Análisis computacional del receptor de manosa CD206 y componentes de la pared celular de Mycobacterium leprae, PGL-1 y manosa

dc.contributor.advisorHernández Ortiz, Juan Pablo
dc.contributor.advisorBotero Mejía, Maria Luisa
dc.contributor.authorMontoya Pareja, Juan Pablo
dc.contributor.orcidHernández Ortiz, Juan Pablo [0000-0003-0404-9947]
dc.date.accessioned2025-08-29T01:56:28Z
dc.date.available2025-08-29T01:56:28Z
dc.date.issued2024
dc.descriptionIlustraciones, gráficosspa
dc.description.abstractEsta tesis presenta un análisis computacional exhaustivo del receptor de manosa CD206 y su interacción con componentes clave de la pared celular de Mycobacterium leprae, específicamente el glicolípido fenólico-1 (PGL-1) y la manosa. Empleando una combinación de técnicas de modelado molecular, incluyendo dinámica molecular, docking molecular y simulaciones de complejos receptor-ligando, el estudio proporciona una comprensión detallada de la estructura, dinámica y mecanismos de reconocimiento molecular del receptor CD206. La investigación se estructuró en tres fases principales: dinámica molecular del receptor CD206 en sus estados conformacionales abierto y cerrado, así como del cuarto dominio de reconocimiento de carbohidratos (CRD4) aislado; docking molecular entre el receptor y los ligandos PGL-1 y manosa; y dinámica molecular de los complejos receptor-ligando resultantes. Los hallazgos clave incluyen la identificación de un posible mecanismo de “captura y liberación” basado en la alternancia entre estados conformacionales, la confirmación de la especificidad del receptor hacia la manosa, la elucidación del papel del dominio CRD4 en la unión de ligandos, y la caracterización de las diferencias en la dinámica de interacción entre el receptor y los ligandos. El estudio reveló una preferencia consistente del receptor por la manosa sobre PGL-1, con energías de unión más favorables en el estado cerrado del receptor. Además, se observaron cambios conformacionales inducidos por la unión de ligandos, que podrían ser cruciales para la función biológica del receptor. Estos resultados tienen implicaciones significativas para el entendimiento de los mecanismos de reconocimiento de patógenos en el sistema inmune innato y abren nuevas vías para el diseño de estrategias terapéuticas dirigidas a modular la actividad del receptor CD206 en el contexto de enfermedades infecciosas, particularmente la lepra. La integración de múltiples técnicas computacionales en este trabajo ha permitido una caracterización detallada de un sistema biológico complejo, demostrando el poder de los enfoques in silico en la investigación biomédica moderna. Los hallazgos de esta tesis no solo contribuyen al conocimiento fundamental de las interacciones receptor-ligando en el sistema inmune, sino que también proporcionan una base sólida para futuras investigaciones experimentales y computacionales en este campo, con potenciales aplicaciones en el desarrollo de nuevas terapias y en la comprensión más profunda de las interacciones patógeno-huésped. (Tomado de la fuente)spa
dc.description.abstractThis thesis presents a comprehensive computational analysis of the mannose receptor CD206 and its interaction with key cell wall components of Mycobacterium leprae, specifically phenolic glycolipid-1 (PGL-1) and mannose. Employing a combination of molecular modeling techniques, including molecular dynamics, molecular docking, and receptor-ligand complex simulations, the study provides a detailed understanding of the structure, dynamics, and molecular recognition mechanisms of the CD206 receptor. The research was structured in three main phases: molecular dynamics of the CD206 receptor in its open and closed conformational states, as well as the isolated fourth carbohydrate recognition domain (CRD4); molecular docking between the receptor and the ligands PGL-1 and mannose; and molecular dynamics of the resulting receptor-ligand complexes. Key findings include the identification of a possible çapture and release"mechanism based on the alternation between conformational states, confirmation of the receptor’s specificity towards mannose, elucidation of the role of the CRD4 domain in ligand binding, and characterization of the differences in interaction dynamics between the receptor and the ligands. The study revealed a consistent preference of the receptor for mannose over PGL-1, with more favorable binding energies in the closed state of the receptor. Additionally, conformational changes induced by ligand binding were observed, which could be crucial for the biological function of the receptor. These results have significant implications for understanding pathogen recognition mechanisms in the innate immune system and open new avenues for designing therapeutic strategies aimed at modulating CD206 receptor activity in the context of infectious diseases, particularly leprosy. The integration of multiple computational techniques in this work has allowed for a detailed characterization of a complex biological system, demonstrating the power of in silico approaches in modern biomedical research. The findings of this thesis not only contribute to the fundamental knowledge of receptor-ligand interactions in the immune system but also provide a solid foundation for future experimental and computational investigations in this field, with potential applications in the development of new therapies and a deeper understanding of pathogen-host interactions.eng
dc.description.curricularareaIngeniería De Sistemas E Informática.Sede Medellín
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería - Analítica
dc.format.extent104 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88504
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.publisher.facultyFacultad de Minas
dc.publisher.placeMedellín, Colombia
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Analítica
dc.relation.indexedLaReferencia
dc.relation.referencesAbraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindah, E. (2015). Gromacs: High performance molecular simulations through multi-level para- llelism from laptops to supercomputers. SoftwareX, 1-2, 19-25. https://doi.org/10. 1016/j.softx.2015.06.001
dc.relation.referencesAlphaFold.(s.f.).Macrophagemannosereceptor1.https://alphafold.ebi.ac.uk/entry/P22897
dc.relation.referencesAmerican Cancer Society. (2023). Cancer Facts & Figures 2023 (inf. téc.). American Cancer Society. Atlanta.
dc.relation.referencesAnderson, N. M., & Simon, M. C. (2020). The tumor microenvironment. Current Biology, 30(16), R921-R925. https://doi.org/10.1016/j.cub.2020.06.081
dc.relation.referencesAvogadro: an open-source molecular builder and visualization tool. (s.f.). https://avogadro. cc/
dc.relation.referencesAzad, A. K., Rajaram, M. V. S., & Schlesinger, L. S. (2014). Exploitation of the Macropha- ge Mannose Receptor (CD206) in Infectious Disease Diagnostics and Therapeutics. Journal of cytology & molecular biology, 1(1). https://doi.org/10.13188/2325- 4653.1000003
dc.relation.referencesBateman, A., Martin, M. J., Orchard, S., Magrane, M., Ahmad, S., Alpi, E., Bowler-Barnett, E. H., Britto, R., Bye-A-Jee, H., Cukura, A., Denny, P., Dogan, T., Ebenezer, T. G., Fan, J., Garmiri, P., da Costa Gonzales, L. J., Hatton-Ellis, E., Hussein, A., Ignat- chenko, A., ... Zhang, J. (2023). UniProt: the Universal Protein Knowledgebase in 2023. Nucleic Acids Research, 51(D1), D523-D531. https://doi.org/10.1093/NAR/ GKAC1052
dc.relation.referencesBazan-Furini, R., Motta, A. C. F., Simão, J. C. L., Tarquínio, D. C., Marques, W., Barbosa, M.H. N.,& Foss, N.T. (2011). Earlydetection of leprosybyexaminationofhousehold contacts, determination of serum anti-PGL-1 antibodies and consanguinity. Memó- rias do Instituto Oswaldo Cruz, 106(5), 536-540. https://doi.org/10.1590/S0074- 02762011000500003
dc.relation.referencesBejarano, L., Jord¯ao, M. J., Joyce, J. A., Bejarano, L., Jord¯ao, M., & Author, C. (2021). Therapeutic Targeting of the Tumor Microenvironment. Cancer Discovery, 11(4), 933-959. https://doi.org/10.1158/2159-8290.CD-20-1808
dc.relation.referencesBerman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000). The Protein Data Bank. Nucleic Acids Research, 28(1), 235-242. https://doi.org/10.1093/NAR/28.1.235
dc.relation.referencesBiharee, A., Yadav, A., Jangid, K., Singh, Y., Kulkarni, S., Sawant, D. M., Kumar, P., Thareja, S., & Jain, A. K. (2023). Flavonoids as promising anticancer agents: an in silico investigation of ADMET, binding affinity by molecular docking and molecu- lar dynamics simulations. Journal of Biomolecular Structure and Dynamics, 41(16), 7835-7846. https://doi.org/10.1080/07391102.2022.2126397
dc.relation.referencesBinhNguyen,T.,Pires,D.E.,&Ascher,D.B.(2021).CSM-carbohydrate:protein-carbohydrate binding affinity prediction and docking scoring function. Briefings in Bioinformatics, 23(1), bbab512. https://doi.org/10.1093/BIB/BBAB512
dc.relation.referencesBlackadar, C. B. (2016). Historical review of the causes of cancer. World Journal of Clinical Oncology, 7(1), 54. https://doi.org/10.5306/WJCO.V7.I1.54
dc.relation.referencesBlanco, A., & Blanco, G. (2022, enero). Medical Biochemistry (2.a ed.). Academic Press. https://doi.org/10.1016/C2020-0-02932-4
dc.relation.referencesBrice, A. R., & Dominy, B. N. (2011). Analyzing the robustness of the MM/PBSA free energy calculation method: Application to DNA conformational transitions. Journal of Computational Chemistry, 32(7), 1431-1440. https://doi.org/10.1002/JCC.21727
dc.relation.referencesBussi, G., Donadio, D., & Parrinello, M. (2007). Canonical sampling through velocity resca- ling. The Journal of chemical physics, 126(1). https://doi.org/10.1063/1.2408420
dc.relation.referencesCagan, R., & Meyer, P. (2017). Rethinking cancer: current challenges and opportunities in cancer research. Disease Models & Mechanisms, 10(4), 349. https://doi.org/10.1242/ DMM.030007
dc.relation.referencesCendrowicz, E., Sas, Z., Bremer, E., & Rygiel, T. P. (2021). The Role of Macrophages in Cancer Development and Therapy. Cancers, 13(8). https://doi.org/10.3390/ CANCERS13081946
dc.relation.referencesCenter For Computational Structural Biology. (s.f.). mgltools. https://ccsb.scripps.edu/ mgltools/
dc.relation.referencesChatterjee, D., & Khoo, K. H. (2001). The surface glycopeptidolipids of mycobacteria: Structures and biological properties. Cellular and Molecular Life Sciences, 58(14), 2018-2042. https://doi.org/10.1007/PL00000834
dc.relation.referencesChemaxon. (s.f.). Marvin JS. https://marvinjs-demo.chemaxon.com/latest/demo.html
dc.relation.referencesCouzin-Frankel, J. (2013). Cancer immunotherapy. Science, 342(6165), 1432-1433. https: //doi.org/10.1126/science.342.6165.1432
dc.relation.referencesCummings, R. D. (2022). The mannose receptor ligands and the macrophage glycome. Cu- rrent Opinion in Structural Biology, 75, 102394. https://doi.org/10.1016/J.SBI.2022. 102394
dc.relation.referencesDarden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An Nlog(N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089-10092. https://doi.org/10.1063/1.464397
dc.relation.referencesde Visser, K. E., & Joyce, J. A. (2023). The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth. Cancer Cell, 41(3), 374-403. https://doi.org/10. 1016/J.CCELL.2023.02.016
dc.relation.referencesDe Moura, R. S., Calado, K. L., Oliveira, M. L. W., & Bührer-Sékula, S. (2008). Leprosy se- rology using PGL-I: a systematic review. Revista da Sociedade Brasileira de Medicina Tropical, 41(SUPPL. 2), 11-18. https://doi.org/10.1590/S0037-86822008000700004
dc.relation.referencesDíaz Acosta, C. C., Dias, A. A., Rosa, T. L. S. A., Batista-Silva, L. R., Rosa, P. S., Toledo- Pinto, T. G., Costa, F. d. M. R., Lara, F. A., Rodrigues, L. S., Mattos, K. A., Sarno, E. N., Bozza, P. T., Guilhot, C., de Berrêdo-Pinho, M., & Pessolani, M. C. V. (2018). PGL I expression in live bacteria allows activation of a CD206/PPARγ cross-talk that may contribute to successful Mycobacterium leprae colonization of peripheral nerves. PLOS Pathogens, 14(7), e1007151. https://doi.org/10.1371/JOURNAL.PPAT. 1007151
dc.relation.referencesDockThor. (s.f.). https://dockthor.lncc.br/v2/
dc.relation.referencesDominy, B. N., Perl, D., Schmid, F. X., & Brooks, C. L. (2002). The Effects of Ionic Strength on Protein Stability: The Cold Shock Protein Family. Journal of Molecular Biology, 319(2), 541-554. https://doi.org/10.1016/S0022-2836(02)00259-0
dc.relation.referencesEberhardt, J., Santos-Martins, D., Tillack, A. F., & Forli, S. (2021). AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. Journal of Che- mical Information and Modeling, 61(8), 3891-3898. https://doi.org/10.1021/ACS. JCIM.1C00203/SUPPL{\_}FILE/CI1C00203{\_}SI{\_}002.ZIP
dc.relation.referencesFeinberg, H., Jégouzo, S. A., Lasanajak, Y., Smith, D. F., Drickamer, K., Weis, W. I., & Taylor, M. E. (2021). Structural analysis of carbohydrate binding by the macrophage mannose receptor CD206. Journal of Biological Chemistry, 296, 100368-100369. https: //doi.org/10.1016/j.jbc.2021.100368
dc.relation.referencesFelgner, S., Kocijancic, D., Frahm, M., & Weiss, S. (2016). Bacteria in Cancer Therapy: Renaissance of an Old Concept. International Journal of Microbiology, 2016. https: //doi.org/10.1155/2016/8451728
dc.relation.referencesFerlay, J., Colombet, M., Soerjomataram, I., Parkin, D. M., Piñeros, M., Znaor, A., & Bray, F. (2021). Cancer statistics for the year 2020: An overview. International Journal of Cancer, 149(4), 778-789. https://doi.org/10.1002/IJC.33588
dc.relation.referencesForli, S., Huey, R., Pique, M. E., Sanner, M. F., Goodsell, D. S., & Olson, A. J. (2016). Computational protein-ligand docking and virtual drug screening with the AutoDock suite. Nature protocols, 11(5), 905-919. https://doi.org/10.1038/NPROT.2016.051
dc.relation.referencesFriedman, R., Boye, K., & Flatmark, K. (2013). Molecular modelling and simulations in cancer research. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, 1836(1), 1-14. https://doi.org/10.1016/J.BBCAN.2013.02.001
dc.relation.referencesGao, J., Liang, Y., & Wang, L. (2022). Shaping Polarization Of Tumor-Associated Ma- crophages In Cancer Immunotherapy. Frontiers in Immunology, 13, 888713. https: //doi.org/10.3389/FIMMU.2022.888713/TEXT
dc.relation.referencesGaylord, H., & Brennan, P. J. (1987). Leprosy and the leprosy bacillus: recent developments in characterization of antigens and immunology of the disease. Annual review of mi- crobiology, 41(Volume 41,), 645-675. https://doi.org/10.1146/ANNUREV.MI.41. 100187.003241/CITE/REFWORKS
dc.relation.referencesGazi, U., & Martinez-Pomares, L. (2009). Influence of the mannose receptor in host immune responses. Immunobiology, 214(7), 554-561. https://doi.org/10.1016/J.IMBIO.2008. 11.004
dc.relation.referencesGhebremedhin, A., Salam, A. B., Adu-Addai, B., Noonan, S., Stratton, R., Ahmed, M. S. U., Khantwal, C., Martin, G. R., Lin, H., Andrews, C., Karanam, B., Rudloff, U., Lo- pez, H., Jaynes, J., & Yates, C. (2023). A Novel CD206 Targeting Peptide Inhibits Bleomycin-Induced Pulmonary Fibrosis in Mice. Cells, 12(9). https://doi.org/10. 3390/CELLS12091254/S1
dc.relation.referencesGoldszmid, R. S., Dzutsev, A., & Trinchieri, G. (2014). Host immune response to infection and cancer: unexpected commonalities. Cell host & microbe, 15(3), 295. https://doi. org/10.1016/J.CHOM.2014.02.003
dc.relation.referencesGuvench, O., & MacKerell, A. D. (2008). Comparison of protein force fields for molecular dynamics simulations. Methods in molecular biology (Clifton, N.J.), 443, 63-88. https: //doi.org/10.1007/978-1-59745-177-2{\_}4
dc.relation.referencesHanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeerschd, T., Zurek, E., & Hutchison, G. R. (2012). Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. Journal of Cheminformatics, 4(8), 1-17. https://doi.org/10.1186/ 1758-2946-4-17/FIGURES/14
dc.relation.referencesHess, S., & Rambukkana, A. (2019). Cell Biology of Intracellular Adaptation of Mycobac- terium leprae in the Peripheral Nervous System. Microbiology spectrum, 7(4). https: //doi.org/10.1128/MICROBIOLSPEC.BAI-0020-2019
dc.relation.referencesHitchen,P.G.,Mullin,N.P.,&Taylor,M.E.(1998).Orientationofsugarsboundtotheprin- cipal C-type carbohydrate-recognition domain of the macrophage mannose receptor. Biochemical Journal, 333(Pt 3), 601. https://doi.org/10.1042/BJ3330601
dc.relation.referencesHollingsworth, S. A., & Dror, R. O. (2018). Molecular Dynamics Simulation for All. Neuron, 99(6), 1129-1143. https://doi.org/10.1016/J.NEURON.2018.08.011
dc.relation.referencesHou, T., Wang, J., Li, Y., & Wang, W. (2011). Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. Journal of Chemical Information and Modeling, 51(1), 69-82. https://doi.org/10.1021/CI100275A/SUPPL{\_}FILE/CI100275A{\_ }SI{\_}001.PDF
dc.relation.referencesHoves, S., Ooi, C. H., Wolter, C., Sade, H., Bissinger, S., Schmittnaegel, M., Ast, O., Gius- ti, A. M., Wartha, K., Runza, V., Xu, W., Kienast, Y., Cannarile, M. A., Levitsky, H., Romagnoli, S., De Palma, M., Rüttinger, D., & Ries, C. H. (2018). Rapid activa- tion of tumor-associated macrophages boosts preexisting tumor immunity. Journal of Experimental Medicine, 215(3), 859-876. https://doi.org/10.1084/JEM.20171440
dc.relation.referencesHu, Z., Shi, X., Yu, B., Li, N., Huang, Y., & He, Y. (2018). Structural Insights into the pH- Dependent Conformational Change and Collagen Recognition of the Human Mannose Receptor. Structure, 26(1), 60-71. https://doi.org/10.1016/j.str.2017.11.006
dc.relation.referencesHu, Z., Wang, Y., Cheng, C., & He, Y. (2019). Structural basis of the pH-dependent confor- mationalchangeoftheN-terminalregionofhumanmannosereceptor/CD206.Journal of Structural Biology, 208(3), 107384. https://doi.org/10.1016/J.JSB.2019.09.001
dc.relation.referencesHunter, S. W., & Brennan, P. J. (1981). A novel phenolic glycolipid from Mycobacterium leprae possibly involved in immunogenicity and pathogenicity. Journal of bacteriology, 147(3), 728-735. https://doi.org/10.1128/JB.147.3.728-735.1981
dc.relation.referencesJaynes, J. M., Sable, R., Ronzetti, M., Bautista, W., Knotts, Z., Abisoye-Ogunniyan, A., Li, D., Calvo, R., Dashnyam, M., Singh, A., Guerin, T., White, J., Ravichandran, S., Kumar, P., Talsania, K., Chen, V., Ghebremedhin, A., Karanam, B., Salam, A. B., ... Rudloff, U. (2020). Mannose receptor (CD206) activation in tumor-associated macrophages enhances adaptive and innate antitumor immune responses. Science Translational Medicine, 12(530), 6337. https://doi.org/10.1126/SCITRANSLMED. AAX6337/SUPPL{\_}FILE/AAX6337{\_}SM.PDF
dc.relation.referencesJin, H., Liu, X., & Liu, H. x. (2023). Biological function, regulatory mechanism, and clinical application of mannose in cancer. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, 1878(6), 188970. https://doi.org/10.1016/J.BBCAN.2023.188970
dc.relation.referencesJokela,T.A.,Kuokkanen,J.,Kärnä,R.,Pasonen-Seppänen,S.,Rilla,K.,Kössi,J.,Laato,M., Tammi, R. H., & Tammi, M. I. (2013). Mannose reduces hyaluronan and leukocytes in wound granulation tissue and inhibits migration and hyaluronan-dependent monocyte binding. Wound Repair and Regeneration, 21(2), 247-255. https://doi.org/10.1111/ WRR.12022
dc.relation.referencesJorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926-935. https://doi.org/10.1063/1.445869
dc.relation.referencesKhedri, M., Afsharchi, F., Souderjani, A. H., Rezvantalab, S., Didandeh, M., Maleki, R., Musaie, K., Santos, H. A., & Shahbazi, M.-A. (2022). Molecular scale study on the interactions of biocompatible nanoparticles with macrophage membrane and blood proteins. Nano Select, 3(8), 1252-1263. https://doi.org/10.1002/NANO.202200043
dc.relation.referencesKim,S.,Chen,J.,Cheng,T.,Gindulyte,A.,He,J.,He,S.,Li,Q.,Shoemaker,B.A.,Thiessen, P. A., Yu, B., Zaslavsky, L., Zhang, J., & Bolton, E. E. (2023). PubChem 2023 update. Nucleic Acids Research, 51(D1), D1373-D1380. https://doi.org/10.1093/NAR/ GKAC956
dc.relation.referencesKitchen, D. B., Decornez, H., Furr, J. R., & Bajorath, J. (2004). Docking and scoring in virtual screening for drug discovery: methods and applications. Nature Reviews Drug Discovery 2004 3:11, 3(11), 935-949. https://doi.org/10.1038/nrd1549
dc.relation.referencesKuntz, I. D., Blaney, J. M., Oatley, S. J., Langridge, R., & Ferrin, T. E. (1982). A geometric approach to macromolecule-ligand interactions. Journal of Molecular Biology, 161(2), 269-288. https://doi.org/10.1016/0022-2836(82)90153-X
dc.relation.referencesLaskowski, R. A., & Swindells, M. B. (2011). LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. Journal of chemical information and modeling, 51(10), 2778-2786. https://doi.org/10.1021/CI200227U
dc.relation.referencesLevitt, M. (2014). Birth and Future of Multiscale Modeling for Macromolecular Systems (No- bel Lecture). Angewandte Chemie International Edition, 53(38), 10006-10018. https: //doi.org/10.1002/ANIE.201403691
dc.relation.referencesLiu, B., Poolman, B., & Boersma, A. J. (2017). Ionic Strength Sensing in Living Cells. ACS Chemical Biology, 12(10), 2510-2514. https://doi.org/10.1021/ACSCHEMBIO. 7B00348/ASSET/IMAGES/LARGE/CB-2017-00348F{\_}0003.JPEG
dc.relation.referencesLuo, W. Y., Lu, B., Zhou, R. Y., Hu, X., Wang, J., & Prandi, J. (2020). Chemical Synthesis of the Trisaccharide Epitope of Phenolic Glycolipid-1 Surface Antigen from Mycobac- terium leprae. Journal of Organic Chemistry, 85(16), 10973-10979. https://doi.org/ 10.1021/ACS.JOC.0C01088/SUPPL{\_}FILE/JO0C01088{\_}SI{\_}001.PDF
dc.relation.referencesLv, L., Xu, Z., Zhao, M., Gao, J., Jiang, R., Wang, Q., & Shi, X. (2022). Mannose inhibits Plasmodium parasite growth and cerebral malaria development via regulation of host immune responses. Frontiers in Immunology, 13. https://doi.org/10.3389/fimmu. 2022.859228
dc.relation.referencesMadigan, C. A., Cambier, C. J., Kelly-Scumpia, K. M., Scumpia, P. O., Cheng, T. Y., Zailaa, J., Bloom, B. R., Moody, D. B., Smale, S. T., Sagasti, A., Modlin, R. L., & Ramakrishnan, L. (2017). A Macrophage Response to Mycobacterium leprae Phenolic Glycolipid Initiates Nerve Damage in Leprosy. Cell, 170(5), 973. https://doi.org/10. 1016/J.CELL.2017.07.030
dc.relation.referencesMaier, J. A., Martinez, C., Kasavajhala, K., Wickstrom, L., Hauser, K. E., & Simmerling, C. (2015). ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Para- meters from ff99SB. Journal of Chemical Theory and Computation, 11(8), 3696-3713. https://doi.org/10.1021/ACS.JCTC.5B00255/SUPPL{\_}FILE/CT5B00255{\_ }SI{\_}001.PDF
dc.relation.referencesMantovani, A., Allavena, P., Marchesi, F., & Garlanda, C. (Macrophages as tools and targets in cancer therapy. Nature Reviews Drug Discovery 2022 21:11, 21(11), 799-820. https://doi.org/10.1038/s41573-022-00520-5
dc.relation.referencesMartinez-Pomares, L. (2012). The mannose receptor. Journal of Leukocyte Biology, 92(6), 1177-1186. https://doi.org/10.1189/JLB.0512231
dc.relation.referencesMatsuda,H.(1998).Characterizationofphenolicglycolipid-I(PGL-I)likeantigeninrenalcell carcinoma. Nihon Hinyokika Gakkai zasshi. The japanese journal of urology, 89(8), 683-692. https://doi.org/10.5980/JPNJUROL1989.89.683
dc.relation.referencesMiller, B. R., McGee, T. D., Swails, J. M., Homeyer, N., Gohlke, H., & Roitberg, A. E. (2012). MMPBSA.py: An Efficient Program for End-State Free Energy Calculations. Journal of Chemical Theory and Computation, 8(9), 3314-3321. https://doi.org/10. 1021/CT300418H
dc.relation.referencesMills,C.D.(2012).M1andM2Macrophages:OraclesofHealthandDisease.Critical Reviews in Immunology, 32(6), 463-488. https://doi.org/10.1615/CRITREVIMMUNOL.V32. I6.10
dc.relation.referencesMRC1 - Macrophage mannose receptor 1 - Homo sapiens (Human) | UniProtKB | UniProt. (s.f.). https://www.uniprot.org/uniprotkb/P22897/entry#sequences
dc.relation.referencesNan, F., Sun, Y., Liang, H., Zhou, J., Ma, X., & Zhang, D. (2022). Mannose: A Sweet Option in the Treatment of Cancer and Inflammation. Frontiers in Pharmacology, 13. https://doi.org/10.3389/fphar.2022.877543
dc.relation.referencesNapper, C. E., Dyson, M. H., & Taylor, M. E. (2001). An Extended Conformation of the Ma- crophage Mannose Receptor. Journal of Biological Chemistry, 276(18), 14759-14766. https://doi.org/10.1074/JBC.M100425200
dc.relation.referencesNational Cancer Institute. (2021, octubre). What Is Cancer? https://www.cancer.gov/about- cancer/understanding/what-is-cancer
dc.relation.referencesNational Center for Biotechnology Information. (2024). PubChem Compound Summary for CID 45480571, Mycobacterium leprae PGL-1 trisaccharide. https://pubchem.ncbi. nlm.nih.gov/compound/Mycobacterium-leprae-PGL-1-trisaccharide
dc.relation.referencesPark, A. J., Rendini, T., Martiniuk, F., & Levis, W. R. (2016). Leprosy as a model to un- derstand cancer immunosurveillance and T cell anergy. Journal of Leukocyte Biology, 100(1), 47-54. https://doi.org/10.1189/JLB.5RU1215-537RR
dc.relation.referencesParrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics, 52(12), 7182-7190. https: //doi.org/10.1063/1.328693
dc.relation.referencesPatel, H., & Kukol, A. (2021). Integrating molecular modelling methods to advance influenza A virus drug discovery. Drug Discovery Today, 26(2), 503-510. https://doi.org/10. 1016/J.DRUDIS.2020.11.014
dc.relation.referencesPaurević, M., Šrajer Gajdošik, M., & Ribić, R. (2024). Mannose Ligands for Mannose Recep- tor Targeting. International Journal of Molecular Sciences 2024, Vol. 25, Page 1370, 25(3), 1370. https://doi.org/10.3390/IJMS25031370
dc.relation.referencesPeltonen,J., Ekfors,T., Niinikoski,J., &Laato,M. (1999). EffectsofHexoseSugars: Glucose, Fructose, Galactose and Mannose on Wound Healing in the Rat. European Surgical Research, 31(1), 74-82. https://doi.org/10.1159/000008623
dc.relation.referencesPettersen, E. F., Goddard, T. D., Huang, C. C., Meng, E. C., Couch, G. S., Croll, T. I., Morris, J. H., & Ferrin, T. E. (2021). UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Science, 30(1), 70-82. https://doi. org/10.1002/PRO.3943
dc.relation.referencesPinho, S. S., & Reis, C. A. (2015). Glycosylation in cancer: mechanisms and clinical impli- cations. Nature Reviews Cancer 2015 15:9, 15(9), 540-555. https://doi.org/10.1038/ nrc3982
dc.relation.referencesRCSB PDB - 7JUB: C-type carbohydrate-recognition domain 4 of the mannose receptor complexed with methyl-mannoside. (s.f.). https://www.rcsb.org/structure/7JUB
dc.relation.referencesRenault, C. A., & Ernst, J. D. (2015). Mycobacterium leprae (leprosy). En Mandell, Douglas, and Bennett’s principles and practice of infectious diseases (pp. 2819-2831). Elsevier.
dc.relation.referencesRoy, R., Murphy, P. V., & Gabius, H. J. (2016). Multivalent Carbohydrate-Lectin Interac- tions: How Synthetic Chemistry Enables Insights into Nanometric Recognition. Mo- lecules, 21(5), 629. https://doi.org/10.3390/MOLECULES21050629
dc.relation.referencesSASDG54 – Human macrophage mannose receptor 1 protein. (s.f.). https://www.sasbdb. org/data/SASDG54/
dc.relation.referencesSchneider, R., Sharma, A. R., & Rai, A. (2008). Introduction to molecular dynamics. Lecture Notes in Physics, 739, 3-40. https://doi.org/10.1007/978-3-540-74686-7{\_}1/ COVER
dc.relation.referencesSchuette, V., & Burgdorf, S. (2014). The ins-and-outs of endosomal antigens for cross- presentation. Current Opinion in Immunology, 26(1), 63-68. https://doi.org/10. 1016/j.coi.2013.11.001
dc.relation.referencesScodeller, P., Simón-Gracia, L., Kopanchuk, S., Tobi, A., Kilk, K., Säälik, P., Kurm, K., Squadrito, M. L., Kotamraju, V. R., Rinken, A., De Palma, M., Ruoslahti, E., & Teesalu, T. (2017). Precision Targeting of Tumor Macrophages with a CD206 Binding Peptide. Scientific Reports 2017 7:1, 7(1), 1-12. https://doi.org/10.1038/s41598-017- 14709-x
dc.relation.referencesSharma, V., Smolin, J., Nayak, J., Ayala, J. E., Scott, D. A., Peterson, S. N., & Freeze, H. H. (2018). Mannose Alters Gut Microbiome, Prevents Diet-Induced Obesity, and Improves Host Metabolism. Cell Reports, 24(12), 3087-3098. https://doi.org/10. 1016/J.CELREP.2018.08.064
dc.relation.referencesShi, Y. B., & Yin, D. (2017). A good sugar, d-mannose, suppresses autoimmune diabetes. Cell and Bioscience, 7(1). https://doi.org/10.1186/s13578-017-0175-1
dc.relation.referencesShibata, N., Ikuta, K., Imai, T., Satoh, Y., Satoh, R., Suzuki, A., Kojima, C., Kobayashi, H., Hisamichi,K.,&Suzuki,S.(1995).ExistenceofBranchedSideChainsintheCellWall MannanofPathogenicYeast,Candidaalbicans:STRUCTURE-ANTIGENICITYRE- LATIONSHIP BETWEEN THE CELL WALL MANNANS OF CANDIDA ALBICANS AND CANDIDA PARAPSILOSIS. Journal of Biological Chemistry, 270(3), 1113-1122. https://doi.org/10.1074/JBC.270.3.1113
dc.relation.referencesSousa Da Silva, A. W., & Vranken, W. F. (2012). ACPYPE - AnteChamber PYthon Parser interfacE. BMC Research Notes, 5(1), 1-8. https://doi.org/10.1186/1756-0500-5- 367/FIGURES/3
dc.relation.referencesSpencer, J. S., & Brennan, P. J. (2011). The role of Mycobacterium leprae phenolic glycolipid I (PGL-I) in serodiagnosis and in the pathogenesis of leprosy. Leprosy Review, 82(4), 344-357. https://doi.org/10.47276/LR.82.4.344
dc.relation.referencesStahl, P. D., & Ezekowitz, R. A. B. (1998). The mannose receptor is a pattern recognition receptorinvolvedinhostdefense.Current Opinion in Immunology,10(1),50-55.https: //doi.org/10.1016/S0952-7915(98)80031-9
dc.relation.referencesStavenhagen, K., Mehta, A. Y., Laan, L., Gao, C., Heimburg-Molinaro, J., van Die, I., & Cummings, R. D. (2022). N-glycosylation of mannose receptor (CD206) regulates gly- can binding by C-type lectin domains. The Journal of Biological Chemistry, 298(12), 102591. https://doi.org/10.1016/J.JBC.2022.102591
dc.relation.referencesTabouret, G., Astarie-Dequeker, C., Demangel, C., Malaga, W., Constant, P., Ray, A., Ho- noré, N., Bello, N. F., Perez, E., Daffé, M., & Guilhot, C. (2010). Mycobacterium leprae Phenolglycolipid-1 Expressed by Engineered M. bovis BCG Modulates Early Interaction with Human Phagocytes. PLOS Pathogens, 6(10), e1001159. https://doi. org/10.1371/JOURNAL.PPAT.1001159
dc.relation.referencesTakahashi, K., Donovan, M. J., Rogers, R. A., & Ezekowitz, R. A. B. (1998). Distribution of murine mannose receptor expression from early embryogenesis through to adulthood. Cell and Tissue Research, 292(2), 311-323. https://doi.org/10.1007/S004410051062/ METRICS
dc.relation.referencesTan, S., Li, D., & Zhu, X. (2020). Cancer immunotherapy: Pros, cons and beyond. Biomedici- ne & Pharmacotherapy,124,109821.https://doi.org/10.1016/J.BIOPHA.2020.109821
dc.relation.referencesTaylor, M. E., Bezouska, K., & Drickamer, K. (1992). Contribution to ligand binding by multiple carbohydrate-recognition domains in the macrophage mannose receptor. The Journal of biological chemistry, 267(3), 1719-26.
dc.relation.referencesTaylor, P. R., Martinez-Pomares, L., Stacey, M., Lin, H. H., Brown, G. D., & Gordon, S. (2005). Macrophage receptors and immune recognition. Annual review of immunology, 23, 901-944. https://doi.org/10.1146/ANNUREV.IMMUNOL.23.021704.115816
dc.relation.referencesTorres, P. H., Sodero, A. C., Jofily, P., & Silva-Jr, F. P. (2019). Key Topics in Molecular Docking for Drug Design. International Journal of Molecular Sciences 2019, Vol. 20, Page 4574, 20(18), 4574. https://doi.org/10.3390/IJMS20184574
dc.relation.referencesTrott, O., & Olson, A. J. (2010). AutoDock Vina: improving the speed and accuracy of doc- king with a new scoring function, efficient optimization and multithreading. Journal of computational chemistry, 31(2), 455. https://doi.org/10.1002/JCC.21334
dc.relation.referencesTruffi, M., Sorrentino, L., & Corsi, F. (2020). Fibroblasts in the Tumor Microenvironment. Advances in Experimental Medicine and Biology, 1234, 15-29. https://doi.org/10. 1007/978-3-030-37184-5{\_}2/COVER
dc.relation.referencesvan der Zande, H. J., Nitsche, D., Schlautmann, L., Guigas, B., & Burgdorf, S. (2021). The Mannose Receptor: From Endocytic Receptor and Biomarker to Regulator of (Meta)Inflammation. Frontiers in Immunology, 12, 765034. https://doi.org/10.3389/ FIMMU.2021.765034/BIBTEX
dc.relation.referencesVaradi, M., Bertoni, D., Magana, P., Paramval, U., Pidruchna, I., Radhakrishnan, M., Tsen- kov, M., Nair, S., Mirdita, M., Yeo, J., Kovalevskiy, O., Tunyasuvunakool, K., Laydon, A., Žídek, A., Tomlinson, H., Hariharan, D., Abrahamson, J., Green, T., Jumper, J., ... Velankar, S. (2024). AlphaFold Protein Structure Database in 2024: providing structure coverage for over 214 million protein sequences. Nucleic Acids Research, 52(D1), D368-D375. https://doi.org/10.1093/NAR/GKAD1011
dc.relation.referencesViljoen,A.,Vercellone,A.,Chimen,M.,Gaibelet,G.,Mazères,S.,Nigou,J.,&Dufrêne,Y.F. (2023). Nanoscale clustering of mycobacterial ligands and DCSIGN host receptors are key determinants for pathogen recognition. Science Advances, 9(20). https://doi.org/ 10.1126/SCIADV.ADF9498/SUPPL{\_}FILE/SCIADV.ADF9498{\_}DATA{\_ }S1.ZIP
dc.relation.referencesWallace,A.C.,Laskowski,R.A.,&Thornton,J.M.(1995).LIGPLOT:aprogramtogenerate schematic diagrams of protein-ligand interactions. Protein engineering, 8(2), 127-134. https://doi.org/10.1093/PROTEIN/8.2.127
dc.relation.referencesWang, E., Sun, H., Wang, J., Wang, Z., Liu, H., Zhang, J. Z., & Hou, T. (2019). End-Point Binding Free Energy Calculation with MM/PBSA and MM/GBSA: Strategies and Applications in Drug Design. Chemical Reviews, 119(16), 9478-9508. https://doi. org/10.1021/ACS.CHEMREV.9B00055/ASSET/IMAGES/MEDIUM/CR-2019- 000558{\_}0003.GIF
dc.relation.referencesWang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., & Case, D. A. (2004). Development and testing of a general amber force field. Journal of Computational Chemistry, 25(9), 1157-1174. https://doi.org/10.1002/JCC.20035
dc.relation.referencesWilliams, C. J., Headd, J. J., Moriarty, N. W., Prisant, M. G., Videau, L. L., Deis, L. N., Verma, V., Keedy, D. A., Hintze, B. J., Chen, V. B., Jain, S., Lewis, S. M., Arendall, W.B.,Snoeyink,J.,Adams,P.D.,Lovell,S.C.,Richardson,J.S.,&Richardson,D.C. (2018). MolProbity: More and better reference data for improved all-atom structure validation. Protein Science, 27(1), 293-315. https://doi.org/10.1002/PRO.3330
dc.relation.referencesWoods Group. (2005). GLYCAM Web. https://glycam.org/
dc.relation.referencesWorld Health Organization. (2022, febrero). Cancer. https://www.who.int/news-room/fact- sheets/detail/cancer
dc.relation.referencesYoung, D. B., & Buchanan, T. M. (1983). A Serological Test for Leprosy with a Glycolipid Specific for Mycobacterium leprae. Science, 221(4615), 1057-1059. https://doi.org/ 10.1126/SCIENCE.6348948
dc.relation.referencesZlotnikov, I. D., & Kudryashova, E. V. (2022). Computer simulation of the Receptor–Ligand Interactions of Mannose Receptor CD206 in Comparison with the Lectin Conca- navalin A Model. Biochemistry. Biokhimiia, 87(1), 54. https://doi.org/10.1134/ S0006297922010059
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseReconocimiento 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
dc.subject.ddc540 - Química y ciencias afines::541 - Química física
dc.subject.ddc610 - Medicina y salud::616 - Enfermedades
dc.subject.lembDinámica molecular
dc.subject.lembCáncer
dc.subject.lembLepra
dc.subject.proposalReceptor de Manosaspa
dc.subject.proposalPGL-1spa
dc.subject.proposalManosaspa
dc.subject.proposalDinámica molecularspa
dc.subject.proposalDockingspa
dc.subject.proposalCáncerspa
dc.subject.proposalLepraspa
dc.subject.proposalMannose receptoreng
dc.subject.proposalPGL-1eng
dc.subject.proposalMannoseeng
dc.subject.proposalMolecular Dynamicseng
dc.subject.proposalCancereng
dc.subject.proposalLepraeeng
dc.titleAnálisis computacional del receptor de manosa CD206 y componentes de la pared celular de Mycobacterium leprae, PGL-1 y manosaspa
dc.title.translatedComputational analysis of the mannose receptor CD206 and cell wall components of Mycobacterium leprae, PGL-1 and mannoseeng
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentInvestigadores
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis de Maestría en Ingeniería - Analítica
Tamaño:
36.03 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: