in the Arctic environment – An update. Emerg Contam. 2019;5 | |
dc.relation.references | Miaz LT, Plassmann MM, Gyllenhammar I, Bignert A, Sandblom O, Lignell S, et al. Temporal trends of suspect-and target-per/polyfluoroalkyl substances (PFAS), extractable organic fluorine (EOF) and total fluorine (TF) in pooled serum from first-time mothers in Uppsala, Sweden, 1996-2017. Environ Sci Process Impacts. 2020;22(4). | |
dc.relation.references | Göckener B, Weber T, Rüdel H, Bücking M, Kolossa-Gehring M. Human biomonitoring of per- and polyfluoroalkyl substances in German blood plasma samples from 1982 to 2019. Environ Int. 2020;145. | |
dc.relation.references | Bernardo L, Corallo L, Caterini J, Su J, Gisonni-Lex L, Gajewska B. Application of xCELLigence real-time cell analysis to the microplate assay for pertussis toxin induced clustering in CHO cells. PLoS One. 2021;16(3 March). | |
dc.relation.references | Bakirhan NK, Kaya SI, Ozkan SA. Basics of electroanalytical methods and their applications with quantum dot sensors. In: Electroanalytical Applications of Quantum Dot-Based Biosensors. 2021. | |
dc.relation.references | United States ACEA Biosciences. ACEA Biosciences, Inc, The xCELLigence System Discover what you’ve been missing [Internet]. 2013 [cited 2025 Jan 11]. Available from: https://www.ols-bio.de/wp-content/uploads/2020/07/brochure_sp-mp_lores-ols.pdf | |
dc.relation.references | United States OMNI Life Science. Live Cell Analysis System xCELLigence Real-Time Cell Analyzer [Internet]. [cited 2025 Jan 11]. Available from: https://www.ols bio.de/products/live-cell-analysis-system-xcelligence | |
dc.relation.references | Bouchalova P, Bouchal P. Current methods for studying metastatic potential of tumor cells. Vol. 22, Cancer Cell International. 2022. | |
dc.relation.references | Koh CM. Preparation of cells for microscopy using chamber slides and coverslips. In: Methods in Enzymology. 2013. | |
dc.relation.references | Chiu CH, Lei KF, Yeh WL, Chen P, Chan YS, Hsu KY, et al. Comparison between xCELLigence biosensor technology and conventional cell culture system for real-time monitoring human tenocytes proliferation and drugs cytotoxicity screening. J Orthop Surg Res. 2017;12(1). | |
dc.relation.references | Stefanowicz-Hajduk J, Ochocka JR. Real-time cell analysis system in cytotoxicity applications: Usefulness and comparison with tetrazolium salt assays. Vol. 7, Toxicology Reports. 2020. | |
dc.relation.references | Cyprotex. High Content Toxicology: CellCiphr® Premier [Internet]. 2023 [cited 2025 Jan 11]. Available from: https://www.cyprotex.com/toxicology/multiparametric/cellciphr premier/ | |
dc.relation.references | Critchley-Thorne R, Miller S, Taylor D, Lingle W. Applications of Cellular Systems Biology in Breast Cancer Patient Stratification and Diagnostics. Comb Chem High Throughput Screen. 2009;12(9). | |
dc.relation.references | Thermo Fisher Scientific Inc. HCS and HCA Sample Data [Internet]. 2023 [cited 2025 Jan 11]. from: https://www.thermofisher.com/co/en/home/life-science/cell analysis/cellular-imaging/hcs-hca/sample-data.html#sample-applications | |
dc.relation.references | Vernetti L, Irwin W, Giuliano KA, Gough A, Johnston K, Taylor DL. Cellular Systems Biology Applied to Preclinical Safety Testing: A Case Study of CellCiphrTM Profiling. In: Drug Efficacy, Safety, and Biologics Discovery: Emerging Technologies and Tools. 2008. | |
dc.relation.references | Attagene. FACTORIALTM Screening Services [Internet]. [cited 2025 Jan 11]. Available from: https://www.attagene.com/services.php | |
dc.relation.references | Medvedev A, Moeser M, Medvedeva L, Martsen E, Granick A, Raines L, et al. Comprehensive assessment of NR ligand polypharmacology by a multiplex reporter NR assay. Sci Rep. 2022;12(1). | |
dc.relation.references | Adcock IM, Caramori G. Transcription Factors. Asthma and COPD [Internet]. 2009 [cited 2025 Jan 11]. 373–380 p. Available from: https://doi.org/10.1016/B978-0-12-374001 4.00031-6 | |
dc.relation.references | Martin MT, Dix DJ, Judson RS, Kavlock RJ, Reif DM, Richard AM, et al. Impact of environmental chemicals on key transcription regulators and correlation to toxicity end points within EPA’s toxcast program. Chem Res Toxicol. 2010;23(3). | |
dc.relation.references | Schweizer L, Mueller L. Protein Conformational Dynamics and Signaling in Evolution and Pathophysiology. In: Biased Signaling in Physiology, Pharmacology and Therapeutics. 2014. | |
dc.relation.references | Medvedev A, Moeser M, Medvedeva L, Martsen E, Granick A, Raines L, et al. Evaluating biological activity of compounds by transcription factor activity profiling. Sci Adv. 2018;4(9). | |
dc.relation.references | Blackwell BR, Ankley GT, Bradley PM, Houck KA, Makarov SS, Medvedev A V., et al. Potential Toxicity of Complex Mixtures in Surface Waters from a Nationwide Survey of United States Streams: Identifying in Vitro Bioactivities and Causative Chemicals. Environ Sci Technol. 2019;53(2). | |
dc.relation.references | Sipes NS, Martin MT, Kothiya P, Reif DM, Judson RS, Richard AM, et al. Profiling 976 ToxCast chemicals across 331 enzymatic and receptor signaling assays. Chem Res Toxicol. 2013;26(6). | |
dc.relation.references | Tendong W, Lebrun P, Verbist B. Controlling the Reproducibility of AC50 Estimation during Compound Profiling through Bayesian β-Expectation Tolerance Intervals. SLAS Discovery. 2020;25(9). | |
dc.relation.references | Tox21. Toxicology in the 21st Century [Internet]. [cited 2025 Jan 12]. Available from: https://tox21.gov/overview/operational-model/ | |
dc.relation.references | Attene-Ramos MS, Miller N, Huang R, Michael S, Itkin M, Kavlock RJ, et al. The Tox21 robotic platform for the assessment of environmental chemicals - From vision to reality. Vol. 18, Drug Discovery Today. 2013. | |
dc.relation.references | Hsieh JH, Smith-Roe SL, Huang R, Sedykh A, Shockley KR, Auerbach SS, et al. Identifying Compounds with Genotoxicity Potential Using Tox21 High-Throughput Screening Assays. Chem Res Toxicol. 2019;32(7). | |
dc.relation.references | Borrel A, Huang R, Sakamuru S, Xia M, Simeonov A, Mansouri K, et al. High-Throughput Screening to Predict Chemical-Assay Interference. Sci Rep. 2020;10(1). | |
dc.relation.references | Filer DL, Kothiya P, Woodrow Setzer R, Judson RS, Martin MT. Tcpl: The ToxCast pipeline for high-throughput screening data. Bioinformatics. 2017;33(4). | |
dc.relation.references | Feshuk M, Kolaczkowski L, Dunham K, Davidson-Fritz SE, Carstens KE, Brown J, et al. The ToxCast pipeline: updates to curve-fitting approaches and database structure. Frontiers in Toxicology. 2023;5. | |
dc.relation.references | Judson R., Filer D., Brown J. Package ‘tcpl’ [Internet]. 2024 [cited 2025 Jan 12]. Available from: https://cran.r-project.org/web/packages/tcpl/tcpl.pdf | |
dc.relation.references | Hegstad M. Study Questions EPA ToxCast’s Ability To Identify Endocrine Disruptors [Internet]. 2016 [cited 2025 https://www.jstor.org/stable/26839289 Jan 12]. p. 27–9. Available from: | |
dc.relation.references | Center for Computational Toxicology and Exposure. Tcpl: The ToxCast Data Analysis Pipeline Supporting Accessible Bioactivity Data for Toxicology [Internet]. [cited 2025 Jan 12]. Available from: project.org/web/packages/tcpl/vignettes/Introduction_Appendices.html 12]. https://cran.r | |
dc.relation.references | United States Enviromental Protection Agency. BSK_KF3CT_MCP1 [Internet]. [cited 2025 Jan Available endpoints/BSK_KF3CT_MCP1 from: https://comptox.epa.gov/dashboard/assay | |
dc.relation.references | Carrasco Carrasco S. Técnicas de análisis de expresión diferencial basada en coteos para el estudio de datos de Ran-Seq usando R y bioconductor. [Sevilla]: Universidad de Sevilla; 2015. | |
dc.relation.references | Salinas-Rodríguez Aarón, Manrique-Espinoza Betty, Sosa-Rubí Sandra G. Análisis estadístico para datos de conteo: aplicaciones para el uso de los servicios de salud. Salud pública Méx. 2009 Oct;397–406. | |
dc.relation.references | Faraway JJ. Generalized Linear Models. In: International Encyclopedia of Education, Third Edition. 2009. | |
dc.relation.references | Brossa Vives J. El diagnóstico de la sobredispersión en modelos de análisis de datos de recuento. [Barcelona]: Universidad Autonoma de Barcelona; 2002. | |
dc.relation.references | Sheffield T, Brown J, Davidson S, Friedman KP, Judson R. tcplfit2: an R-language general purpose concentration- response modeling package. Bioinformatics. 2022;38(4). | |
dc.relation.references | mad: Median Absolute Deviation [Internet]. [cited 2025 Jan 12]. Available from: https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/mad | |
dc.relation.references | Watt ED, Judson RS. Uncertainty quantification in ToxCast high throughput screening. PLoS One. 2018;13(7). | |
dc.relation.references | Chung N, Zhang XD, Kreamer A, Locco L, Kuan PF, Bartz S, et al. Median absolute deviation to improve hit selection for genome-scale RNAi screens. J Biomol Screen. 2008;13(2). | |
dc.relation.references | Hogg RV, Tanis EA, Zimmerman DL. Probability and Statistical Inference. 8th ed. Pearson, editor. 2014. | |
dc.relation.references | Scientific European Federation Osteopaths. Distribución de t- student [Internet]. [cited 2025 Jan 12]. Available from: https://www.scientific-european-federation-osteopaths.org/wp content/uploads/2019/01/Distri bucion_tStudent.pdf [Fecha de acceso: 3/1/2024] | |
dc.relation.references | Instituto Tecnologico de Chihuahua. TEORIA DE PEQUEÑAS MUESTRAS O TEORIA EXACTA DEL MUESTREO [Internet]. [cited 2025 Jan 12]. Available from: https://virtual.uptc.edu.co/ova/estadistica/docs/libros/estadistica1/cap03.html | |
dc.relation.references | Bell WR, Huang ET. Using the t-distribution to deal with outliers in small area estimation. Using the t-distribution to Deal with Outliers in Small Area Estimation. 2006; | |
dc.relation.references | Lange KL, Little RJA, Taylor JMG. Robust statistical modeling using the t distribution. J Am Stat Assoc. 1989;84(408). | |
dc.relation.references | U.S. Environmental Protection Agency. Benchmark Dose Technical Guidance [Internet]. 2012 [cited 2025 Jan 12]. Available from: https://www.epa.gov/sites/default/files/2015 01/documents/benchmark_dose_guidance.pdf | |
dc.relation.references | Cassidy T. A Continuation Technique for Maximum Likelihood Estimators in Biological Models. Bull Math Biol. 2023;85(10). | |
dc.relation.references | Sued M., Szretter M. Estadistica: Un primer acercamiento. [cited 2025 Jan 12]; Available from: https://www.dm.uba.ar/materias/probabilidades_estadistica_M/2008/1/prac/verosimilitud.p df | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.ddc | 610 - Medicina y salud::615 - Farmacología y terapéutica | |
dc.subject.ddc | 000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores | |
dc.subject.ddc | 540 - Química y ciencias afines | |
dc.subject.decs | Fluorocarburos | spa |
dc.subject.decs | Fluorocarbons | eng |
dc.subject.decs | Industria cosmética | spa |
dc.subject.decs | Cosmetic Industry | eng |
dc.subject.decs | Estabilidad de Cosméticos | spa |
dc.subject.decs | Cosmetic Stability | eng |
dc.subject.decs | Control de Medicamentos y Narcóticos | spa |
dc.subject.decs | Drug and Narcotic Control | eng |
dc.subject.decs | Medidas de Toxicidad | spa |
dc.subject.decs | Toxicity Measurements | eng |
dc.subject.proposal | PFAS | spa |
dc.subject.proposal | Inmunotoxicidad | spa |
dc.subject.proposal | Regulación de cosméticos | spa |
dc.subject.proposal | Aprendizaje automático | spa |
dc.subject.proposal | CosIng | spa |
dc.subject.proposal | Toxicología predictiva | spa |
dc.subject.proposal | Immunotoxicity | eng |
dc.subject.proposal | Cosmetics regulation | eng |
dc.subject.proposal | Machine learning | eng |
dc.subject.proposal | CosIng | eng |
dc.subject.proposal | Predictive toxicology | eng |
dc.title | Aproximación a la actividad inmunotóxica de sustancias per y poli fluoroalquiladas (PFAs) consignadas en la lista CosIng, mediante un modelo de Aprendizaje Automático | spa |
dc.title.translated | Approach to the Immunotoxic Activity of Per- and Polyfluoroalkyl Substances (PFAs) listed in cosIng using a machine learning model | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dcterms.audience.professionaldevelopment | Bibliotecarios | |
dcterms.audience.professionaldevelopment | Estudiantes | |
dcterms.audience.professionaldevelopment | Investigadores | |
dcterms.audience.professionaldevelopment | Medios de comunicación | |
dcterms.audience.professionaldevelopment | Público general | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- repo Aproximación inmunotoxica Tesis Documento (2).pdf
- Tamaño:
- 6.99 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Toxicología
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: