Análisis computacional del receptor de manosa CD206 y componentes de la pared celular de Mycobacterium leprae, PGL-1 y manosa
dc.contributor.advisor | Hernández Ortiz, Juan Pablo | |
dc.contributor.advisor | Botero Mejía, Maria Luisa | |
dc.contributor.author | Montoya Pareja, Juan Pablo | |
dc.contributor.orcid | Hernández Ortiz, Juan Pablo [0000-0003-0404-9947] | |
dc.date.accessioned | 2025-08-29T01:56:28Z | |
dc.date.available | 2025-08-29T01:56:28Z | |
dc.date.issued | 2024 | |
dc.description | Ilustraciones, gráficos | spa |
dc.description.abstract | Esta tesis presenta un análisis computacional exhaustivo del receptor de manosa CD206 y su interacción con componentes clave de la pared celular de Mycobacterium leprae, específicamente el glicolípido fenólico-1 (PGL-1) y la manosa. Empleando una combinación de técnicas de modelado molecular, incluyendo dinámica molecular, docking molecular y simulaciones de complejos receptor-ligando, el estudio proporciona una comprensión detallada de la estructura, dinámica y mecanismos de reconocimiento molecular del receptor CD206. La investigación se estructuró en tres fases principales: dinámica molecular del receptor CD206 en sus estados conformacionales abierto y cerrado, así como del cuarto dominio de reconocimiento de carbohidratos (CRD4) aislado; docking molecular entre el receptor y los ligandos PGL-1 y manosa; y dinámica molecular de los complejos receptor-ligando resultantes. Los hallazgos clave incluyen la identificación de un posible mecanismo de “captura y liberación” basado en la alternancia entre estados conformacionales, la confirmación de la especificidad del receptor hacia la manosa, la elucidación del papel del dominio CRD4 en la unión de ligandos, y la caracterización de las diferencias en la dinámica de interacción entre el receptor y los ligandos. El estudio reveló una preferencia consistente del receptor por la manosa sobre PGL-1, con energías de unión más favorables en el estado cerrado del receptor. Además, se observaron cambios conformacionales inducidos por la unión de ligandos, que podrían ser cruciales para la función biológica del receptor. Estos resultados tienen implicaciones significativas para el entendimiento de los mecanismos de reconocimiento de patógenos en el sistema inmune innato y abren nuevas vías para el diseño de estrategias terapéuticas dirigidas a modular la actividad del receptor CD206 en el contexto de enfermedades infecciosas, particularmente la lepra. La integración de múltiples técnicas computacionales en este trabajo ha permitido una caracterización detallada de un sistema biológico complejo, demostrando el poder de los enfoques in silico en la investigación biomédica moderna. Los hallazgos de esta tesis no solo contribuyen al conocimiento fundamental de las interacciones receptor-ligando en el sistema inmune, sino que también proporcionan una base sólida para futuras investigaciones experimentales y computacionales en este campo, con potenciales aplicaciones en el desarrollo de nuevas terapias y en la comprensión más profunda de las interacciones patógeno-huésped. (Tomado de la fuente) | spa |
dc.description.abstract | This thesis presents a comprehensive computational analysis of the mannose receptor CD206 and its interaction with key cell wall components of Mycobacterium leprae, specifically phenolic glycolipid-1 (PGL-1) and mannose. Employing a combination of molecular modeling techniques, including molecular dynamics, molecular docking, and receptor-ligand complex simulations, the study provides a detailed understanding of the structure, dynamics, and molecular recognition mechanisms of the CD206 receptor. The research was structured in three main phases: molecular dynamics of the CD206 receptor in its open and closed conformational states, as well as the isolated fourth carbohydrate recognition domain (CRD4); molecular docking between the receptor and the ligands PGL-1 and mannose; and molecular dynamics of the resulting receptor-ligand complexes. Key findings include the identification of a possible çapture and release"mechanism based on the alternation between conformational states, confirmation of the receptor’s specificity towards mannose, elucidation of the role of the CRD4 domain in ligand binding, and characterization of the differences in interaction dynamics between the receptor and the ligands. The study revealed a consistent preference of the receptor for mannose over PGL-1, with more favorable binding energies in the closed state of the receptor. Additionally, conformational changes induced by ligand binding were observed, which could be crucial for the biological function of the receptor. These results have significant implications for understanding pathogen recognition mechanisms in the innate immune system and open new avenues for designing therapeutic strategies aimed at modulating CD206 receptor activity in the context of infectious diseases, particularly leprosy. The integration of multiple computational techniques in this work has allowed for a detailed characterization of a complex biological system, demonstrating the power of in silico approaches in modern biomedical research. The findings of this thesis not only contribute to the fundamental knowledge of receptor-ligand interactions in the immune system but also provide a solid foundation for future experimental and computational investigations in this field, with potential applications in the development of new therapies and a deeper understanding of pathogen-host interactions. | eng |
dc.description.curriculararea | Ingeniería De Sistemas E Informática.Sede Medellín | |
dc.description.degreelevel | Maestría | |
dc.description.degreename | Magíster en Ingeniería - Analítica | |
dc.format.extent | 104 páginas | |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88504 | |
dc.language.iso | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | |
dc.publisher.faculty | Facultad de Minas | |
dc.publisher.place | Medellín, Colombia | |
dc.publisher.program | Medellín - Minas - Maestría en Ingeniería - Analítica | |
dc.relation.indexed | LaReferencia | |
dc.relation.references | Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindah, E. (2015). Gromacs: High performance molecular simulations through multi-level para- llelism from laptops to supercomputers. SoftwareX, 1-2, 19-25. https://doi.org/10. 1016/j.softx.2015.06.001 | |
dc.relation.references | AlphaFold.(s.f.).Macrophagemannosereceptor1.https://alphafold.ebi.ac.uk/entry/P22897 | |
dc.relation.references | American Cancer Society. (2023). Cancer Facts & Figures 2023 (inf. téc.). American Cancer Society. Atlanta. | |
dc.relation.references | Anderson, N. M., & Simon, M. C. (2020). The tumor microenvironment. Current Biology, 30(16), R921-R925. https://doi.org/10.1016/j.cub.2020.06.081 | |
dc.relation.references | Avogadro: an open-source molecular builder and visualization tool. (s.f.). https://avogadro. cc/ | |
dc.relation.references | Azad, A. K., Rajaram, M. V. S., & Schlesinger, L. S. (2014). Exploitation of the Macropha- ge Mannose Receptor (CD206) in Infectious Disease Diagnostics and Therapeutics. Journal of cytology & molecular biology, 1(1). https://doi.org/10.13188/2325- 4653.1000003 | |
dc.relation.references | Bateman, A., Martin, M. J., Orchard, S., Magrane, M., Ahmad, S., Alpi, E., Bowler-Barnett, E. H., Britto, R., Bye-A-Jee, H., Cukura, A., Denny, P., Dogan, T., Ebenezer, T. G., Fan, J., Garmiri, P., da Costa Gonzales, L. J., Hatton-Ellis, E., Hussein, A., Ignat- chenko, A., ... Zhang, J. (2023). UniProt: the Universal Protein Knowledgebase in 2023. Nucleic Acids Research, 51(D1), D523-D531. https://doi.org/10.1093/NAR/ GKAC1052 | |
dc.relation.references | Bazan-Furini, R., Motta, A. C. F., Simão, J. C. L., Tarquínio, D. C., Marques, W., Barbosa, M.H. N.,& Foss, N.T. (2011). Earlydetection of leprosybyexaminationofhousehold contacts, determination of serum anti-PGL-1 antibodies and consanguinity. Memó- rias do Instituto Oswaldo Cruz, 106(5), 536-540. https://doi.org/10.1590/S0074- 02762011000500003 | |
dc.relation.references | Bejarano, L., Jord¯ao, M. J., Joyce, J. A., Bejarano, L., Jord¯ao, M., & Author, C. (2021). Therapeutic Targeting of the Tumor Microenvironment. Cancer Discovery, 11(4), 933-959. https://doi.org/10.1158/2159-8290.CD-20-1808 | |
dc.relation.references | Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000). The Protein Data Bank. Nucleic Acids Research, 28(1), 235-242. https://doi.org/10.1093/NAR/28.1.235 | |
dc.relation.references | Biharee, A., Yadav, A., Jangid, K., Singh, Y., Kulkarni, S., Sawant, D. M., Kumar, P., Thareja, S., & Jain, A. K. (2023). Flavonoids as promising anticancer agents: an in silico investigation of ADMET, binding affinity by molecular docking and molecu- lar dynamics simulations. Journal of Biomolecular Structure and Dynamics, 41(16), 7835-7846. https://doi.org/10.1080/07391102.2022.2126397 | |
dc.relation.references | BinhNguyen,T.,Pires,D.E.,&Ascher,D.B.(2021).CSM-carbohydrate:protein-carbohydrate binding affinity prediction and docking scoring function. Briefings in Bioinformatics, 23(1), bbab512. https://doi.org/10.1093/BIB/BBAB512 | |
dc.relation.references | Blackadar, C. B. (2016). Historical review of the causes of cancer. World Journal of Clinical Oncology, 7(1), 54. https://doi.org/10.5306/WJCO.V7.I1.54 | |
dc.relation.references | Blanco, A., & Blanco, G. (2022, enero). Medical Biochemistry (2.a ed.). Academic Press. https://doi.org/10.1016/C2020-0-02932-4 | |
dc.relation.references | Brice, A. R., & Dominy, B. N. (2011). Analyzing the robustness of the MM/PBSA free energy calculation method: Application to DNA conformational transitions. Journal of Computational Chemistry, 32(7), 1431-1440. https://doi.org/10.1002/JCC.21727 | |
dc.relation.references | Bussi, G., Donadio, D., & Parrinello, M. (2007). Canonical sampling through velocity resca- ling. The Journal of chemical physics, 126(1). https://doi.org/10.1063/1.2408420 | |
dc.relation.references | Cagan, R., & Meyer, P. (2017). Rethinking cancer: current challenges and opportunities in cancer research. Disease Models & Mechanisms, 10(4), 349. https://doi.org/10.1242/ DMM.030007 | |
dc.relation.references | Cendrowicz, E., Sas, Z., Bremer, E., & Rygiel, T. P. (2021). The Role of Macrophages in Cancer Development and Therapy. Cancers, 13(8). https://doi.org/10.3390/ CANCERS13081946 | |
dc.relation.references | Center For Computational Structural Biology. (s.f.). mgltools. https://ccsb.scripps.edu/ mgltools/ | |
dc.relation.references | Chatterjee, D., & Khoo, K. H. (2001). The surface glycopeptidolipids of mycobacteria: Structures and biological properties. Cellular and Molecular Life Sciences, 58(14), 2018-2042. https://doi.org/10.1007/PL00000834 | |
dc.relation.references | Chemaxon. (s.f.). Marvin JS. https://marvinjs-demo.chemaxon.com/latest/demo.html | |
dc.relation.references | Couzin-Frankel, J. (2013). Cancer immunotherapy. Science, 342(6165), 1432-1433. https: //doi.org/10.1126/science.342.6165.1432 | |
dc.relation.references | Cummings, R. D. (2022). The mannose receptor ligands and the macrophage glycome. Cu- rrent Opinion in Structural Biology, 75, 102394. https://doi.org/10.1016/J.SBI.2022. 102394 | |
dc.relation.references | Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An Nlog(N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089-10092. https://doi.org/10.1063/1.464397 | |
dc.relation.references | de Visser, K. E., & Joyce, J. A. (2023). The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth. Cancer Cell, 41(3), 374-403. https://doi.org/10. 1016/J.CCELL.2023.02.016 | |
dc.relation.references | De Moura, R. S., Calado, K. L., Oliveira, M. L. W., & Bührer-Sékula, S. (2008). Leprosy se- rology using PGL-I: a systematic review. Revista da Sociedade Brasileira de Medicina Tropical, 41(SUPPL. 2), 11-18. https://doi.org/10.1590/S0037-86822008000700004 | |
dc.relation.references | Díaz Acosta, C. C., Dias, A. A., Rosa, T. L. S. A., Batista-Silva, L. R., Rosa, P. S., Toledo- Pinto, T. G., Costa, F. d. M. R., Lara, F. A., Rodrigues, L. S., Mattos, K. A., Sarno, E. N., Bozza, P. T., Guilhot, C., de Berrêdo-Pinho, M., & Pessolani, M. C. V. (2018). PGL I expression in live bacteria allows activation of a CD206/PPARγ cross-talk that may contribute to successful Mycobacterium leprae colonization of peripheral nerves. PLOS Pathogens, 14(7), e1007151. https://doi.org/10.1371/JOURNAL.PPAT. 1007151 | |
dc.relation.references | DockThor. (s.f.). https://dockthor.lncc.br/v2/ | |
dc.relation.references | Dominy, B. N., Perl, D., Schmid, F. X., & Brooks, C. L. (2002). The Effects of Ionic Strength on Protein Stability: The Cold Shock Protein Family. Journal of Molecular Biology, 319(2), 541-554. https://doi.org/10.1016/S0022-2836(02)00259-0 | |
dc.relation.references | Eberhardt, J., Santos-Martins, D., Tillack, A. F., & Forli, S. (2021). AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. Journal of Che- mical Information and Modeling, 61(8), 3891-3898. https://doi.org/10.1021/ACS. JCIM.1C00203/SUPPL{\_}FILE/CI1C00203{\_}SI{\_}002.ZIP | |
dc.relation.references | Feinberg, H., Jégouzo, S. A., Lasanajak, Y., Smith, D. F., Drickamer, K., Weis, W. I., & Taylor, M. E. (2021). Structural analysis of carbohydrate binding by the macrophage mannose receptor CD206. Journal of Biological Chemistry, 296, 100368-100369. https: //doi.org/10.1016/j.jbc.2021.100368 | |
dc.relation.references | Felgner, S., Kocijancic, D., Frahm, M., & Weiss, S. (2016). Bacteria in Cancer Therapy: Renaissance of an Old Concept. International Journal of Microbiology, 2016. https: //doi.org/10.1155/2016/8451728 | |
dc.relation.references | Ferlay, J., Colombet, M., Soerjomataram, I., Parkin, D. M., Piñeros, M., Znaor, A., & Bray, F. (2021). Cancer statistics for the year 2020: An overview. International Journal of Cancer, 149(4), 778-789. https://doi.org/10.1002/IJC.33588 | |
dc.relation.references | Forli, S., Huey, R., Pique, M. E., Sanner, M. F., Goodsell, D. S., & Olson, A. J. (2016). Computational protein-ligand docking and virtual drug screening with the AutoDock suite. Nature protocols, 11(5), 905-919. https://doi.org/10.1038/NPROT.2016.051 | |
dc.relation.references | Friedman, R., Boye, K., & Flatmark, K. (2013). Molecular modelling and simulations in cancer research. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, 1836(1), 1-14. https://doi.org/10.1016/J.BBCAN.2013.02.001 | |
dc.relation.references | Gao, J., Liang, Y., & Wang, L. (2022). Shaping Polarization Of Tumor-Associated Ma- crophages In Cancer Immunotherapy. Frontiers in Immunology, 13, 888713. https: //doi.org/10.3389/FIMMU.2022.888713/TEXT | |
dc.relation.references | Gaylord, H., & Brennan, P. J. (1987). Leprosy and the leprosy bacillus: recent developments in characterization of antigens and immunology of the disease. Annual review of mi- crobiology, 41(Volume 41,), 645-675. https://doi.org/10.1146/ANNUREV.MI.41. 100187.003241/CITE/REFWORKS | |
dc.relation.references | Gazi, U., & Martinez-Pomares, L. (2009). Influence of the mannose receptor in host immune responses. Immunobiology, 214(7), 554-561. https://doi.org/10.1016/J.IMBIO.2008. 11.004 | |
dc.relation.references | Ghebremedhin, A., Salam, A. B., Adu-Addai, B., Noonan, S., Stratton, R., Ahmed, M. S. U., Khantwal, C., Martin, G. R., Lin, H., Andrews, C., Karanam, B., Rudloff, U., Lo- pez, H., Jaynes, J., & Yates, C. (2023). A Novel CD206 Targeting Peptide Inhibits Bleomycin-Induced Pulmonary Fibrosis in Mice. Cells, 12(9). https://doi.org/10. 3390/CELLS12091254/S1 | |
dc.relation.references | Goldszmid, R. S., Dzutsev, A., & Trinchieri, G. (2014). Host immune response to infection and cancer: unexpected commonalities. Cell host & microbe, 15(3), 295. https://doi. org/10.1016/J.CHOM.2014.02.003 | |
dc.relation.references | Guvench, O., & MacKerell, A. D. (2008). Comparison of protein force fields for molecular dynamics simulations. Methods in molecular biology (Clifton, N.J.), 443, 63-88. https: //doi.org/10.1007/978-1-59745-177-2{\_}4 | |
dc.relation.references | Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeerschd, T., Zurek, E., & Hutchison, G. R. (2012). Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. Journal of Cheminformatics, 4(8), 1-17. https://doi.org/10.1186/ 1758-2946-4-17/FIGURES/14 | |
dc.relation.references | Hess, S., & Rambukkana, A. (2019). Cell Biology of Intracellular Adaptation of Mycobac- terium leprae in the Peripheral Nervous System. Microbiology spectrum, 7(4). https: //doi.org/10.1128/MICROBIOLSPEC.BAI-0020-2019 | |
dc.relation.references | Hitchen,P.G.,Mullin,N.P.,&Taylor,M.E.(1998).Orientationofsugarsboundtotheprin- cipal C-type carbohydrate-recognition domain of the macrophage mannose receptor. Biochemical Journal, 333(Pt 3), 601. https://doi.org/10.1042/BJ3330601 | |
dc.relation.references | Hollingsworth, S. A., & Dror, R. O. (2018). Molecular Dynamics Simulation for All. Neuron, 99(6), 1129-1143. https://doi.org/10.1016/J.NEURON.2018.08.011 | |
dc.relation.references | Hou, T., Wang, J., Li, Y., & Wang, W. (2011). Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. Journal of Chemical Information and Modeling, 51(1), 69-82. https://doi.org/10.1021/CI100275A/SUPPL{\_}FILE/CI100275A{\_ }SI{\_}001.PDF | |
dc.relation.references | Hoves, S., Ooi, C. H., Wolter, C., Sade, H., Bissinger, S., Schmittnaegel, M., Ast, O., Gius- ti, A. M., Wartha, K., Runza, V., Xu, W., Kienast, Y., Cannarile, M. A., Levitsky, H., Romagnoli, S., De Palma, M., Rüttinger, D., & Ries, C. H. (2018). Rapid activa- tion of tumor-associated macrophages boosts preexisting tumor immunity. Journal of Experimental Medicine, 215(3), 859-876. https://doi.org/10.1084/JEM.20171440 | |
dc.relation.references | Hu, Z., Shi, X., Yu, B., Li, N., Huang, Y., & He, Y. (2018). Structural Insights into the pH- Dependent Conformational Change and Collagen Recognition of the Human Mannose Receptor. Structure, 26(1), 60-71. https://doi.org/10.1016/j.str.2017.11.006 | |
dc.relation.references | Hu, Z., Wang, Y., Cheng, C., & He, Y. (2019). Structural basis of the pH-dependent confor- mationalchangeoftheN-terminalregionofhumanmannosereceptor/CD206.Journal of Structural Biology, 208(3), 107384. https://doi.org/10.1016/J.JSB.2019.09.001 | |
dc.relation.references | Hunter, S. W., & Brennan, P. J. (1981). A novel phenolic glycolipid from Mycobacterium leprae possibly involved in immunogenicity and pathogenicity. Journal of bacteriology, 147(3), 728-735. https://doi.org/10.1128/JB.147.3.728-735.1981 | |
dc.relation.references | Jaynes, J. M., Sable, R., Ronzetti, M., Bautista, W., Knotts, Z., Abisoye-Ogunniyan, A., Li, D., Calvo, R., Dashnyam, M., Singh, A., Guerin, T., White, J., Ravichandran, S., Kumar, P., Talsania, K., Chen, V., Ghebremedhin, A., Karanam, B., Salam, A. B., ... Rudloff, U. (2020). Mannose receptor (CD206) activation in tumor-associated macrophages enhances adaptive and innate antitumor immune responses. Science Translational Medicine, 12(530), 6337. https://doi.org/10.1126/SCITRANSLMED. AAX6337/SUPPL{\_}FILE/AAX6337{\_}SM.PDF | |
dc.relation.references | Jin, H., Liu, X., & Liu, H. x. (2023). Biological function, regulatory mechanism, and clinical application of mannose in cancer. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, 1878(6), 188970. https://doi.org/10.1016/J.BBCAN.2023.188970 | |
dc.relation.references | Jokela,T.A.,Kuokkanen,J.,Kärnä,R.,Pasonen-Seppänen,S.,Rilla,K.,Kössi,J.,Laato,M., Tammi, R. H., & Tammi, M. I. (2013). Mannose reduces hyaluronan and leukocytes in wound granulation tissue and inhibits migration and hyaluronan-dependent monocyte binding. Wound Repair and Regeneration, 21(2), 247-255. https://doi.org/10.1111/ WRR.12022 | |
dc.relation.references | Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926-935. https://doi.org/10.1063/1.445869 | |
dc.relation.references | Khedri, M., Afsharchi, F., Souderjani, A. H., Rezvantalab, S., Didandeh, M., Maleki, R., Musaie, K., Santos, H. A., & Shahbazi, M.-A. (2022). Molecular scale study on the interactions of biocompatible nanoparticles with macrophage membrane and blood proteins. Nano Select, 3(8), 1252-1263. https://doi.org/10.1002/NANO.202200043 | |
dc.relation.references | Kim,S.,Chen,J.,Cheng,T.,Gindulyte,A.,He,J.,He,S.,Li,Q.,Shoemaker,B.A.,Thiessen, P. A., Yu, B., Zaslavsky, L., Zhang, J., & Bolton, E. E. (2023). PubChem 2023 update. Nucleic Acids Research, 51(D1), D1373-D1380. https://doi.org/10.1093/NAR/ GKAC956 | |
dc.relation.references | Kitchen, D. B., Decornez, H., Furr, J. R., & Bajorath, J. (2004). Docking and scoring in virtual screening for drug discovery: methods and applications. Nature Reviews Drug Discovery 2004 3:11, 3(11), 935-949. https://doi.org/10.1038/nrd1549 | |
dc.relation.references | Kuntz, I. D., Blaney, J. M., Oatley, S. J., Langridge, R., & Ferrin, T. E. (1982). A geometric approach to macromolecule-ligand interactions. Journal of Molecular Biology, 161(2), 269-288. https://doi.org/10.1016/0022-2836(82)90153-X | |
dc.relation.references | Laskowski, R. A., & Swindells, M. B. (2011). LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. Journal of chemical information and modeling, 51(10), 2778-2786. https://doi.org/10.1021/CI200227U | |
dc.relation.references | Levitt, M. (2014). Birth and Future of Multiscale Modeling for Macromolecular Systems (No- bel Lecture). Angewandte Chemie International Edition, 53(38), 10006-10018. https: //doi.org/10.1002/ANIE.201403691 | |
dc.relation.references | Liu, B., Poolman, B., & Boersma, A. J. (2017). Ionic Strength Sensing in Living Cells. ACS Chemical Biology, 12(10), 2510-2514. https://doi.org/10.1021/ACSCHEMBIO. 7B00348/ASSET/IMAGES/LARGE/CB-2017-00348F{\_}0003.JPEG | |
dc.relation.references | Luo, W. Y., Lu, B., Zhou, R. Y., Hu, X., Wang, J., & Prandi, J. (2020). Chemical Synthesis of the Trisaccharide Epitope of Phenolic Glycolipid-1 Surface Antigen from Mycobac- terium leprae. Journal of Organic Chemistry, 85(16), 10973-10979. https://doi.org/ 10.1021/ACS.JOC.0C01088/SUPPL{\_}FILE/JO0C01088{\_}SI{\_}001.PDF | |
dc.relation.references | Lv, L., Xu, Z., Zhao, M., Gao, J., Jiang, R., Wang, Q., & Shi, X. (2022). Mannose inhibits Plasmodium parasite growth and cerebral malaria development via regulation of host immune responses. Frontiers in Immunology, 13. https://doi.org/10.3389/fimmu. 2022.859228 | |
dc.relation.references | Madigan, C. A., Cambier, C. J., Kelly-Scumpia, K. M., Scumpia, P. O., Cheng, T. Y., Zailaa, J., Bloom, B. R., Moody, D. B., Smale, S. T., Sagasti, A., Modlin, R. L., & Ramakrishnan, L. (2017). A Macrophage Response to Mycobacterium leprae Phenolic Glycolipid Initiates Nerve Damage in Leprosy. Cell, 170(5), 973. https://doi.org/10. 1016/J.CELL.2017.07.030 | |
dc.relation.references | Maier, J. A., Martinez, C., Kasavajhala, K., Wickstrom, L., Hauser, K. E., & Simmerling, C. (2015). ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Para- meters from ff99SB. Journal of Chemical Theory and Computation, 11(8), 3696-3713. https://doi.org/10.1021/ACS.JCTC.5B00255/SUPPL{\_}FILE/CT5B00255{\_ }SI{\_}001.PDF | |
dc.relation.references | Mantovani, A., Allavena, P., Marchesi, F., & Garlanda, C. (Macrophages as tools and targets in cancer therapy. Nature Reviews Drug Discovery 2022 21:11, 21(11), 799-820. https://doi.org/10.1038/s41573-022-00520-5 | |
dc.relation.references | Martinez-Pomares, L. (2012). The mannose receptor. Journal of Leukocyte Biology, 92(6), 1177-1186. https://doi.org/10.1189/JLB.0512231 | |
dc.relation.references | Matsuda,H.(1998).Characterizationofphenolicglycolipid-I(PGL-I)likeantigeninrenalcell carcinoma. Nihon Hinyokika Gakkai zasshi. The japanese journal of urology, 89(8), 683-692. https://doi.org/10.5980/JPNJUROL1989.89.683 | |
dc.relation.references | Miller, B. R., McGee, T. D., Swails, J. M., Homeyer, N., Gohlke, H., & Roitberg, A. E. (2012). MMPBSA.py: An Efficient Program for End-State Free Energy Calculations. Journal of Chemical Theory and Computation, 8(9), 3314-3321. https://doi.org/10. 1021/CT300418H | |
dc.relation.references | Mills,C.D.(2012).M1andM2Macrophages:OraclesofHealthandDisease.Critical Reviews in Immunology, 32(6), 463-488. https://doi.org/10.1615/CRITREVIMMUNOL.V32. I6.10 | |
dc.relation.references | MRC1 - Macrophage mannose receptor 1 - Homo sapiens (Human) | UniProtKB | UniProt. (s.f.). https://www.uniprot.org/uniprotkb/P22897/entry#sequences | |
dc.relation.references | Nan, F., Sun, Y., Liang, H., Zhou, J., Ma, X., & Zhang, D. (2022). Mannose: A Sweet Option in the Treatment of Cancer and Inflammation. Frontiers in Pharmacology, 13. https://doi.org/10.3389/fphar.2022.877543 | |
dc.relation.references | Napper, C. E., Dyson, M. H., & Taylor, M. E. (2001). An Extended Conformation of the Ma- crophage Mannose Receptor. Journal of Biological Chemistry, 276(18), 14759-14766. https://doi.org/10.1074/JBC.M100425200 | |
dc.relation.references | National Cancer Institute. (2021, octubre). What Is Cancer? https://www.cancer.gov/about- cancer/understanding/what-is-cancer | |
dc.relation.references | National Center for Biotechnology Information. (2024). PubChem Compound Summary for CID 45480571, Mycobacterium leprae PGL-1 trisaccharide. https://pubchem.ncbi. nlm.nih.gov/compound/Mycobacterium-leprae-PGL-1-trisaccharide | |
dc.relation.references | Park, A. J., Rendini, T., Martiniuk, F., & Levis, W. R. (2016). Leprosy as a model to un- derstand cancer immunosurveillance and T cell anergy. Journal of Leukocyte Biology, 100(1), 47-54. https://doi.org/10.1189/JLB.5RU1215-537RR | |
dc.relation.references | Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics, 52(12), 7182-7190. https: //doi.org/10.1063/1.328693 | |
dc.relation.references | Patel, H., & Kukol, A. (2021). Integrating molecular modelling methods to advance influenza A virus drug discovery. Drug Discovery Today, 26(2), 503-510. https://doi.org/10. 1016/J.DRUDIS.2020.11.014 | |
dc.relation.references | Paurević, M., Šrajer Gajdošik, M., & Ribić, R. (2024). Mannose Ligands for Mannose Recep- tor Targeting. International Journal of Molecular Sciences 2024, Vol. 25, Page 1370, 25(3), 1370. https://doi.org/10.3390/IJMS25031370 | |
dc.relation.references | Peltonen,J., Ekfors,T., Niinikoski,J., &Laato,M. (1999). EffectsofHexoseSugars: Glucose, Fructose, Galactose and Mannose on Wound Healing in the Rat. European Surgical Research, 31(1), 74-82. https://doi.org/10.1159/000008623 | |
dc.relation.references | Pettersen, E. F., Goddard, T. D., Huang, C. C., Meng, E. C., Couch, G. S., Croll, T. I., Morris, J. H., & Ferrin, T. E. (2021). UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Science, 30(1), 70-82. https://doi. org/10.1002/PRO.3943 | |
dc.relation.references | Pinho, S. S., & Reis, C. A. (2015). Glycosylation in cancer: mechanisms and clinical impli- cations. Nature Reviews Cancer 2015 15:9, 15(9), 540-555. https://doi.org/10.1038/ nrc3982 | |
dc.relation.references | RCSB PDB - 7JUB: C-type carbohydrate-recognition domain 4 of the mannose receptor complexed with methyl-mannoside. (s.f.). https://www.rcsb.org/structure/7JUB | |
dc.relation.references | Renault, C. A., & Ernst, J. D. (2015). Mycobacterium leprae (leprosy). En Mandell, Douglas, and Bennett’s principles and practice of infectious diseases (pp. 2819-2831). Elsevier. | |
dc.relation.references | Roy, R., Murphy, P. V., & Gabius, H. J. (2016). Multivalent Carbohydrate-Lectin Interac- tions: How Synthetic Chemistry Enables Insights into Nanometric Recognition. Mo- lecules, 21(5), 629. https://doi.org/10.3390/MOLECULES21050629 | |
dc.relation.references | SASDG54 – Human macrophage mannose receptor 1 protein. (s.f.). https://www.sasbdb. org/data/SASDG54/ | |
dc.relation.references | Schneider, R., Sharma, A. R., & Rai, A. (2008). Introduction to molecular dynamics. Lecture Notes in Physics, 739, 3-40. https://doi.org/10.1007/978-3-540-74686-7{\_}1/ COVER | |
dc.relation.references | Schuette, V., & Burgdorf, S. (2014). The ins-and-outs of endosomal antigens for cross- presentation. Current Opinion in Immunology, 26(1), 63-68. https://doi.org/10. 1016/j.coi.2013.11.001 | |
dc.relation.references | Scodeller, P., Simón-Gracia, L., Kopanchuk, S., Tobi, A., Kilk, K., Säälik, P., Kurm, K., Squadrito, M. L., Kotamraju, V. R., Rinken, A., De Palma, M., Ruoslahti, E., & Teesalu, T. (2017). Precision Targeting of Tumor Macrophages with a CD206 Binding Peptide. Scientific Reports 2017 7:1, 7(1), 1-12. https://doi.org/10.1038/s41598-017- 14709-x | |
dc.relation.references | Sharma, V., Smolin, J., Nayak, J., Ayala, J. E., Scott, D. A., Peterson, S. N., & Freeze, H. H. (2018). Mannose Alters Gut Microbiome, Prevents Diet-Induced Obesity, and Improves Host Metabolism. Cell Reports, 24(12), 3087-3098. https://doi.org/10. 1016/J.CELREP.2018.08.064 | |
dc.relation.references | Shi, Y. B., & Yin, D. (2017). A good sugar, d-mannose, suppresses autoimmune diabetes. Cell and Bioscience, 7(1). https://doi.org/10.1186/s13578-017-0175-1 | |
dc.relation.references | Shibata, N., Ikuta, K., Imai, T., Satoh, Y., Satoh, R., Suzuki, A., Kojima, C., Kobayashi, H., Hisamichi,K.,&Suzuki,S.(1995).ExistenceofBranchedSideChainsintheCellWall MannanofPathogenicYeast,Candidaalbicans:STRUCTURE-ANTIGENICITYRE- LATIONSHIP BETWEEN THE CELL WALL MANNANS OF CANDIDA ALBICANS AND CANDIDA PARAPSILOSIS. Journal of Biological Chemistry, 270(3), 1113-1122. https://doi.org/10.1074/JBC.270.3.1113 | |
dc.relation.references | Sousa Da Silva, A. W., & Vranken, W. F. (2012). ACPYPE - AnteChamber PYthon Parser interfacE. BMC Research Notes, 5(1), 1-8. https://doi.org/10.1186/1756-0500-5- 367/FIGURES/3 | |
dc.relation.references | Spencer, J. S., & Brennan, P. J. (2011). The role of Mycobacterium leprae phenolic glycolipid I (PGL-I) in serodiagnosis and in the pathogenesis of leprosy. Leprosy Review, 82(4), 344-357. https://doi.org/10.47276/LR.82.4.344 | |
dc.relation.references | Stahl, P. D., & Ezekowitz, R. A. B. (1998). The mannose receptor is a pattern recognition receptorinvolvedinhostdefense.Current Opinion in Immunology,10(1),50-55.https: //doi.org/10.1016/S0952-7915(98)80031-9 | |
dc.relation.references | Stavenhagen, K., Mehta, A. Y., Laan, L., Gao, C., Heimburg-Molinaro, J., van Die, I., & Cummings, R. D. (2022). N-glycosylation of mannose receptor (CD206) regulates gly- can binding by C-type lectin domains. The Journal of Biological Chemistry, 298(12), 102591. https://doi.org/10.1016/J.JBC.2022.102591 | |
dc.relation.references | Tabouret, G., Astarie-Dequeker, C., Demangel, C., Malaga, W., Constant, P., Ray, A., Ho- noré, N., Bello, N. F., Perez, E., Daffé, M., & Guilhot, C. (2010). Mycobacterium leprae Phenolglycolipid-1 Expressed by Engineered M. bovis BCG Modulates Early Interaction with Human Phagocytes. PLOS Pathogens, 6(10), e1001159. https://doi. org/10.1371/JOURNAL.PPAT.1001159 | |
dc.relation.references | Takahashi, K., Donovan, M. J., Rogers, R. A., & Ezekowitz, R. A. B. (1998). Distribution of murine mannose receptor expression from early embryogenesis through to adulthood. Cell and Tissue Research, 292(2), 311-323. https://doi.org/10.1007/S004410051062/ METRICS | |
dc.relation.references | Tan, S., Li, D., & Zhu, X. (2020). Cancer immunotherapy: Pros, cons and beyond. Biomedici- ne & Pharmacotherapy,124,109821.https://doi.org/10.1016/J.BIOPHA.2020.109821 | |
dc.relation.references | Taylor, M. E., Bezouska, K., & Drickamer, K. (1992). Contribution to ligand binding by multiple carbohydrate-recognition domains in the macrophage mannose receptor. The Journal of biological chemistry, 267(3), 1719-26. | |
dc.relation.references | Taylor, P. R., Martinez-Pomares, L., Stacey, M., Lin, H. H., Brown, G. D., & Gordon, S. (2005). Macrophage receptors and immune recognition. Annual review of immunology, 23, 901-944. https://doi.org/10.1146/ANNUREV.IMMUNOL.23.021704.115816 | |
dc.relation.references | Torres, P. H., Sodero, A. C., Jofily, P., & Silva-Jr, F. P. (2019). Key Topics in Molecular Docking for Drug Design. International Journal of Molecular Sciences 2019, Vol. 20, Page 4574, 20(18), 4574. https://doi.org/10.3390/IJMS20184574 | |
dc.relation.references | Trott, O., & Olson, A. J. (2010). AutoDock Vina: improving the speed and accuracy of doc- king with a new scoring function, efficient optimization and multithreading. Journal of computational chemistry, 31(2), 455. https://doi.org/10.1002/JCC.21334 | |
dc.relation.references | Truffi, M., Sorrentino, L., & Corsi, F. (2020). Fibroblasts in the Tumor Microenvironment. Advances in Experimental Medicine and Biology, 1234, 15-29. https://doi.org/10. 1007/978-3-030-37184-5{\_}2/COVER | |
dc.relation.references | van der Zande, H. J., Nitsche, D., Schlautmann, L., Guigas, B., & Burgdorf, S. (2021). The Mannose Receptor: From Endocytic Receptor and Biomarker to Regulator of (Meta)Inflammation. Frontiers in Immunology, 12, 765034. https://doi.org/10.3389/ FIMMU.2021.765034/BIBTEX | |
dc.relation.references | Varadi, M., Bertoni, D., Magana, P., Paramval, U., Pidruchna, I., Radhakrishnan, M., Tsen- kov, M., Nair, S., Mirdita, M., Yeo, J., Kovalevskiy, O., Tunyasuvunakool, K., Laydon, A., Žídek, A., Tomlinson, H., Hariharan, D., Abrahamson, J., Green, T., Jumper, J., ... Velankar, S. (2024). AlphaFold Protein Structure Database in 2024: providing structure coverage for over 214 million protein sequences. Nucleic Acids Research, 52(D1), D368-D375. https://doi.org/10.1093/NAR/GKAD1011 | |
dc.relation.references | Viljoen,A.,Vercellone,A.,Chimen,M.,Gaibelet,G.,Mazères,S.,Nigou,J.,&Dufrêne,Y.F. (2023). Nanoscale clustering of mycobacterial ligands and DCSIGN host receptors are key determinants for pathogen recognition. Science Advances, 9(20). https://doi.org/ 10.1126/SCIADV.ADF9498/SUPPL{\_}FILE/SCIADV.ADF9498{\_}DATA{\_ }S1.ZIP | |
dc.relation.references | Wallace,A.C.,Laskowski,R.A.,&Thornton,J.M.(1995).LIGPLOT:aprogramtogenerate schematic diagrams of protein-ligand interactions. Protein engineering, 8(2), 127-134. https://doi.org/10.1093/PROTEIN/8.2.127 | |
dc.relation.references | Wang, E., Sun, H., Wang, J., Wang, Z., Liu, H., Zhang, J. Z., & Hou, T. (2019). End-Point Binding Free Energy Calculation with MM/PBSA and MM/GBSA: Strategies and Applications in Drug Design. Chemical Reviews, 119(16), 9478-9508. https://doi. org/10.1021/ACS.CHEMREV.9B00055/ASSET/IMAGES/MEDIUM/CR-2019- 000558{\_}0003.GIF | |
dc.relation.references | Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., & Case, D. A. (2004). Development and testing of a general amber force field. Journal of Computational Chemistry, 25(9), 1157-1174. https://doi.org/10.1002/JCC.20035 | |
dc.relation.references | Williams, C. J., Headd, J. J., Moriarty, N. W., Prisant, M. G., Videau, L. L., Deis, L. N., Verma, V., Keedy, D. A., Hintze, B. J., Chen, V. B., Jain, S., Lewis, S. M., Arendall, W.B.,Snoeyink,J.,Adams,P.D.,Lovell,S.C.,Richardson,J.S.,&Richardson,D.C. (2018). MolProbity: More and better reference data for improved all-atom structure validation. Protein Science, 27(1), 293-315. https://doi.org/10.1002/PRO.3330 | |
dc.relation.references | Woods Group. (2005). GLYCAM Web. https://glycam.org/ | |
dc.relation.references | World Health Organization. (2022, febrero). Cancer. https://www.who.int/news-room/fact- sheets/detail/cancer | |
dc.relation.references | Young, D. B., & Buchanan, T. M. (1983). A Serological Test for Leprosy with a Glycolipid Specific for Mycobacterium leprae. Science, 221(4615), 1057-1059. https://doi.org/ 10.1126/SCIENCE.6348948 | |
dc.relation.references | Zlotnikov, I. D., & Kudryashova, E. V. (2022). Computer simulation of the Receptor–Ligand Interactions of Mannose Receptor CD206 in Comparison with the Lectin Conca- navalin A Model. Biochemistry. Biokhimiia, 87(1), 54. https://doi.org/10.1134/ S0006297922010059 | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.license | Reconocimiento 4.0 Internacional | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
dc.subject.ddc | 000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores | |
dc.subject.ddc | 540 - Química y ciencias afines::541 - Química física | |
dc.subject.ddc | 610 - Medicina y salud::616 - Enfermedades | |
dc.subject.lemb | Dinámica molecular | |
dc.subject.lemb | Cáncer | |
dc.subject.lemb | Lepra | |
dc.subject.proposal | Receptor de Manosa | spa |
dc.subject.proposal | PGL-1 | spa |
dc.subject.proposal | Manosa | spa |
dc.subject.proposal | Dinámica molecular | spa |
dc.subject.proposal | Docking | spa |
dc.subject.proposal | Cáncer | spa |
dc.subject.proposal | Lepra | spa |
dc.subject.proposal | Mannose receptor | eng |
dc.subject.proposal | PGL-1 | eng |
dc.subject.proposal | Mannose | eng |
dc.subject.proposal | Molecular Dynamics | eng |
dc.subject.proposal | Cancer | eng |
dc.subject.proposal | Leprae | eng |
dc.title | Análisis computacional del receptor de manosa CD206 y componentes de la pared celular de Mycobacterium leprae, PGL-1 y manosa | spa |
dc.title.translated | Computational analysis of the mannose receptor CD206 and cell wall components of Mycobacterium leprae, PGL-1 and mannose | eng |
dc.type | Trabajo de grado - Maestría | |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/masterThesis | |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dcterms.audience.professionaldevelopment | Investigadores | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |