Análisis automático de fallas en líneas de transmisión con evaluación de respuesta de generadores basados en inversores

dc.contributor.advisorPérez González, Ernesto
dc.contributor.authorFlórez Betancourt, Juan Manuel
dc.contributor.researchgroupPrograma de Investigacion sobre Adquisicion y Analisis de Señales Paas-Unspa
dc.date.accessioned2023-05-19T20:31:58Z
dc.date.available2023-05-19T20:31:58Z
dc.date.issued2023
dc.descriptionIlustracionesspa
dc.description.abstractLos recursos basados en inversores (RBI) presentan grandes retos para la planeación, programación y operación de los Sistemas Eléctricos de Potencia (SEP). El recurso humano encargado de esta tarea es limitado mientras los sistemas eléctricos crecen exponencialmente. Con el fin de garantizar su operación segura y confiable, un sistema eléctrico debe contar con la capacidad de responder ante diferentes condiciones de cambio en el balance generación-demanda en todas las escalas y horizontes de tiempo; esta capacidad ha sido definida como la flexibilidad del sistema de potencia. Por lo anterior, en este documento se desarrollan los fundamentos para la implementación de un prototipo que automatiza la evaluación de características técnicas de Fuentes de Energía Renovables No Convencionales (FERNC) considerando la generación tradicional que desplaza. Específicamente, se evalúan las curvas FRT (Fault Ride Through) y la inyección prioritaria de corriente reactiva de acuerdo con La regulación colombiana a partir de registro oscilográficos en formato COMTRADE. Complementariamente, se realiza la adaptación del prototipo mencionado con la finalidad de evaluar la operación de los sistemas de protección en líneas de transmisión desde el punto de vista del operador nacional y el despeje oportuno, selectivo y coordinado de las fallas eléctricas (cortocircuito) que se puedan presentar en estos elementos. Esto optimiza el análisis de eventos N-1 en vista del crecimiento de los sistemas eléctricos de potencia considerando que las líneas son los activos más expuestos a fallas de todo el sistema. El desarrollo aprovecha las herramientas propias de la revolución digital, donde los datos estructurados y la extracción de información, apoyados de métodos de aprendizaje de máquina, entregan conclusiones de valor para la toma de decisiones, lo cual se ha vuelto una prioridad para lograr la automatización y optimización de tareas. Finalmente, aquí se exponen los fundamentos matemáticos y técnicos, la regulación vigente asociada a los análisis, los resultados gráficos y las conclusiones del automatismo realizado a través de Python. Todo ello con la premisa de automatizar la operación de los sistemas eléctricos de potencia, siendo esencial para lograr los criterios de calidad en el servicio. (Texto tomado de la fuente)spa
dc.description.abstractInverter-based resources present great challenges for the planning, programming and operation of power systems. The human resource who perform this task is limited while electrical systems grow exponentially. An electrical system must have the capacity to respond in different conditions of changes in the generation-demand balance at all scales and time horizons to guarantee safety and reliability in the operation of power system; this capacity has been defined as the flexibility of the power system. Therefore, this document develops the foundations for the implementation of a prototype that automates the evaluation of technical characteristics of non-conventional renewable energy sources considering the traditional generation displaced. Specifically, the Fault Ride Through (FRT) curves and the priority injection of reactive current are evaluated according with the colombian regulation from oscillographic records in COMTRADE format. Complementarily, the prototype is adaptated to evaluate the operation of the protection systems in transmission lines from the point of view of the national operator for the timely, selective and coordinated clearance of electrical faults (short-circuit) in these elements. The automatization optimizes the analysis of N-1 events in the growth of electrical power systems, also it consider that the lines are the element most exposed to failures in the entire system. The development takes advantage of the tools of the digital revolution, the structured data and information extraction, supported by machine learning methods, give valuable conclusions for decision making, this has become a priority to achieve automation and task optimization. Finally, the document exposes the mathematical and technical foundations, the current regulation associated with the analysis, the graphic results and the conclusions of the automation performed in Python. The premise is to automate the operation of electrical power systems, this is essential to achieve the quality criteria in the service.eng
dc.description.curricularareaÁrea Curricular de Ingeniería Eléctrica e Ingeniería de Controlspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMaestría en Ingeniería - Ingeniería Eléctricaspa
dc.description.researchareaSistemas eléctricos de potenciaspa
dc.format.extent725 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83839
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Ingeniería Eléctricaspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesR. Yadav, A. K. Pradhan, and I. Kamwa, “Real-Time Multiple Event Detection and Classification in Power System Using Signal Energy Transformations,” IEEE Transactions on Industrial Informatics, vol. 15, no. 3, pp. 1521–1531, 2019.spa
dc.relation.referencesH. A. Villarroel-Guti´errez and M. Molina, “Analysis of Dynamic Voltage Support Schemes for PV Generators Implemented in Latin America,” IEEE Latin America Transactions, vol. 18, no. 04, pp. 641–651, 2020.spa
dc.relation.referencesJ. C. Gonz´alez, N. J. Castrill´on, and S. Hincapi´e, “Applications and Validation of WECC Model for Type 4 Wind Generator Controller for the Colombian Power System,” in 2018 IEEE PES Transmission & Distribution Conference and Exhibition - Latin America (T&D-LA), pp. 1–5, 2018.spa
dc.relation.referencesP. Eriksen, T. Ackermann, H. Abildgaard, P. Smith, W. Winter, and J. M. Garcia, “System operation with high wind penetration. Power Energ Mag IEEE 3:65-74,” Power and Energy Magazine, IEEE, vol. 3, pp. 65–74, 12 2005.spa
dc.relation.referencesV. H. Ferreira, R. Zanghi, M. Z. Fortes, G. G. Sotelo, R. B. M. Silva, J. C. S. Souza, C. H. C. Guimar˜aes, and S. Gomes, “A survey on intelligent system application to fault diagnosis in electric power system transmission lines,” Electric Power Systems Research, vol. 136, pp. 135–153, 2016.spa
dc.relation.referencesA. J. Wilson, D. R. Reising, R. W. Hay, R. C. Johnson, A. A. Karrar, and T. D. Loveless, “Automated Identification of Electrical Disturbance Waveforms Within an Operational Smart Power Grid,” IEEE Transactions on Smart Grid, vol. 11, no. 5, pp. 4380–4389, 2020.spa
dc.relation.referencesB. D. Russell and C. L. Benner, “Intelligent Systems for Improved Reliability and Failure Diagnosis in Distribution Systems,” IEEE Transactions on Smart Grid, vol. 1, no. 1, pp. 48–56, 2010.spa
dc.relation.referencesE. M. Davidson, S. D. J. McArthur, J. R. McDonald, T. Cumming, and I. Watt, “Applying multi-agent system technology in practice: automated management and analysis of SCADA and digital fault recorder data,” in 2006 IEEE Power Engineering Society General Meeting, pp. 1 pp.–, 2006.spa
dc.relation.referencesComisión de Regulación de Energía y Gas, “Resolución CREG 025 de 1995,” tech. rep., Comisión de Regulación de Energía y Gas, 1995.spa
dc.relation.referencesInternational Electrotechnical Commission, “IEC 60255: Electrical Relays Standard,” tech. rep.spa
dc.relation.referencesIEEE/IEC, “IEEE/IEC Measuring relays and protection equipment Part 24: Common format for transient data exchange (COMTRADE) for power systems - Redline,” IEEE Std C37.111-2013 (IEC 60255-24 Edition 2.0 2013-04) - Redline, 2013spa
dc.relation.referencesComisión de Regulación de Energía y Gas, “Resolución CREG 080 de 1999,” tech. rep., 1999.spa
dc.relation.referencesNERC, “Glossary of Terms Used in NERC Reliability Standards,” tech. rep., NERC, 6 2021spa
dc.relation.referencesInternational Electrotechnical Commission, “IEC 604-02-28,” tech. rep.spa
dc.relation.referencesIEEE, “IEEE Recommended Practice for the Design of Reliable Industrial and Commercial Power Systems,” IEEE Std 493-2007 (Revision of IEEE Std 493-1997), pp. 1–383, 2007.spa
dc.relation.referencesD. Rodriguez Parrini, “A module designed to read Common Format for Transient Data Exchange (COMTRADE) file format.”spa
dc.relation.referencesLatin American Energy Organization (OLADE), “Energy Outlook of Latin America and the Caribbean 2018,” tech. rep., Latin American Energy Organization (OLADE), 5 2019spa
dc.relation.referencesR. Yan, N. Masood, T. K. Saha, F. Bai, and H. Gu, “The Anatomy of the 2016 South Australia Blackout: A Catastrophic Event in a High Renewable Network,” IEEE Transactions on Power Systems, vol. 33, no. 5, pp. 5374–5388, 2018.spa
dc.relation.referencesNorth American Electric Reliability Corporation, “April and May 2018 Fault Induced Solar Photovoltaic Resource Interruption Disturbances Report,” tech. rep., North American Electric Reliability Corporation, 2019.spa
dc.relation.referencesS. Mali, S. James, and I. Tank, “Improving Low Voltage Ride-through Capabilities for Grid Connected Wind Turbine Generator,” Energy Procedia, vol. 54, pp. 530–540, 2014spa
dc.relation.referencesK. M. Silva, B. A. Souza, and N. S. D. Brito, “Fault detection and classification in transmission lines based on wavelet transform and ANN,” IEEE Transactions on Power Delivery, vol. 21, no. 4, pp. 2058–2063, 2006.spa
dc.relation.referencesJ. C. A. Freire, A. R. G. Castro, M. S. Homci, B. S. Meiguins, and J. M. D. Morais, “Transmission Line Fault Classification Using Hidden Markov Models,” IEEE Access, vol. 7, pp. 113499–113510, 2019.spa
dc.relation.referencesJ. A. Jiang, C. L. Chuang, Y. C. Wang, C. H. Hung, J. Y. Wang, C. H. Lee, and Y. T. Hsiao, “A Hybrid Framework for Fault Detection, Classification, and Location—Part I: Concept, Structure, and Methodology,” IEEE Transactions on Power Delivery, vol. 26, no. 3, pp. 1988–1998, 2011.spa
dc.relation.referencesI. Duque Márquez, D. Mesa Puyo, M. Lotero Robledo, and S. Sandoval Valderrama, “Transición energética: un legado para el presente y el futuro de Colombia,” tech. rep., Ministerio de Minas y Energía, Bogotá, 2021.spa
dc.relation.referencesP. B. Eriksen, T. Ackermann, H. Abildgaard, P. Smith, W. Winter, and J. M. R. Garcia, “System operation with high wind penetration,” IEEE Power and Energy Magazine, vol. 3, no. 6, pp. 65–74, 2005.spa
dc.relation.referencesNorth American Electric Reliability Corporation, “Reliability Guideline BPS-Connected Inverter-Based Resource Performance,” tech. rep., North American Electric Reliability Corporation, 2018.spa
dc.relation.referencesComisión de Regulación de Energía y Gas, “Resolución CREG 060 de 2019,” tech. rep., Comisión de Regulación de Energía y Gas, Colombia, 2019.spa
dc.relation.referencesComisión de Regulación de Energía y Gas, “Resoluci´on CREG 148 de 2021,” tech. rep., Comisión de Regulación de Energía y Gas, Colombia, 2021.spa
dc.relation.referencesJ. J. Grainger and W. D. Stevenson Jr, Análisis de sistemas de potencia. McGraw-Hill, 2000.spa
dc.relation.referencesA. Moschitta, P. Carbone, and C. Muscas, “Performance Comparison of Advanced Techniques for Voltage Dip Detection,” IEEE Transactions on Instrumentation and Measurement, vol. 61, no. 5, pp. 1494–1502, 2012.spa
dc.relation.referencesH. Amaris, C. Alvarez, M. Alonso, D. Florez, T. Lobos, P. Janik, J. Rezmer, and Z. Waclawek, “Application of advanced signal processing methods for accurate detection of voltage dips,” in 2008 13th International Conference on Harmonics and Quality of Power, pp. 1–6, 2008.spa
dc.relation.referencesD. Sánchez, J. F. Piñeros, L. Agudelo, and E. Pérez, “Reporte Diseño e Implementación Módulo Fault Ride Through,” tech. rep., Proyecto Estrategia de transformación del sector eléctrico colombiano en el horizonte de 2030, Colombia, 6 2019.spa
dc.relation.referencesB. Ravikumar, T. Dhadbanjan, and H. P. Khincha, “Application of support vector machines for fault diagnosis in power transmission system,” Generation, Transmission & Distribution, IET, vol. 2, pp. 119–130, 2 2008.spa
dc.relation.referencesS.-w. Fei and X.-b. Zhang, “Fault diagnosis of power transformer based on support vector machine with genetic algorithm,” Expert Systems with Applications, vol. 36, no. 8, pp. 11352–11357, 2009.spa
dc.relation.referencesJ. Mora-Flórez, J. Cormane-Angarita, and G. Ordóñez-Plata, “k-means algorithm and mixture distributions for locating faults in power systems,” Electric Power Systems Research, vol. 79, no. 5, pp. 714–721, 2009spa
dc.relation.referencesL. Xu and M.-Y. Chow, “A classification approach for power distribution systems fault cause identification,” IEEE Transactions on Power Systems, vol. 21, no. 1, pp. 53–60, 2006.spa
dc.relation.referencesL. Vanfretti and V. S. N. Arava, “Decision tree-based classification of multiple operating conditions for power system voltage stability assessment,” International Journal of Electrical Power & Energy Systems, vol. 123, p. 106251, 2020.spa
dc.relation.referencesC. Chui and C. Heil, “An Introduction to Wavelets,” Computers in Physics, vol. 6, p. 697, 11 1992.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::621 - Física aplicadaspa
dc.subject.lembDistribución de energía eléctrica
dc.subject.lembRecursos energéticos renovables
dc.subject.proposalAprendizaje de máquinaspa
dc.subject.proposalMachine learningeng
dc.subject.proposalCOMTRADE
dc.subject.proposalFalla eléctricaspa
dc.subject.proposalElectric faulteng
dc.subject.proposalFuentes de Energía Renovables No Convencionalesspa
dc.subject.proposalNon-Conventional Renewable Energy Sourceseng
dc.subject.proposalLínea de transmisiónspa
dc.subject.proposalTransmission lineeng
dc.subject.proposalPython
dc.subject.proposalRecursos Basados en Inversoresspa
dc.subject.proposalInverter-Based Resourceseng
dc.subject.proposalSistema de protecciónspa
dc.subject.proposalProtection systemeng
dc.subject.proposalSistema Eléctrico de Potenciaspa
dc.subject.proposalPower systemeng
dc.titleAnálisis automático de fallas en líneas de transmisión con evaluación de respuesta de generadores basados en inversoresspa
dc.title.translatedAutomatic transmission line fault analysis with response evaluation of inverter-based resourceseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1088326600.2023.pdf
Tamaño:
3.92 MB
Formato:
Adobe Portable Document Format
Descripción:
tesis de Maestría en Ingeniería - Ingeniería Eléctrica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: