Control semi-activo de estructuras empleando un algoritmo genético tipo NSGA-II combinado con lógica difusa para administrar fuerzas de control en amortiguadores magnetoreológicos MR

dc.contributor.advisorLara Valencia, Luis Augusto
dc.contributor.authorBedoya Zambrano, David Marcelo
dc.contributor.researchgroupCentro de Proyectos e Investigaciones Sísmicasspa
dc.date.accessioned2022-02-01T13:57:57Z
dc.date.available2022-02-01T13:57:57Z
dc.date.issued2021
dc.descriptionilustraciones, diagramas, tablasspa
dc.description.abstractEsta tesis presenta una metodología para administrar fuerzas de control en amortiguadores magnetoreológicos (MR-Dampers). Se basa en la programación de un algoritmo genético de clasificación no dominada, (Non-Dominated Genetic Sorting Algorithm-NSGA-II) combinado con lógica difusa (Fuzzy Logic-FL). Se pretende mejorar la capacidad de respuesta de las estructuras cuando éstas se encuentran sometidas a la acción de cargas dinámicas. El NSGA-II ha sido ampliamente utilizado en problemas de optimización multi-objetivo, demostrando ser uno de los algoritmos más eficientes para controlar sistemas dinámicos complejos y altamente no lineales. En este trabajo se desarrollan dos tipos de controladores: el primer controlador FLC-1, se basa en lógica difusa clásica y ha sido programado empleando 49 reglas de inferencia que se obtuvieron mediante un análisis empírico. El segundo controlador FLC-2, fue desarrollado con 20 reglas de inferencia gaussianas y sus parámetros fueron optimizados a través de un GA tipo NSGA-II, combinado con lógica difusa. Los dos controladores se utilizaron en modelos numéricos de estructuras tipo pórtico plano y pórtico tridimensional, bajo la acción de distintas aceleraciones de suelo. Los parámetros de entrada que se emplearon fueron los desplazamientos y velocidades de las edificaciones, mientras que el único parámetro de salida fue el voltaje requerido para generar las fuerzas de control en el amortiguador MR. Los resultados obtenidos demuestran que estos dispositivos mejoran significativamente la función de respuesta de las estructuras. Sin embargo, el controlador FLC-2 presenta mejores índices de desempeño para las respuestas RMS de aceleraciones, RMS de desplazamientos y las derivas máximas de piso. (Texto tomado de la fuente)spa
dc.description.abstractThis thesis presents a methodology to provide control forces using magnetorheological dampers (MR.) It is based on the programming of a Non-Dominated Genetic Sorting Algorithm (NSGA-II) combined with Fuzzy Logic (FL). The MR dampers improve the response capacity of the structures, when they are subjected to the action of dynamic loads. NSGA-II has been used extensively in multi-objective optimization problems, proving to be one of the most efficient algorithms to control complex and highly nonlinear dynamic systems. In this research two types of controllers were developed: the first controller, called FLC-1 is based on classical fuzzy logic and was programmed using 49 inference rules obtained through an empirical analysis. The second controller, called FLC-2 was developed with 20 Gaussian inference rules. Its parameters were optimized using a GA type NSGA-II, combined with fuzzy logic. The two controllers were used in numerical models of plane frame and 3D frame structures under the action of different ground accelerations. The input parameters used were the displacements and velocities of the buildings, while the only output parameter was the command voltage required to generate the control forces in the MR damper. The results obtained show that these mechanisms significantly improve the response function of the structures. However, the FLC-2 controller presents higher decreases in the RMS accelerations, RMS displacements and maximum floor drifts.eng
dc.description.curricularareaÁrea Curricular de Ingeniería Civilspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Estructurasspa
dc.description.researchareaAlgoritmos genéticosspa
dc.description.researchareaDinámica de Estructuras-Control Estructuralspa
dc.format.extentxx, 202 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80827
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de Ingeniería Civilspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Estructurasspa
dc.relation.referencesD. Karnopp, M. J. Crosby, and R. A. Harwood, "Vibration control using semi-active force generators," 1974.spa
dc.relation.referencesM. Bitaraf, O. E. Ozbulut, S. Hurlebaus, and L. Barroso, "Application of semi-active control strategies for seismic protection of buildings with MR dampers," Eng. Struct., vol. 32, no. 10, pp. 3040-3047, 2010. [Online]. Available: http://dx.doi.org/10.1016/j.engstruct.2010.05.023spa
dc.relation.referencesS. Hurlebaus and L. Gaul, "Smart structure dynamics," vol. 20, pp. 255-281, 2006.spa
dc.relation.referencesJ. T. Yao, "Concept of structural control," J. Struct. Div., pp. 1567-1574, 1972.spa
dc.relation.referencesD. A. Shook, P. N. Roschke, P. Y. Lin, and C. H. Loh, "GA-optimized fuzzy logic control of a large-scale building for seismic loads," Eng. Struct., vol. 30, no. 2, pp. 436-449, 2008.spa
dc.relation.referencesD. Gomez, J. Marulanda, and P. Thomson, "Control systems for dynamic loading protection of civil structures," Dyna-Colombia, vol. 75, no. 155, pp. 77-89, 2008.spa
dc.relation.referencesH. Kim and H. Adeli, "Hybrid control of irregular steel highrise building structures under seismic excitations," Int. J. Numer. Methods Eng., vol. 63, pp. 1757-1774, jul 2005.spa
dc.relation.referencesL. Gaul, S. Hurlebaus, J. Wirnitzer, and H. Albrecht, "Enhanced damping of lightweight structures by semi-active joints," Acta Mech., vol. 195, no. 1-4, pp. 249-261, 2008.spa
dc.relation.referencesH. S. Kim and J. W. Kang, "Semi-active fuzzy control of a wind-excited tall building using multi-objective genetic algorithm," Eng. Struct., vol. 41, pp. 242-257, 2012. [Online]. Available: http://dx.doi.org/10.1016/j.engstruct.2012.03.038spa
dc.relation.referencesJ. Horn, N. Nafpliotis, and D. E. Goldberg, "A niched Pareto genetic algorithm for multiobjective optimization," in Proc. rst IEEE Conf. Evol. Comput. IEEE world Congr. Comput. Intell. Ieee, 1994, pp. 82-87.spa
dc.relation.referencesK. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, "A fast and elitist multiobjective genetic algorithm: NSGA-II," IEEE Trans. Evol. Comput., vol. 6, no. 2, pp. 182-197, 2002.spa
dc.relation.referencesY. Liu, F. Gordaninejad, C. A. Evrensel, and G. H. Hitchcock, "<title>Experimental study on fuzzy logic vibration control of a bridge using fail-safe magnetorheological fluid dampers</title>," Smart Struct. Mater. 2001 Smart Syst. Bridg. Struct. Highw., vol. 4330, pp. 281-288, 2001.spa
dc.relation.referencesJ. Housner, G., Bergman, L., Caughey, T., Chassiakos, A., Claus, R., Masri, S., Skelton, R., Soong, T., Spencer, B. and Yao, "Structural control: Past, present and future," J. engi-neering Mech., pp. 897-971, 1997.spa
dc.relation.referencesE. S. Blake and E. N. Rappaport, "The deadliest, costliest, and most intense United States tropical cyclones from 1851 to 2006 (and other frequently requested hurricane facts)," NOAATechnical Memo. NWS TPC-5, vol. 2006, no. August, pp. -45, 2001. [Online]. Available: http://scholar.google.com/scholar?hl=enf&gbtnG=Searchf&gq=intitle: THE+DEADLIEST,+COSTLIEST,+AND+MOST+INTENSE+UNITED+ STATES+TROPICAL+CYCLONES+FROM+1851+TO+2006{#}0spa
dc.relation.referencesG. Yang, "Large-scale magnetorheological fluid damper for vibration, mitigation: Modeling: Testing and control," Ph. D. Diss. Notre Dame Univ., 2001.spa
dc.relation.referencesD. Karnopp, M. J. Crosby, and R. A. Harwood, "Vibration control using semi-active force generators," 1974.spa
dc.relation.referencesD. Hrovat, P. Barak, and M. Rabins, "Semi-active versus passive or active tuned mass dampers for structural control," J. Eng. Mech., vol. 109, no. 3, pp. 691-705, 1983.spa
dc.relation.referencesH. Yoshioka, J. C. Ramallo, and B. F. Spencer Jr, ""Smart" base isolation strategies employing magnetorheological dampers," J. Eng. Mech., vol. 128, no. 5, pp. 540-551, 2002.spa
dc.relation.referencesY. Y. Okamoto K, Tabei R, Fukushima M, Nosaka S, "NII-Electronic Library Service," Chem. Pharm. Bull., no. 43, p. 2091, 1970. [Online]. Available: http://www.mendeley.com/research/ geology-volcanic-history-eruptive-style-yakedake-volcano-group-central-japan/spa
dc.relation.referencesE. A. Johnson, R. E. Christenson, and B. F. Spencer, "Semiactive damping of cables with sag," Comput. Civ. Infrastruct. Eng., vol. 18, no. 2, pp. 132-146, 2003.spa
dc.relation.referencesS. J. Dyke, B. F. Spencer, M. K. Sain, and J. D. Carlson, "An experimental study of MR dampers for seismic protection," Smart Mater. Struct., vol. 7, no. 5, pp. 693-703, 1998.spa
dc.relation.referencesS. J. Dyke and B. F. Spencer, "A comparison of semi-active control strategies for the MR damper," Proc. - Intell. Inf. Syst. IIS 1997, no. 6, pp. 580-584, 1997.spa
dc.relation.referencesS. Dyke, B. Spencer, M. Sain, and J. Carlson, "Seismic Response Reduction Using Magnetorheological Dampers," IFAC Proc. Vol., vol. 29, no. 1, pp. 5530-5535, 1996spa
dc.relation.referencesS. J. Dyke, B. F. Spencer, M. K. Sain, and J. D. Carlson, "Modeling and control of magnetorheological dampers for seismic response reduction," Smart Mater. Struct., vol. 5, no. 5, pp. 565-575, 1996.spa
dc.relation.referencesS. J. Dyke, "Acceleration feedback control strategies for active and semi-active control systems: Modeling, algorithm development, and experimental veri cation." 1997.spa
dc.relation.referencesM. Kerboua, M. Benguediab, A. Megnounif, K. H. Benrahou, and F. Kaoulala, "Semi active control of civil structures, analytical and numerical studies," Phys. Procedia, vol. 55, pp. 301-306, 2014. [Online]. Available: http://dx.doi.org/10.1016/j.phpro. 2014.07.044spa
dc.relation.referencesM. D. Symans and M. C. Constantinou, "Semi-active control systems for seismic protection of structures: A state-of-the-art review," Eng. Struct., vol. 21, no. 6, pp. 469- 487, 1999.spa
dc.relation.referencesG. Yang, "MITIGATION: MODELING, TESTING AND CONTROL," Ph.D. dissertation, University of Notre Dame, 2001.spa
dc.relation.referencesFENG and Q., "Use of a Variable Damper for Hybrid Control of Bridge Response under Earthquake," Proc. U.S. Natl. Work. Struct. Control Res., 1990. [Online]. Available: http://ci.nii.ac.jp/naid/10006922731/en/spa
dc.relation.referencesL. A. Lara V, "Estudo de Algorítimo de Controle Semi-Ativo Aplicados a Amortecedores," p. 223, 2011.spa
dc.relation.referencesZ. Akbay and H. M. Aktan, "Actively regulated friction slip devices," in Proc. 6th Can. Conf. Earthq. Engrg, 1991, pp. 367-374.spa
dc.relation.referencesS. Kannan, H. M. Uras, and H. M. Aktan, "Active control of building seismic response by energy dissipation," Earthq. Eng. Struct. Dyn., vol. 24, no. 5, pp. 747-759, 1995.spa
dc.relation.referencesF. Sadek and B. Mohraz, "Semiactive control algorithms for structures with variable dampers," J. Eng. Mech., vol. 124, no. 9, pp. 981-990, 1998.spa
dc.relation.referencesJ. M. Ro esset and J. T. Yao, "State of the Art of Structural Engineering," Perspect. Civ. Eng. Commem. 150th Anniv. Am. Soc. Civ. Eng., no. July, pp. 131-141, 2003spa
dc.relation.referencesS. K. Bhattacharyya, "Tuned sloshing damper in response control of tall building structure," Proc. Indian Natl. Sci. Acad., vol. 82, no. 2, pp. 223-231, 2016.spa
dc.relation.referencesM. A. Haroun, J. A. Pires, and A. Y. J. Won, "Active ori ce control in hybrid liquid column dampers," in Proc. rst world Conf. Struct. Control, vol. 1, 1994, pp. 69-78.spa
dc.relation.referencesJ. Y. K. Lou, L. D. Lutes, and J. J. Li, "Active tuned liquid damper for structural control," in Proc. 1st World Conf. Struct. Control, 1994, pp. 70-79.spa
dc.relation.referencesS. K. Yalla, A. Kareem, and J. C. Kantor, "Semi-active tuned liquid column dampers for vibration control of structures," Eng. Struct., vol. 23, no. 11, pp. 1469-1479, 2001.spa
dc.relation.referencesB. F. Spencer Jr, G. Yang, J. D. Carlson, and M. K. Sain, "Smart dampers for seismic protection of structures: a full-scale study," in Proc. Second world Conf. Struct. Control, vol. 1. Kyoto, 1998, pp. 417-426.spa
dc.relation.referencesH. P. Gavin, R. D. Hanson, and F. E. Filisko, "Electrorheological dampers, part i: Analysis and design," J. Appl. Mech. Trans. ASME, vol. 63, no. 3, pp. 669-675, 1996.spa
dc.relation.referencesH. P. Gavin, R. D. Hanson, and F. E. Filisko, "Electrorheological dampers, Part II: Testing and modeling," Am. Soc. Mech. Eng., vol. 63, no. September 1996, 1996.spa
dc.relation.referencesN. Makris and A. Whittaker, "Seismic protection with fluid dampers and the issue of viscous heating," no. July 1998, 2016.spa
dc.relation.referencesN. H. McClamroch, D. S. Oritz, H. P. Gavin, and R. D. Hanson, "Electrorheological dampers and semi-active structural control," in Proc. 1994 33rd IEEE Conf. Decis. Control, vol. 1. IEEE, 1994, pp. 97-102.spa
dc.relation.referencesH. P. Gavin, Y. D. Hose, and R. D. Hanson, "Design and control of electrorheological dampers," in Proc. 1st World Conf. Struct. Control, 1994, pp. 83-92.spa
dc.relation.referencesN. M. Kwok, Q. P. Ha, M. T. Nguyen, J. Li, and B. Samali, "Bouc-Wen model parameter identi cation for a MR fluid damper using computationally e cient GA," ISA Trans., vol. 46, no. 2, pp. 167-179, 2007.spa
dc.relation.referencesR. Jacob, "The magnetic fluid clutch," Trans. Am. Inst. Electr. Eng., vol. 67, no. 2, pp. 1308-1315, 1948.spa
dc.relation.referencesY.-Q. Guo, W.-H. Xie, and X. Jing, "Study on Structures Incorporated With MR Damping Material Based on PSO Algorithm," Front. Mater., vol. 6, p. 37, 2019. [Online]. Available: https://www.frontiersin.org/article/10.3389/fmats.2019.00037spa
dc.relation.referencesS. J. Dyke, B. F. Spencer, M. K. Sain, and J. D. Carlson, "Modeling and control of magnetorheological dampers for seismic response reduction," Smart Mater. Struct., vol. 5, no. 5, pp. 565-575, 1996.spa
dc.relation.referencesK. C. Schurter and P. N. Roschke, "Neuro-fuzzy control of structures using magnetorheological dampers," Proc. Am. Control Conf., vol. 2, no. October, pp. 1097-1102, 2001.spa
dc.relation.referencesD. H. Wang and W. H. Liao, "Modeling and control of magnetorheological fluid dampers using neural networks," Smart Mater. Struct., vol. 14, no. 1, pp. 111-126, 2004. [Online]. Available: http://dx.doi.org/10.1088/0964-1726/14/1/011spa
dc.relation.referencesN. D. Nordin, A. G. Muthalif, and M. K. M Razali, "Control of transtibial prosthetic limb with magnetorheological fluid damper by using a fuzzy PID controller," J. Low Freq. Noise Vib. Act. Control, vol. 37, no. 4, pp. 1067-1078, 2018.spa
dc.relation.referencesJ. B. Jun, S. Y. Uhm, J. H. Ryu, and K. D. Suh, "Synthesis and characterization of monodisperse magnetic composite particles for magnetorheological fluid materials," Colloids Surfaces A Physicochem. Eng. Asp., vol. 260, no. 1-3, pp. 157-164, 2005.spa
dc.relation.referencesM. Aslam, Y. Xiong-Liang, and D. Zhong-Chao, "Review of magnetorheological (MR) fluids and its applications in vibration control," J. Mar. Sci. Appl., vol. 5, no. 3, pp. 17-29, 2006.spa
dc.relation.referencesA. G. Olabi and A. Grunwald, "Design and application of magneto-rheological fluid," Mater. Des., vol. 28, no. 10, pp. 2658-2664, 2007.spa
dc.relation.referencesM. R. Jolly, J. W. Bender, and J. D. Carlson, "Properties and Applications of Commercial Magnetorheological Fluids," J. Intell. Mater. Syst. Struct., vol. 10, no. 1, pp. 5-13, 1999.spa
dc.relation.references"Magneto-Rheological (MR) Fluid." [Online]. Available: https://www.lord. com/products-and-solutions/active-vibration-control/industrial-suspension-systems/ magneto-rheological-mr- fluidspa
dc.relation.referencesE. Gedik, H. Kurt, Z. Recebli, and C. Balan, "Two-dimensional CFD simulation of magnetorheological fluid between two xed parallel plates applied external magnetic eld," Comput. Fluids, vol. 63, pp. 128-134, 2012. [Online]. Available: http://dx.doi.org/10.1016/j.comp fluid.2012.04.011spa
dc.relation.referencesW. W. Chooi and S. Olutunde Oyadiji, "Mathematical modeling, analysis, and design of magnetorheological (MR) dampers," J. Vib. Acoust. Trans. ASME, vol. 131, no. 6, pp. 0 610 021-06 100 210, 2009.spa
dc.relation.referencesJ. P. Hartnett and M. Kostic, "Heat transfer to Newtonian and non-Newtonian fluids in rectangular ducts," in Adv. heat Transf. Elsevier, 1989, vol. 19, pp. 247-356.spa
dc.relation.referencesH. A. Barnes, J. F. Hutton, and K. Walters, "An introduction to rheology". Elsevier, 1989, vol. 3.spa
dc.relation.referencesA. Yahia and K. H. Khayat, "Analytical models for estimating yield stress of highperformance pseudoplastic grout," Cem. Concr. Res., vol. 31, no. 5, pp. 731-738, 2001.spa
dc.relation.referencesC. F. Ferraris, "Measurement of the rheological properties of high performance concrete: state of the art report," J. Res. Natl. Inst. Stand. Technol., vol. 104, no. 5, p. 461, 1999.spa
dc.relation.referencesS. A. Khan, A. Suresh, and N. SeethaRamaiah, "Principles, Characteristics and Applications of Magneto Rheological Fluid Damper in Flow and Shear Mode," Procedia Mater. Sci., vol. 6, no. Icmpc, pp. 1547-1556, 2014. [Online]. Available: http://dx.doi.org/10.1016/j.mspro.2014.07.136spa
dc.relation.referencesJ. D. Carlson and B. F. Spencer Jr, "Magnetorheological Fluid Dampers: Scalability and Design Issue for Application to Dynamic Hazard Mitigation. in workshop on structural control. 1996," Hong Kong, China. AFP, vol. 53.spa
dc.relation.referencesH. Fujitani, Y. Shiozaki, T. Hiwatashi, K. Hata, T. Tomura, H. Sodeyama, and S. Soda, "A research and development of smart building structures by magneto-rheological damper," in Adv. Build. Technol. Elsevier, 2002, pp. 473-480.spa
dc.relation.referencesC. M. D. Wilson, "Fuzzy Control of Magnetorheological Dampers for Vibration Reduction of Seismically Excited Structures," 2005.spa
dc.relation.referencesR. C. Ehrgott and S. F. Masri, "Modeling the oscillatory dynamic behaviour of electrorheological materials in shear," Smart Mater. Struct., vol. 1, no. 4, p. 275, 1992.spa
dc.relation.referencesC.-C. Chang and P. Roschke, "Neural network modeling of a magnetorheological damper," J. Intell. Mater. Syst. Struct., vol. 9, no. 9, pp. 755-764, 1998.spa
dc.relation.referencesD.-H. Wang and W.-H. Liao, "Neural network modeling and controllers for magnetorheological fluid dampers," in 10th IEEE Int. Conf. Fuzzy Syst. No. 01CH37297), vol. 3. IEEE, 2001, pp. 1323-1326.spa
dc.relation.referencesX. Song, M. Ahmadian, and S. C. Southward, "Modeling magnetorheological dampers with application of nonparametric approach," J. Intell. Mater. Syst. Struct., vol. 16, no. 5, pp. 421-432, 2005.spa
dc.relation.referencesR. Stanway, J. L. Sproston, and N. G. Stevens, "Non-linear identi cation of an electrorheological vibration damper," IFAC Proc. Vol., vol. 18, no. 5, pp. 195-200, 1985.spa
dc.relation.referencesR. Stanway, J. L. Sproston, and N. G. Stevens, "Non-linear modelling of an electro rheological vibration damper," J. Electros- tat., vol. 20, no. 2, pp. 167-184, 1987.spa
dc.relation.referencesB. F. Spencer and M. K. Sain, "Controlling buildings: a new frontier in feedback," IEEE Control Syst. Mag., vol. 17, no. 6, pp. 19-35, 1997.spa
dc.relation.referencesD. R. Gamota and F. E. Filisko, "Dynamic mechanical studies of electrorheological materials: Moderate frequencies," J. Rheol. (N. Y. N. Y)., vol. 35, no. 3, pp. 399-425, 1991.spa
dc.relation.referencesJ. S. BF, S. J. Dyke, M. K. Sain, and J. D. Carlson, "Phenomenological model of a magnetorheological damper," J. Eng. Mech., vol. 123, no. 3, pp. 230-238, 1997.spa
dc.relation.referencesA. M. Halabian, M. M. Zafarani, M. S. Soheilipour, and S. Behbahani, "Optimal semiactive control of seismically excited MR-equipped nonlinear buildings using FLC and multi-objective NSGAII algorithms considering ground excitations," J. Civ. Struct. Heal. Monit., vol. 6, no. 3, pp. 561-586, 2016.spa
dc.relation.referencesJ. N. Yang, S. Lin, and F. Jabbari, "H2-based control strategies for civil engineering structures," J. Struct. Control, vol. 10, no. 3-4, pp. 205-230, 2003.spa
dc.relation.referencesS. J. Dyke, B. F. Spencer, M. K. Sain, and J. D. Carlson, "Modeling and control of magnetorheological dampers for seismic response reduction," Smart Mater. Struct., vol. 5, no. 5, pp. 565-575, 1996. [Online]. Available: http://dx.doi.org/10.1088/0964-1726/5/5/006spa
dc.relation.referencesW. L. Brogan, "Modern control theory," 1991.spa
dc.relation.referencesZ. Ying, Y.-Q. Ni, and J. M. Ko, "Nonclipping optimal control of randomly excited nonlinear systems using semi-active ER/MR dampers," in Smart Struct. Mater. 2002 Smart Syst. Bridg. Struct. Highw., vol. 4696. International Society for Optics and Photonics, 2002, pp. 209-218.spa
dc.relation.referencesJ. N. Yang, J. C. Wu, and A. K. Agrawal, "Sliding mode control for seismically excited linear structures," J. Eng. Mech., vol. 121, no. 12, pp. 1386-1390, 1995.spa
dc.relation.referencesJ. Zhang and P. N. Roschke, "Active control of a tall structure excited by wind," J. Wind Eng. Ind. Aerodyn., vol. 83, no. 1-3, pp. 209-223, 1999.spa
dc.relation.referencesD. Dubois and H. Prade, "Operations on fuzzy numbers," Int. J. Syst. Sci., vol. 9, no. 6, pp. 613-626, 1978.spa
dc.relation.referencesM. Mizumoto and K. Tanaka, "Fuzzy sets and type 2 under algebraic product and algebraic sum," Fuzzy Sets Syst., vol. 5, no. 3, pp. 277-290, 1981.spa
dc.relation.referencesA. Norwich and I. B. Turksen, "A model for the measurement of membership and the consequences of its empirical implementation," Fuzzy sets Syst., vol. 12, no. 1, pp. 1-25, 1984.spa
dc.relation.referencesM.-G. Chun, K.-C. Kwak, and J.-W. Ryu, "Application of ANFIS for coagulant dosing process in a water puri cation plant," in FUZZ-IEEE'99. 1999 IEEE Int. Fuzzy Syst. Conf. Proc. (Cat. No. 99CH36315), vol. 3. IEEE, 1999, pp. 1743-1748.spa
dc.relation.referencesS. Yasunobu and T. Hasegawa, "Evaluation of an automatic con-tainer crane operation sys-tem based on predictive fuzzy control," Control Theory Adv. Technol., vol. 2, no. 3, pp. 419-432, 1986.spa
dc.relation.referencesJ. A. Bernard, "Use of a rule-based system for process control," IEEE Control Syst. Mag., vol. 8, no. 5, pp. 3-13, 1988.spa
dc.relation.referencesR. Guclu and H. Yazici, "Fuzzy logic control of a non-linear structural system against earthquake induced vibration," J. Vib. Control, vol. 13, no. 11, pp. 1535-1551, 2007.spa
dc.relation.referencesC. C. Lee, "Fuzzy Logic in Control Systems: Fuzzy Logic Controller|Part I," IEEE Trans. Syst. Man Cybern., vol. 20, no. 2, pp. 404-418, 1990.spa
dc.relation.referencesM. Gen and R. Cheng, "Genetic algorithms and engineering optimization". John Wiley & Sons, 1999, vol. 7.spa
dc.relation.referencesK. Mittal, A. Jain, K. S. Vaisla, O. Castillo, and J. Kacprzyk, "A comprehensive review on type 2 fuzzy logic applications: Past, present and future," Eng. Appl. Artif. Intell., vol. 95, no. August, p. 103916, 2020. [Online]. Available: https://doi.org/10.1016/j.engappai.2020.103916spa
dc.relation.referencesJ. M. Mendel, "Uncertainty, fuzzy logic, and signal processing," Signal Processing, vol. 80, no. 6, pp. 913-933, 2000. [Online]. Available: https://www.sciencedirect.com/ science/article/pii/S0165168400000116spa
dc.relation.referencesO. Castillo, P. Melin, J. Kacprzyk, and W. Pedrycz, "Type-2 Fuzzy Logic: Theory and Applications," in 2007 IEEE Int. Conf. Granul. Comput. (GRC 2007), 2007, p. 145.spa
dc.relation.referencesMathWorks, "Foundations of Fuzzy Logic," 2021. [Online]. Available: https: //ww2.mathworks.cn/help/fuzzy/foundations-of-fuzzy-logic.htmlspa
dc.relation.referencesJ. Harris, F"uzzy logic applications in engineering science". Springer Science & Business Media, 2005, vol. 29.spa
dc.relation.referencesG. J. Klir and B. Yuan, "Fuzzy sets and fuzzy logic: theory and applications," Possi- bility Theory versus Probab. Theory, vol. 32, no. 2, pp. 207-208, 1996.spa
dc.relation.referencesG. Chen, T. T. Pham, and N. M. Boustany, "Introduction to fuzzy sets, fuzzy logic, and fuzzy control systems," Appl. Mech. Rev., vol. 54, no. 6, pp. B102|-B103, 2001.spa
dc.relation.referencesY. Liu, F. Gordaninejad, C. A. Evrensel, and G. H. Hitchcock, "Experimental study on fuzzy logic vibration control of a bridge using fail-safe magnetorheological fluid dampers," in Proc.SPIE, vol. 4330, jul 2001. [Online]. Available: https: //doi.org/10.1117/12.434135spa
dc.relation.referencesL. A. Lara-Valencia, Y. Valencia-Gonzalezf, and J. L. V. De Brito, "Use of fuzzy logic for the administration of a structural control system based on magnetorheological dampers," Rev. Fac. Ing., vol. 1, no. 74, pp. 151-164, 2015.spa
dc.relation.referencesH.-J. Jung, B. F. Spencer, and I.-W. Lee, "Control of Seismically Excited Cable-Stayed Bridge Employing Magnetorheological Fluid Dampers," J. Struct. Eng., vol. 129, no. 7, pp. 873-883, 2003.spa
dc.relation.referencesB. L. Zhang, Q. L. Han, and X. M. Zhang, "Recent advances in vibration control of offshore platforms," Nonlinear Dyn., vol. 89, no. 2, pp. 755-771, 2017spa
dc.relation.referencesM. Salari and E. Spacone, "Analysis of Steel-Concrete Composite Frames with Bond- Slip Steel-Concrete Composite Frames," J. Struct. Eng., vol. 9445, no. November, 2001.spa
dc.relation.referencesS. Pourzeynali and M. Zarif, "Multi-objective optimization of seismically isolated high-rise building structures using genetic algorithms," J. Sound Vib., vol. 311, no. 3, pp. 1141-1160, 2008. [Online]. Available: https://www.sciencedirect.com/science/ article/pii/S0022460X07008085spa
dc.relation.referencesJ. D. Schaffer, "Multiple objective optimization with vector evaluated genetic algorithms," in Proc. rst Int. Conf. Genet. algorithms their Appl. 1985. Lawrence Erlbaum Associates. Inc., Publishers, 1985.spa
dc.relation.referencesD. E. Goldberg, "Genetic algorithms in search, optimization, and machine learning. Addison," Reading, 1989.spa
dc.relation.referencesC. M. Fonseca and P. J. Fleming, "Genetic Algorithms for Multiobjective Optimization: Formulation, Discussion and Generalization," Proc. 5th Int. Conf. Genet. Algorithms, vol. 1, no. October, pp. 416{423, 1993. [Online]. Available: http://pdf.aminer.org/000/310/607/geneticf galgorithmsf gforf g multiobjectivef goptimizationf gformulationdiscussionf gandf ggeneralization.pdfspa
dc.relation.referencesE. Bonabeau, D. d. R. D. F. Marco, M. Dorigo, G. Théraulaz, G. Theraulaz, and Others, "Swarm intelligence: from natural to arti cial systems". Oxford university press, 1999, no. 1.spa
dc.relation.referencesS. Katoch, S. S. Chauhan, and V. Kumar, "A review on genetic algorithm: past, present, and future," Multimed. Tools Appl., pp. 1{36, 2020.spa
dc.relation.referencesM. Mitchell, S. Fe, and S. Forrest, "Arti cial Life 1 Introduction 2 Overview of Genetic Algorithms," Optimization, pp. 1-28, 1993.spa
dc.relation.referencesG. E. Box, "Evolutionary operation: A method for increasing industrial productivity," Evol. Comput. Foss. Rec., vol. 6, no. 2, pp. 121-141, 1998.spa
dc.relation.referencesW. W. Bledsoe, "The use of biological concepts in the analytical study of systems," in ORSA-TIMS Natl. Meet., 1961.spa
dc.relation.referencesH. J. Bremermann and Others, "Optimization through evolution and recombination," Self-organizing Syst., vol. 93, p. 106, 1962.spa
dc.relation.referencesL. J. Fogel, A. J. Owens, and M. J. Walsh, "Arti cial intelligence through simulated evolution," 1966.spa
dc.relation.referencesJ. H. Holland and Others, "Adaptation in natural and arti cial systems: an introductory analysis with applications to biology, control, and arti cial intelligence". MIT press, 1992.spa
dc.relation.referencesH. Chen, R. Ooka, and S. Kato, "Study on optimum design method for pleasant outdoor thermal environment using genetic algorithms (GA) and coupled simulation of convection, radiation and conduction," Build. Environ., vol. 43, no. 1, pp. 18-30, 2008.spa
dc.relation.referencesA. Ghaheri, S. Shoar, M. Naderan, and S. S. Hoseini, "The applications of genetic algorithms in medicine," Oman Med. J., vol. 30, no. 6, p. 406, 2015.spa
dc.relation.referencesC. W. Padgett and A. Saad, "Genetic algorithms in chemistry: Success or failure is in the genes," in Appl. Soft Comput. Springer, 2009, pp. 181-189.spa
dc.relation.referencesZ. Michalewicz, "Genetic algorithms+ data structures= evolution programs." Springer Science & Business Media, 2013.spa
dc.relation.referencesD. Liu, "Mathematical modeling analysis of genetic algorithms under schema theorem," J. Comput. Methods Sci. Eng., vol. 19, no. S1, pp. S131-S137, 2019.spa
dc.relation.referencesJ. Nicklow, P. Reed, D. Savic, T. Dessalegne, L. Harrell, A. Chan-hilton, M. Karamouz, B. Minsker, A. Ostfeld, A. Singh, and E. Zechman, "State of the Art for Genetic Algorithms and Beyond in Water," J. Water Resour. Plann. Manag., vol. 136, no. August, pp. 412-432, 2010.spa
dc.relation.referencesS. Kobayashi, "Foundations of genetic algorithms and its applications," Commun. ORSJ, vol. 45, pp. 256-261, 1993.spa
dc.relation.referencesR. Cheng, M. Gen, and Y. Tsujimura, "A tutorial survey of job-shop scheduling problems using genetic algorithms|I. Representation," Comput. Ind. Eng., vol. 30, no. 4, pp. 983-997, 1996.spa
dc.relation.referencesI. Rechenberg, "Evolutionsstrategien, in Simulationsmethoden der Medizin und Biol". Springer, 1978, pp. 83-114.spa
dc.relation.referencesR. A. Caruana, L. J. Eshelman, and J. D. Schaffer, "Representation and hidden bias II: Eliminating de ning length bias in genetic search via shuffe crossover," in Proc. 11th Int. Jt. Conf. Artif. Intell. 1, 1989, pp. 750-755.spa
dc.relation.referencesL. T. Leng, "Guided genetic algorithm," Univ. Essex, A thesis Submitt. degree Ph. D Comput. Sci. Dep. Comput. Sci., 1999.spa
dc.relation.referencesS. N. Sivanandam and S. N. Deepa, "Genetic algorithms, in Introd. to Genet. algo- rithms". Springer, 2008, pp. 15-37.spa
dc.relation.referencesB. R. Fox and M. B. McMahon, "Genetic operators for sequencing problems," in Found. Genet. algorithms. Elsevier, 1991, vol. 1, pp. 284-300.spa
dc.relation.referencesS. Jiang, K.-S. Chin, L. Wang, G. Qu, and K. L. Tsui, "Modi ed genetic algorithmbased feature selection combined with pre-trained deep neural network for demand forecasting in outpatient department," Expert Syst. Appl., vol. 82, pp. 216-230, 2017.spa
dc.relation.referencesK. Jebari and M. Madia , "Selection methods for genetic algorithms," Int. J. Emerg. Sci., vol. 3, no. 4, pp. 333-344, 2013.spa
dc.relation.referencesL. Araujo and C. Cervigón, Algoritmos evolutivos: un enfoque práctico. Ra-Ma, 2009.spa
dc.relation.referencesC.-Y. Lee, "Entropy-Boltzmann selection in the genetic algorithms," IEEE Trans. Syst. Man, Cybern. Part B, vol. 33, no. 1, pp. 138-149, 2003.spa
dc.relation.referencesA. Hussain, Y. S. Muhammad, M. Nauman Sajid, I. Hussain, A. Mohamd Shoukry, and S. Gani, "Genetic algorithm for traveling salesman problem with modi ed cycle crossover operator," Comput. Intell. Neurosci., vol. 2017, 2017.spa
dc.relation.referencesD. A. Van Veldhuizen and G. B. Lamont, "Multiobjective evolutionary algorithms: analyzing the state-of-the-art." Evol. Comput., vol. 8, no. 2, pp. 125-147, 2000.spa
dc.relation.referencesM. T. Emmerich and A. H. Deutz, "A tutorial on multiobjective optimization: fundamentals and evolutionary methods," Nat. Comput., vol. 17, no. 3, pp. 585-609, 2018.spa
dc.relation.referencesC. A. C. Coello, "A comprehensive survey of evolutionary-based multiobjective optimization techniques," Knowl. Inf. Syst., vol. 1, no. 3, pp. 269-308, 1999.spa
dc.relation.referencesF. Kursawe, "A variant of evolution strategies for vector optimization," in Int. Conf. Parallel Probl. Solving from Nat. Springer, 1990, pp. 193-197.spa
dc.relation.referencesC. M. Fonseca, P. J. Fleming, and Others, "Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization." in Icga, vol. 93, no. July. Citeseer, 1993, pp. 416-423.spa
dc.relation.referencesM. Akbari, P. Asadi, M. K. B. Givi, and G. Khodabandehlouie, "Arti ficial neural net- work and optimization, 2014.spa
dc.relation.referencesJ. B. Kollat and P. M. Reed, "Comparing state-of-the-art evolutionary multi-objective algorithms for long-term groundwater monitoring design," Adv. Water Resour., vol. 29, no. 6, pp. 792-807, 2006.spa
dc.relation.referencesC. Peñuela and M. Granada Echeverri, "Optimización multiobjetivo usando un algoritmo genético y un operador elitista basado en un ordenamiento no-dominado (nsga-ii)." Sci. Tech., vol. 3, no. 35, pp. 175-180, 2007.spa
dc.relation.referencesThe Center for Engineering Strong Motion Data (CESMD), "Strong-Motion Data Set." [Online]. Available: https://www.strongmotioncenter.org/cgi-bin/CESMD/archive.plspa
dc.relation.referencesD. A. Caicedo, "A comparative analysis on the seismic behavior of buildings using inerter-based devices: Tuned Mass Damper Inerter (TMDI) and Tuned Inerter Damper (TID)." 2020.spa
dc.relation.referencesY. P. Wang, W. H. Liao, and C. L. Lee, "A state-space approach for dynamic analysis of sliding structures," Eng. Struct., vol. 23, no. 7, pp. 790-801, 2001.spa
dc.relation.referencesA. K. Chopra, "Dinámica de estructuras," México, 2014.spa
dc.relation.referencesP. Paultre, "Dynamics of structures". John Wiley & Sons, 2013.spa
dc.relation.referencesF. Y. Cheng, "Matrix analysis of structural dynamics: applications and earthquake en- gineering". CRC Press, 2017, vol. 1.spa
dc.relation.referencesS. M. Zahrai and H. Salehi, "Semi-active seismic control of mid-rise structures using magneto-rheological dampers and two proposed improving mechanisms," Iran. J. Sci. Technol. - Trans. Civ. Eng., vol. 38, no. C1, pp. 21-36, 2014.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::624 - Ingeniería civilspa
dc.subject.lembEstructuras - Amortiguadores
dc.subject.lembShock absorbers
dc.subject.lembAmortiguadores
dc.subject.lembSistemas dinámicos complejos
dc.subject.lembComplex dynamical systems
dc.subject.proposalControl estructuralspa
dc.subject.proposalAlgoritmos genéticosspa
dc.subject.proposalLógica difusaspa
dc.subject.proposalAmortiguadores magnetoreológicosspa
dc.subject.proposalStructural controleng
dc.subject.proposalGenetic algorithmseng
dc.subject.proposalFuzzy logiceng
dc.subject.proposalMagnetorheological damperseng
dc.titleControl semi-activo de estructuras empleando un algoritmo genético tipo NSGA-II combinado con lógica difusa para administrar fuerzas de control en amortiguadores magnetoreológicos MRspa
dc.title.translatedSemi-active control structures using a NSGA-II genetic algorithm combined with fuzzy logic to provide control forces in magnetorheological (MR) damperseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1041231952.2021.pdf
Tamaño:
90 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería- Estructuras

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: