Síntesis y estudio del efecto del Mn sobre las propiedades estructurales y eléctricas de nanoestructuras de ZnO

dc.contributor.advisorDussán Cuenca, Anderson
dc.contributor.authorLanchero Díaz, Angela Patricia
dc.contributor.researchgroupMateriales Nanoestructurados y Sus Aplicacionesspa
dc.date.accessioned2023-06-26T21:14:37Z
dc.date.available2023-06-26T21:14:37Z
dc.date.issued2023-04-26
dc.descriptionilustraciones, fotografíasspa
dc.description.abstractEste trabajo presenta el estudio del efecto de 𝑀𝑛 sobre las propiedades estructurales, morfológicas, eléctricas y magnéticas de películas delgadas de 𝑍𝑛𝑂 depositadas por el método “DC magnetron co-sputtering”, variando algunos parámetros de síntesis como la concentración de Mn, la temperatura del sustrato, así como la utilización de sustratos de diferente naturaleza (Vidrio borosilicato, ITO, Titanio y Silicio orientado). A partir de la caracterización por difracción de rayos X (XRD, por sus siglas en inglés) y espectroscopía RAMAN se identificó la formación de una estructura cristalina hexagonal en fase wurtzita cuyo plano preferencial de crecimiento fue [002] a lo largo del eje c, la temperatura de depósito y el sustrato orientado favorece la cristalización, mientras que el incremento en la cantidad de Mn afecto la cristalización, fenómeno asociado con estrés de la matriz semiconductora. La caracterización a través de microscopía SEM, FESEM y AFM mostraron la formación granular en la superficie de la película, la inclusión de Mn (potencia del “target” = 25 W) mostró un incremento en el tamaño del grano, a altas concentraciones se evidenció la formación de “clusters”. La caracterización eléctrica se realizó a partir de curvas I-V, donde se observó conmutación resistiva (RS, “resistive switching”) unipolar y bipolar interfacial, explicado a partir del modelo de barrera Schottky; este comportamiento está determinado por los parámetros de síntesis como la temperatura y la concentración de Mn. La magnetometría de muestra vibrante (VSM, por sus siglas en inglés) mostró histéresis asociada con ferromagnetismo para muestras depositadas con temperatura de sustrato 𝑇𝑠 = 150 °𝐶, potencia de 𝑀𝑛 = 25 𝑊; la magnetización fue medida a 150 K, cuando se incrementa la temperatura de magnetización se observa una histéresis similar a la cintura de avispa, este resultado se asoció a la combinación de dos fases magnéticas (paramagnética y ferromagnética) presentes en la muestra. La información obtenida confirma la posibilidad fabricar semiconductores magnéticos diluidos (DMS, por sus siglas en inglés) a partir del 𝑍𝑛𝑂: 𝑀𝑛 con potencial para aplicaciones en dispositivos espintrónicos. (Texto tomado de la fuente)spa
dc.description.abstractThis work presents the study of the effect of Mn on the structural, morphological, electrical and magnetic properties of ZnO thin films deposited by the DC magnetron co-sputtering method, with variations in some synthesis parameters such as Mn concentration, substrate temperature, as well as the use of substrates of different nature (borosilicate glass, ITO, titanium and oriented silicon). From the characterization by X-ray diffraction (XRD) and RAMAN spectroscopy it was identified the formation of a hexagonal crystalline structure in wurtzite phase whose preferential growth plane was [002] along the c axis, the deposition temperature and the oriented substrate favored crystallization, while the increase in the amount of Mn affected the crystallization, a phenomenon associated with stress of the semiconductor matrix. Characterization through SEM, FESEM and AFM microscopy showed granular formation on the surface of the film thin, the addition of Mn (power target = 25 W) showed an increase in grain size, at high Mn concentrations the formation of "clusters" was evidenced. The electrical characterization was performed from I-V curves, where unipolar and bipolar interfacial resistive switching (RS) was observed, explained from the Schottky barrier model; this behavior is determined by the synthesis parameters such as temperature and Mn concentration. Vibrating sample magnetometry (VSM) showed hysteresis associated with ferromagnetism for samples deposited with substrate temperature Ts=150 C, Mn power 25 W; the magnetization was measured at 150 K, when the magnetization temperature is increased a hysteresis similar to wasp waist was observed; this result was associated to the combination of two magnetic phases (paramagnetic and ferromagnetic) present in the sample. The information obtained confirms the possibility of fabricating dilute magnetic semiconductors (DMS) from ZnO:Mn with potential for applications in spintronic devices.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Físicaspa
dc.format.extentviii, 65 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84076
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá,Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Físicaspa
dc.relation.referencesDussán A, Quiroz H, Calderón J. Nanomateriales que revolucionan la tecnología. 2020.spa
dc.relation.referencesYakout SM. Spintronics: Future Technology for New Data Storage and Communication Devices. Journal of Superconductivity and Novel Magnetism 2020; 33: 2557–2580.spa
dc.relation.referencesJiménez García NF, Ortiz Álvarez H, Toro Carvajal L. Obtención de películas de ZnO impurificadas con Mn mediante la combinación de las técnicas Baño Químico y SILAR. Ciencias Básicas2019 2019; 17: 112–123.spa
dc.relation.referencesFlorez Galvan L. Correlación entre las propiedades estructurales y ópticas del óxido de zinc nanoestructurado dopado con cobalto. Montería, Colombia, 2020.spa
dc.relation.referencesRajalakshmi R, Angappane S. Synthesis, characterization and photoresponse study of undoped and transition metal (Co, Ni, Mn) doped ZnO thin films. Materials Science and Engineering: B 2013; 178: 1068–1075.spa
dc.relation.referencesAhmed SA. Structural, optical, and magnetic properties of Mn-doped ZnO samples. Results Phys 2017; 7: 604–610.spa
dc.relation.referencesMimouni R, Kamoun O, Yumak A, et al. Effect of Mn content on structural, optical, opto-thermal and electrical properties of ZnO:Mn sprayed thin films compounds. J Alloys Compd 2015; 645: 100–111.spa
dc.relation.referencesZhang H fu, Liu R jin, Liu H fa, et al. Mn-doped ZnO transparent conducting films deposited by DC magnetron sputtering. Mater Lett 2010; 64: 605–607.spa
dc.relation.referencesRajalakshmi R, Angappane S. Effect of thickness on the structural and optical properties of sputtered ZnO and ZnO:Mn thin films. J Alloys Compd 2014; 615: 355–362.spa
dc.relation.referencesSapkota KR, Chen W, Maloney FS, et al. Magnetoresistance manipulation and sign reversal in Mn-doped ZnO nanowires. Sci Rep; 6. Epub ahead of print 14 October 2016. DOI: 10.1038/srep35036.spa
dc.relation.referencesCéspedes Montoya E, Prieto de Castro C. Ferromagnetism in wide band gap materials Mn-ZnO and Mn-Si3 N4 thin films. Universidad Autónoma de Madrid , 2009.spa
dc.relation.referencesMattox DM. Physical Sputtering and Sputter Deposition (Sputtering). Handbook of Physical Vapor Deposition (PVD) Processing 1998; 343–405.spa
dc.relation.referencesAdachi H, Wasa K. Thin Films and Nanomaterials. Handbook of Sputter Deposition Technology: Fundamentals and Applications for Functional Thin Films, Nano-Materials and MEMS: Second Edition 2012; 3–39.spa
dc.relation.referencesMangematin V, Walsh S. The future of nanotechnologies. Technovation 2012; 32: 157–160.spa
dc.relation.referencesNNI Budget | National Nanotechnology Initiative, https://www.nano.gov/about-nni/what/funding (accessed 9 December 2021).spa
dc.relation.referencesKhan S, Mansoor S, Rafi Z, et al. A review on nanotechnology: Properties, applications, and mechanistic insights of cellular uptake mechanisms. J Mol Liq 2021; 118008.spa
dc.relation.referencesAgeev OA, Zamburg EG, Kolomiytsev AS, et al. Formation of elements of integrated acousto-optic cell based on LiNbO 3 films by methods of nanotechnology. J Phys Conf Ser 2015; 643: 012031.spa
dc.relation.referencesNeupane GP, Ma W, Yildirim T, et al. 2D organic semiconductors, the future of green nanotechnology. Nano Materials Science 2019; 1: 246–259.spa
dc.relation.referencesWang DK, Rahimi M, Filgueira CS. Nanotechnology applications for cardiovascular disease treatment: Current and future perspectives. Nanomedicine 2021; 34: 102387.spa
dc.relation.referencesSingh PK, Goyal M. Nanotechnology in Automobiles - A OEMS Viewpoint. IOP Conf Ser Mater Sci Eng 2020; 988: 012070.spa
dc.relation.referencesUsman M, Farooq M, Wakeel A, et al. Nanotechnology in agriculture: Current status, challenges and future opportunities. Science of The Total Environment 2020; 721: 137778spa
dc.relation.referencesPadilla-Vaca F, Mendoza-Macías CL, Franco B, et al. El mundo micro en el mundo nano: importancia y desarrollo de nanomateriales para el combate de las enfermedades causadas por bacterias, protozoarios y hongos. Mundo Nano Revista Interdisciplinaria en Nanociencias y Nanotecnología 2018; 11: 15–27.spa
dc.relation.referencesYu H, Li P, Zhang L, et al. Application of optical fiber nanotechnology in power communication transmission. Alexandria Engineering Journal 2020; 59: 5019–5030.spa
dc.relation.referencesGenet C, Errabi K, Gauthier C. Which model of technology transfer for nanotechnology? A comparison with biotech and microelectronics. Technovation 2012; 32: 205–215.spa
dc.relation.referencesBoixeda P, Feltes F, Santiago JL, et al. Future prospects in dermatologic applications of lasers, nanotechnology, and other new technologies. Actas Dermosifiliogr 2015; 106: 168–179.spa
dc.relation.referencesDong Y, Wu X, Chen X, et al. Nanotechnology shaping stem cell therapy: Recent advances, application, challenges, and future outlook. Biomedicine & Pharmacotherapy 2021; 137: 111236.spa
dc.relation.referencesGogotsi Y. Nanomaterials handbook. CRC/Taylor & Francis, https://www.academia.edu/25149005/Nanomaterials_handbook (2006, accessed 9 December 2021).spa
dc.relation.referencesOu R, Zeng Z, Ning X, et al. Improved photocatalytic performance of N-doped ZnO/graphene/ZnO sandwich composites. Appl Surf Sci 2021; 151856.spa
dc.relation.referencesKim D, Leem JY. Morphology modification of ZnO nanosheets and ZnO nanorods via thermal dissipation system for UV photoresponse improvement. Mater Sci Semicond Process 2022; 138: 106286.spa
dc.relation.referencesYang C, Xiong F, Zhang Y, et al. Growth of ZnO/Bi2S3 electron transport layer films to improve the efficiency and stability of organic solar cells. Opt Mater (Amst) 2021; 111791.spa
dc.relation.referencesGao W, Liu Y, Dong J. Immobilized ZnO based nanostructures and their environmental applications. Progress in Natural Science: Materials International. Epub ahead of print 13 November 2021. DOI: 10.1016/J.PNSC.2021.10.006.spa
dc.relation.referencesRuan HB, Fang L, Li DC, et al. Effect of dopant concentration on the structural, electrical and optical properties of Mn-doped ZnO films. Thin Solid Films 2011; 519: 5078–5081.spa
dc.relation.referencesChange YQ, Wang PW, Tang RH, et al. Synthesis and Room Temperature Ferromagnetism of Flower-shaped Mn Doped ZnO Nanostructures. J Mater Sci Technol 2011; 27: 513–517.spa
dc.relation.referencesIlyas U, Rawat RS, Roshan G, et al. Quenching of surface traps in Mn doped ZnO thin films for enhanced optical transparency. Appl Surf Sci 2011; 258: 890–897.spa
dc.relation.referencesMorkoç H, Özgür Ü. Zinc Oxide: Fundamentals, Materials and Device Technology. Germany, https://b-ok.lat/book/604672/d7395a?dsource=recommend (2009, accessed 10 December 2021).spa
dc.relation.referencesGhica D, Vlaicu ID, Stefan M, et al. Tailoring the Dopant Distribution in ZnO:Mn Nanocrystals. Scientific Reports 2019 9:1 2019; 9: 1–12.spa
dc.relation.referencesKarmakar R, Neogi SK, Banerjee A, et al. Structural; morphological; optical and magnetic properties of Mn doped ferromagnetic ZnO thin film. Appl Surf Sci 2012; 263: 671–677.spa
dc.relation.referencesToufiq AM, Hussain R, Shah A, et al. The influence of Mn doping on the structural and optical properties of ZnO nanostructures. Physica B Condens Matter 2021; 604: 412731.spa
dc.relation.referencesGorrie CW, Sigdel AK, Berry JJ, et al. Effect of deposition distance and temperature on electrical, optical and structural properties of radio-frequency magnetron-sputtered gallium-doped zinc oxide. Thin Solid Films 2010; 519: 190–196.spa
dc.relation.referencesChikoidze E, Dumont Y, Jomard F, et al. Electrical and optical properties of ZnO:Mn thin films grown by MOCVD. Thin Solid Films 2007; 515: 8519–8523.spa
dc.relation.referencesMa Y, Gao H, Huang R, et al. Green emission in Fe- and Mn-doped ZnO nanowires studied by magneto-photoluminescence. J Lumin 2022; 241: 118521.spa
dc.relation.referencesGallegos M v., Luna CR, Peluso MA, et al. Effect of Mn in ZnO using DFT calculations: Magnetic and electronic changes. J Alloys Compd 2019; 795: 254–260.spa
dc.relation.referencesRajalakshmi R, Angappane S. Effect of thickness on the structural and optical properties of sputtered ZnO and ZnO:Mn thin films. J Alloys Compd 2014; 615: 355–362.spa
dc.relation.referencesLekoui F, Amrani R, Filali W, et al. Investigation of the effects of thermal annealing on the structural, morphological and optical properties of nanostructured Mn doped ZnO thin films. Opt Mater (Amst); 118. Epub ahead of print 1 August 2021. DOI: 10.1016/J.OPTMAT.2021.111236.spa
dc.relation.referencesTheodoropoulou NA, Hebard AF, Norton DP, et al. Ferromagnetism in Co- and Mn-doped ZnO. Solid State Electron 2003; 47: 2231–2235.spa
dc.relation.referencesAhmed SA. Structural, optical, and magnetic properties of Mn-doped ZnO samples. Results Phys 2017; 7: 604–610.spa
dc.relation.referencesÓxido de ZINC | ZnO - PubChem, https://pubchem.ncbi.nlm.nih.gov/compound/Zinc-oxide (accessed 10 December 2021).spa
dc.relation.referencesZnO - an overview | ScienceDirect Topics, https://www.sciencedirect.com/topics/materials-science/zno (accessed 10 December 2021).spa
dc.relation.referencesÖzgür U, Avrutin V, Morkoç H. Zinc Oxide Materials and Devices Grown by MBE. In: Molecular Beam Epitaxy: From Research to Mass Production. Elsevier, 2012, pp. 369–416.spa
dc.relation.referencesSchleife A, Fuchs F, Furthmüller J, et al. First-principles study of ground- and excited-state properties of MgO, ZnO, and CdO polymorphs. Phys Rev B Condens Matter Mater Phys; 73. Epub ahead of print 2006. DOI: 10.1103/PhysRevB.73.245212.spa
dc.relation.referencesKovalenko M, Bovgyra O, Franiv A, et al. Electronic structure of ZnO thin films doped with group III elements. Mater Today Proc 2019; 35: 604–608.spa
dc.relation.referencesVarshni Y. Temperature Dependence of the energy gap in semiconductors. Physica 34 1967; 149–154.spa
dc.relation.referencesSingh D, Varshni YP. Debye temperatures for hexagonal crystals. Ottawa, Canadá, 1981.spa
dc.relation.referencesCaglar M, Ilican S, Caglar Y, et al. Electrical conductivity and optical properties of ZnO nanostructured thin film. Appl Surf Sci 2009; 255: 4491–4496.spa
dc.relation.referencesNasir MF, Zainol MN, Hannas M, et al. Electrical properties of undoped zinc oxide nanostructures at different annealing temperature. In: AIP Conference Proceedings. American Institute of Physics Inc., 2016. Epub ahead of print 6 July 2016. DOI: 10.1063/1.4948886.spa
dc.relation.referencesQuesada A, García MA, Costa-Krämer JL, et al. Semiconductores magnéticos diluidos: Materiales para la espintrónica. Revista Española de Física, http://www.rsef.org (2007).spa
dc.relation.referencesAbdel-Galil A, Balboul MR, Sharaf A. Synthesis and characterization of Mn-doped ZnO diluted magnetic semiconductors. Physica B Condens Matter 2015; 477: 20–28.spa
dc.relation.referencesAlbella J. Láminas delgadas y recubrimientos: Preparación, propiedades y aplicaciones. Madrid, España, 2003.spa
dc.relation.referencesNunn W, Truttmann TK, Jalan B. A review of molecular-beam epitaxy of wide bandgap complex oxide semiconductors. J Mater Res 2021; 36: 4846–4864.spa
dc.relation.referencesÖzgür Ü, Avrutin V, Morkoç H. Zinc Oxide Materials and Devices Grown by Molecular Beam Epitaxy. In: Molecular Beam Epitaxy. Elsevier, 2018, pp. 343–375.spa
dc.relation.referencesMahmood A, Naeem A. Sol-Gel-Derived Doped ZnO Thin Films: Processing, Properties, and Applications. In: Recent Applications in Sol-Gel Synthesis. InTech, 2017. Epub ahead of print 5 July 2017. DOI: 10.5772/67857.spa
dc.relation.referencesPetr Vašina T, Boisse -Laporte Supervisor Ganciu Examinator J Janča Supervisor A-M Pointu President A Ricard Reporter J Vlček CM. Plasma diagnostics focused on new magnetron sputtering devices for thin film deposition at Orsay, members of commission. 2005.spa
dc.relation.referencesBonafos C, Khomenkhova L, Gourbilleau F, et al. Nano-composite MOx materials for NVMs. Metal Oxides for Non-volatile Memory: Materials, Technology and Applications 2022; 201–244.spa
dc.relation.referencesCullity BD (Bernard D. Elements of x-ray diffraction. Addison-Wesley Publishing Company, Inc, 1978.spa
dc.relation.referencesWaseda Y, Matsubara E, Shinoda K. X-Ray Diffraction Crystallography X-Ray Diffraction Crystallography Introduction, Examples and Solved Problems. 2011.spa
dc.relation.referencesHarrington GF, Santiso J. Back-to-Basics tutorial: X-ray diffraction of thin films. Journal of Electroceramics 2021 47:4 2021; 47: 141–163.spa
dc.relation.referencesGarcía L. Introducción al Método Rietveld. Centro de Investigación en Energía, 2007.spa
dc.relation.referencesQuiroz H. Estudio de las propiedades físicas del TiO2:Co como un semiconductor magnético diluido para aplicaciones en espintrónica. 2019.spa
dc.relation.referencesIpohorski M, Bozzano PB. Microscopía Electrónica de Barrido en la caracterización de Materiales. Cienc Invest; 63, http://aargentinapciencias.org/wp-content/uploads/2018/01/RevistasCeI/tomo63-3/5-Microscopia-Electronica-De-Barrido-En-La-Caracterizacion-De-Materiales-cei63-3-2013-5.pdf (2013, accessed 17 January 2022).spa
dc.relation.referencesInkson BJ. Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) for Materials Characterization. In: Materials Characterization Using Nondestructive Evaluation (NDE) Methods. Elsevier Inc., 2016, pp. 17–43.spa
dc.relation.referencesMicroscopio electrónico escaneando Historia y Principios y capacidades, https://hmong.es/wiki/Scanning_electron_microscope (accessed 4 December 2022).spa
dc.relation.referencesScheuer C, Boot E, Carse N, et al. Current–voltage characteristic. Physical Education and Sport for Children and Youth with Special Needs Researches – Best Practices – Situation 2021; 343–354.spa
dc.relation.referencesEstrella JC. Mediciones eléctricas por el método de cuatro puntas en películas delgadas de interés fotovoltáico. Instituto Politécnico Nacional, https://tesis.ipn.mx/bitstream/handle/123456789/18560/Mediciones%20Electricas%20por%20el%20metodo%20de%20cuatro%20puntas%20en%20peliculas%20delgadas%20de%20interes%20fotovoltaico.pdf?sequence=1&isAllowed=y (2016, accessed 17 January 2022).spa
dc.relation.referencesSeña Gaibao NJ. Caracterización eléctrica y estudio de las propiedades de transporte del compuesto Cu2ZnSnSe4 para ser usado como capa absorbente en celdas solares. 2013.spa
dc.relation.referencesTerán CL. Caracterización y estudio de dispositivos basados en nanoestructuras de ZnO:Co para su aplicación en memorias no volátiles usando una configuración tipo transistor. 2022.spa
dc.relation.referencesPanowicz R, Miedzińska D, Palka N, et al. The initial results of THz spectroscopy non-destructive investigations of epoxy-glass composite structure Cratering of Cosmical Bodies View project Blast waves protective structures View project The initial results of THz spectroscopy non-destructive investigations of epoxy-glass composite structure, https://www.researchgate.net/publication/228895610 (2011).spa
dc.relation.referencesConfocal Microscope | What is Confocal Raman Microscopy? https://www.edinst.com/blog/what-is-confocal-raman-microscopy/ (accessed 5 December 2022).spa
dc.relation.referencesHuggett JM, Shaw HF. Field emission scanning electron microscopy — a high-resolution technique for the study of clay minerals in sediments. Clay Miner 1997; 32: 197–203.spa
dc.relation.referencesÁlvarez Romero C, Doménech Carbó MT. Aplicación de la técnica de microscopia electrónica de barrido de emisión de campo con haz de iones focalizado-microanálisis de rayos x a colecciones numismáticas. Valencia, 2016.spa
dc.relation.referencesSinha Ray S. Structure and Morphology Characterization Techniques. In: Clay-Containing Polymer Nanocomposites. Elsevier, 2013, pp. 39–66.spa
dc.relation.referencesX-ray Fluorescence – Rigaku EDXRF, https://www.rigakuedxrf.com/x-ray-fluorescence/ (accessed 5 December 2022).spa
dc.relation.referencesThomson T. Magnetic properties of metallic thin films. In: Metallic Films for Electronic, Optical and Magnetic Applications: Structure, Processing and Properties. Elsevier Ltd., 2013, pp. 454–546.spa
dc.relation.referencesBuschow KHJ;, de Boer FR. Measurement Techniques. In: Physics of Magnetism and Magnetic Materials. 2003, pp. 85–89.spa
dc.relation.referencesYang S, Zhang Y. Structural, optical and magnetic properties of Mn-doped ZnO thin films prepared by sol-gel method. J Magn Magn Mater 2013; 334: 52–58.spa
dc.relation.referencesWang ZH, Geng DY, Zhang ZD. Room-temperature ferromagnetism and optical properties of Zn1-xMnxO nanoparticles. Solid State Commun 2009; 149: 682–684.spa
dc.relation.referencesFERNANDEZ NAVARRO JM. Nucleación y cristalización en vidrios. 1968.spa
dc.relation.referencesBlasco J. Modelización compacta de las características de conducción de dispositivos de conmutación resistiva. Universitat Autonoma de Barcelo, 2017.spa
dc.relation.referencesSanca GA. Estudio de integración de dispositivos RS con tecnologías CMOS para aplicaciones en ambientes hostiles. Universidad Nacional de San Martín , 2020.spa
dc.relation.referencesSawa A. Resistive switching in transition metal oxides. NUMBER 2008; 11: 28.spa
dc.relation.referencesLee S, Lee JS, Park JB, et al. Anomalous effect due to oxygen vacancy accumulation below the electrode in bipolar resistance switching Pt/Nb:SrTiO3 cells. APL Mater; 2. Epub ahead of print 2 June 2014. DOI: 10.1063/1.4884215.spa
dc.relation.referencesSharma M, Bera K, Mishra R, et al. Structural, Magnetic, and Optical Properties of Mn2+ Doping in ZnO Thin Films. Surfaces 2021, Vol 4, Pages 268-278 2021; 4: 268–278.spa
dc.relation.referencesDietl T, Ohno H, Matsukura F, et al. Zener Model Description of Ferromagnetism in Zinc-Blende Magnetic Semiconductors. IOS Press, www.sciencemag.orgwww.sciencemag.org (2000).spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.lembNanoestructurasspa
dc.subject.lembNanostructureseng
dc.subject.lembOxidesseng
dc.subject.lembOxidosspa
dc.subject.lembCompuestos de Cicspa
dc.subject.lembZinc compoundseng
dc.subject.proposalOxido de Zinc (ZnO)spa
dc.subject.proposalDMS
dc.subject.proposalEspintrónicaspa
dc.subject.proposalManganeso (Mn)spa
dc.subject.proposalMemristorspa
dc.titleSíntesis y estudio del efecto del Mn sobre las propiedades estructurales y eléctricas de nanoestructuras de ZnOspa
dc.title.translatedSynthesis and study of the effect of Mn on the structural and electrical properties of ZnO nanostructureseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1074417215.2023.pdf
Tamaño:
3.56 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Física

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: