Analysis of the sustainable VFAs production using anaerobic digestion through the biorefinery concept
dc.contributor.advisor | Cardona Alzate, Carlos Ariel | |
dc.contributor.author | Agudelo Patiño, Tatiana | |
dc.contributor.googlescholar | Agudelo Patiño, Tatiana [https://scholar.google.es/citations?view_op=list_works&hl=es&user=1PzihiwAAAAJ] | spa |
dc.contributor.orcid | Agudelo Patiño, Tatiana [ https://orcid.org/my-orcid?orcid=0000000230391650] | spa |
dc.contributor.researchgroup | Procesos Químicos Cataliticos y Biotecnológicos | spa |
dc.date.accessioned | 2024-06-25T19:28:42Z | |
dc.date.available | 2024-06-25T19:28:42Z | |
dc.date.issued | 2024 | |
dc.description | graficas, tablas | spa |
dc.description.abstract | Conventional anaerobic digestion (AD) is a widely applied technology for generating renewable energy (biogas) from organic waste. The simplicity of the process and the existing microbial consortium allows the use of different types of waste as substrate. Waste from different value chains (VC) has been used, e.g., agricultural, agro-industrial, and food. AD has multiple metabolic pathways present at each stage of the process. Therefore, it was demonstrated that AD could be designed to produce mixed volatile fatty acids through modified AD. Modified AD corresponds to varying the operating conditions of the process to promote specific metabolic pathways. The integration of conventional and modified AD was proposed as a sustainable pillar for the valorization of three wastes generated in different VC links through the biorefinery concept. A functional analysis (FA) was performed to determine the VC bottlenecks and the possible integration of biorefineries. Likewise, the sustainability (considering technical, economic, environmental, and social dimensions) of different biorefinery scenarios for the three feedstocks was evaluated. An experimental evaluation of conventional and modified AD using different techniques was conducted. The biorefineries were evaluated at the simulation level using the experimental results as input data. A compendium of downstream processes was proposed to increase the valorization of the fractions obtained in the conventional and modified AD process (Texto tomado de la fuente) | eng |
dc.description.abstract | La digestión anaerobia (AD) convencional es una tecnología ampliamente aplicada para la generación de energía renovable en forma de biogás. a partir de residuos orgánicos. La simplicidad del proceso y el consorcio microbiano existente permite utilizar diferentes tipos de residuos como sustrato. Se han utilizado residuos de diferentes cadenas de valor (VC), por ejemplo, agrícolas, agroindustriales y alimentarias, procedentes de distintos eslabones. La AD tiene múltiples vías metabólicas presentes en cada etapa del proceso. Por ello, se ha demostrado que la AD podría diseñarse para producir ácidos grasos volátiles mixtos a través de la AD modificada. La AD modificada corresponde a la variación de las condiciones operativas del proceso para promover rutas metabólicas específicas. Se propuso la integración de la AD convencional y modificada como pilar sostenible para la valorización de tres residuos generados en diferentes eslabones de VC a través del concepto de biorrefinería. Se realizó un análisis funcional (FA) para determinar los cuellos de botella de las VC y la posible integración de las biorrefinerías. Así mismo, se evaluó la sostenibilidad (considerando las dimensiones técnica, económica, ambiental y social) de diferentes escenarios de biorrefinerías para las tres materias primas. Se realizó una evaluación experimental de la AD convencional y modificada considerando diferentes técnicas. Las biorrefinerías fueron evaluadas a nivel de simulación usando los resultados experimentales como datos de entrada. Se propuso un compendio de procesos aguas abajo para incrementar la valorización de las fracciones obtenidas en el proceso de AD convencional y modificada. | spa |
dc.description.curriculararea | Química Y Procesos.Sede Manizales | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ingeniería - Ingeniería Química | spa |
dc.description.researcharea | Chemical and Biotechnological Process Engineering | spa |
dc.format.extent | xix, 189 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/86297 | |
dc.language.iso | eng | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Manizales | spa |
dc.publisher.faculty | Facultad de Ingeniería y Arquitectura | spa |
dc.publisher.place | Manizales, Colombia | spa |
dc.publisher.program | Manizales - Ingeniería y Arquitectura - Maestría en Ingeniería - Ingeniería Química | spa |
dc.relation.references | [1] G. Voicu, M. Dincă, G. Paraschiv, and G. Moiceanu, “A Review Regarding the Biogas Production through Anaerobic Digestion of Organic Waste,” Adv. Eng. Forum, vol. 13, pp. 185–193, 2015, doi: 10.4028/www.scientific.net/aef.13.185. | spa |
dc.relation.references | [2] G. Caposciutti, A. Baccioli, L. Ferrari, and U. Desideri, “Biogas from anaerobic digestion: Power generation or biomethane production?,” Energies, vol. 13, no. 3, 2020, doi: 10.3390/en13030743. | spa |
dc.relation.references | [3] A. T. Ubando, C. B. Felix, and W. H. Chen, “Biorefineries in circular bioeconomy: A comprehensive review,” Bioresour. Technol., vol. 299, no. November 2019, 2020, doi: 10.1016/j.biortech.2019.122585. | spa |
dc.relation.references | [4] E. Hodson de Jaramillo, “Bioeconomy and circular economy: the sustainable future.,” Rev. la Acad. Colomb. Ciencias Exactas, Físicas y Nat., vol. 42, no. 164, p. 188, 2018. | spa |
dc.relation.references | [5] M. Kardung et al., “Development of the circular bioeconomy: Drivers and indicators,” Sustain., vol. 13, no. 1, pp. 1–24, 2021, doi: 10.3390/su13010413. | spa |
dc.relation.references | [6] Z. Yong, Y. Dong, X. Zhang, and T. Tan, “Anaerobic co-digestion of food waste and straw for biogas production,” Renew. Energy, vol. 78, pp. 527–530, 2015, doi: 10.1016/j.renene.2015.01.033. | spa |
dc.relation.references | [7] N. Scarlat, J. F. Dallemand, and F. Fahl, “Biogas: Developments and perspectives in Europe,” Renew. Energy, vol. 129, pp. 457–472, 2018, doi: 10.1016/j.renene.2018.03.006. | spa |
dc.relation.references | [8] H. Bouallagui, Y. Touhami, R. Ben Cheikh, and M. Hamdi, “Bioreactor performance in anaerobic digestion of fruit and vegetable wastes,” Process Biochem., vol. 40, no. 3–4, pp. 989–995, 2005, doi: 10.1016/j.procbio.2004.03.007. | spa |
dc.relation.references | [9] N. Buyukkamaci and A. Filibeli, “Volatile fatty acid formation in an anaerobic hybrid reactor,” Process Biochem., vol. 39, no. 11, pp. 1491–1494, 2004, doi: 10.1016/S0032-9592(03)00295-4. | spa |
dc.relation.references | [10] M. A. A. Rocha et al., “Recovery of volatile fatty acids from water using medium-chain fatty acids and a cosolvent,” Chem. Eng. Sci., vol. 165, pp. 74–80, 2017, doi: 10.1016/j.ces.2017.02.014. | spa |
dc.relation.references | [11] M. G. E. Albuquerque, V. Martino, E. Pollet, L. Avérous, and M. A. M. Reis, “Mixed culture polyhydroxyalkanoate (PHA) production from volatile fatty acid (VFA)-rich streams: Effect of substrate composition and feeding regime on PHA productivity, composition and properties,” J. Biotechnol., vol. 151, no. 1, pp. 66–76, 2011, doi: 10.1016/j.jbiotec.2010.10.070. | spa |
dc.relation.references | [12] H. C. Woo and Y. H. Kim, “Eco-efficient recovery of bio-based volatile C2-6 fatty acids,” Biotechnol. Biofuels, vol. 12, no. 1, pp. 1–11, 2019, doi: 10.1186/s13068-019-1433-8. | spa |
dc.relation.references | [13] J. Kratzeisen, M., Starcevic, N., Martinov, M., Maurer, C., Müller, “Applicability of biogas digestate as solid fuel,” p. 2023, 2023, doi: 10.1016/j.fuel.2010.02.008. | spa |
dc.relation.references | [14] M. T. 2 Ðurdica Kovacic, Zdenko Loncaric, Jurica Jovic, Danijela Samac, Brigita Popovic, “Digestate Management and Processing Practices: A Review,” Appl. Sci., 2022. | spa |
dc.relation.references | [15] B. E. Liedl, J. Bombardiere, and J. M. Chatfield, “Fertilizer potential of liquid and solid effluent from thermophilic anaerobic digestion of poultry waste,” pp. 69–79, 2006, doi: 10.2166/wst.2006.237. | spa |
dc.relation.references | [16] C. Sawatdeenarunat et al., “Anaerobic biorefinery : Current status, challenges, and opportunities,” Bioresour. Technol., vol. 215, pp. 304–313, 2016, doi: 10.1016/j.biortech.2016.03.074. | spa |
dc.relation.references | [17] C. Sawatdeenarunat et al., “Anaerobic biorefinery: Current status, challenges, and opportunities,” Bioresour. Technol., vol. 215, pp. 304–313, 2016, doi: 10.1016/j.biortech.2016.03.074. | spa |
dc.relation.references | [18] J. MacLellan, R. Chen, R. Kraemer, Y. Zhong, Y. Liu, and W. Liao, “Anaerobic treatment of lignocellulosic material to co-produce methane and digested fiber for ethanol biorefining,” Bioresour. Technol., vol. 130, pp. 418–423, 2013, doi: 10.1016/j.biortech.2012.12.032. | spa |
dc.relation.references | [19] M. Wiatrowski et al., “Techno-economic assessment for the production of algal fuels and value-added products: opportunities for high-protein microalgae conversion,” Biotechnol. Biofuels Bioprod., vol. 15, no. 1, pp. 1–14, 2022, doi: 10.1186/s13068-021-02098-3. | spa |
dc.relation.references | [20] S. Gidstedt, “Production of volatile fatty acids by hydrolysing sludge from Sjölunda WWTP Simon Gidstedt,” 2017, [Online]. Available: http://lup.lub.lu.se/student-papers/record/8921197. | spa |
dc.relation.references | [21] R. F. Mueller and A. Steiner, “Inhibition of anaerobic digestion caused by heavy metals,” Water Sci. Technol., vol. 26, no. 3–4, pp. 835–846, 1992, doi: 10.2166/wst.1992.0464. | spa |
dc.relation.references | [22] C. Mao, Y. Feng, X. Wang, and G. Ren, “Review on research achievements of biogas from anaerobic digestion,” Renew. Sustain. Energy Rev., vol. 45, pp. 540–555, 2015, doi: 10.1016/j.rser.2015.02.032. | spa |
dc.relation.references | [23] A. Lehtomäki, S. Huttunen, and J. A. Rintala, “Laboratory investigations on co-digestion of energy crops and crop residues with cow manure for methane production: Effect of crop to manure ratio,” Resour. Conserv. Recycl., vol. 51, no. 3, pp. 591–609, 2007, doi: 10.1016/j.resconrec.2006.11.004. | spa |
dc.relation.references | [24] K. Wang, J. Yin, D. Shen, and N. Li, “Anaerobic digestion of food waste for volatile fatty acids (VFAs) production with different types of inoculum: Effect of pH,” Bioresour. Technol., vol. 161, pp. 395–401, 2014, doi: 10.1016/j.biortech.2014.03.088. | spa |
dc.relation.references | [25] Y. Meng, F. Luan, H. Yuan, X. Chen, and X. Li, “Enhancing anaerobic digestion performance of crude lipid in food waste by enzymatic pretreatment,” Bioresour. Technol., vol. 224, pp. 48–55, 2017, doi: 10.1016/j.biortech.2016.10.052. | spa |
dc.relation.references | [26] C. Y. Lin, “Effect of heavy metals on acidogenesis in anaerobic digestion,” Water Res., vol. 27, no. 1, pp. 147–152, 1993, doi: 10.1016/0043-1354(93)90205-V. | spa |
dc.relation.references | [27] Z. Isa, S. Grusenmeyer, and W. Verstraete, “Sulfate Reduction Relative to Methane Production in High-Rate Anaerobic Digestion: Technical Aspects,” Appl. Environ. Microbiol., vol. 51, no. 3, pp. 572–579, 1986, [Online]. Available: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC238921/pdf/aem00138-0124.pdf. | spa |
dc.relation.references | [28] N. E. Korres, P. O’Kiely, J. A. H. Benzie, and J. S. West, “Bioenergy production by anaerobic digestion: Using agricultural biomass and organic wastes,” Bioenergy Prod. by Anaerob. Dig. Using Agric. Biomass Org. Wastes, vol. 9780203137, no. August, pp. 1–442, 2013, doi: 10.4324/9780203137697. | spa |
dc.relation.references | [29] Z. Xu, M. Zhao, H. Miao, Z. Huang, S. Gao, and W. Ruan, “In situ volatile fatty acids influence biogas generation from kitchen wastes by anaerobic digestion,” Bioresour. Technol., vol. 163, pp. 186–192, 2014, doi: 10.1016/j.biortech.2014.04.037. | spa |
dc.relation.references | [30] J. Mata-Alvarez, S. Macé, and P. Llabrés, “Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives,” Bioresour. Technol., vol. 74, no. 1, pp. 3–16, 2000, doi: 10.1016/S0960-8524(00)00023-7. | spa |
dc.relation.references | [31] D. Y. C. Leung and J. Wang, “An overview on biogas generation from anaerobic digestion of food waste,” Int. J. Green Energy, vol. 13, no. 2, pp. 119–131, 2016, doi: 10.1080/15435075.2014.909355. | spa |
dc.relation.references | [32] A. Schievano, A. Tenca, S. Lonati, E. Manzini, and F. Adani, “Can two-stage instead of one-stage anaerobic digestion really increase energy recovery from biomass?,” Appl. Energy, vol. 124, pp. 335–342, 2014, doi: 10.1016/j.apenergy.2014.03.024. | spa |
dc.relation.references | [33] C. Zhang, H. Su, J. Baeyens, and T. Tan, “Reviewing the anaerobic digestion of food waste for biogas production,” Renew. Sustain. Energy Rev., vol. 38, pp. 383–392, 2014, doi: 10.1016/j.rser.2014.05.038. | spa |
dc.relation.references | [34] and S. A. A. Fayyaz Ali Shah, Qaisar Mahmood, Mohammad MaroofShah, Arshid Pervez, “Microbial Ecology of Anaerobic Digesters: The Key Players of Anaerobiosis,” ScientificWorldJournal., vol. 2017, p. 3852369, 2017, doi: 10.1155/2017/3852369. | spa |
dc.relation.references | [35] R. Conrad, “Contribution of hydrogen to methane production and control of hydrogen concentrations in methanogenic soils and sediments,” FEMS Microbiol. Ecol., vol. 28, no. 3, pp. 193–202, 1999, doi: 10.1016/S0168-6496(98)00086-5. | spa |
dc.relation.references | [36] B. Demirel and P. Scherer, “The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass to methane: A review,” Rev. Environ. Sci. Biotechnol., vol. 7, no. 2, pp. 173–190, 2008, doi: 10.1007/s11157-008-9131-1. | spa |
dc.relation.references | [37] K. D. McMahon, D. Zheng, A. J. M. Stams, R. I. Mackie, and L. Raskin, “Microbial population dynamics during start-up and overload conditions of anaerobic digesters treating municipal solid waste and sewage sludge,” Biotechnol. Bioeng., vol. 87, no. 7, pp. 823–834, 2004, doi: 10.1002/bit.20192. | spa |
dc.relation.references | [38] F. Xu, J. Shi, W. Lv, Z. Yu, and Y. Li, “Comparison of different liquid anaerobic digestion effluents as inocula and nitrogen sources for solid-state batch anaerobic digestion of corn stover,” Waste Manag., vol. 33, no. 1, pp. 26–32, 2013, doi: 10.1016/j.wasman.2012.08.006. | spa |
dc.relation.references | [39] J. De Vrieze et al., “Inoculum selection influences the biochemical methane potential of agro-industrial substrates,” Microb. Biotechnol., vol. 8, no. 5, pp. 776–786, 2015, doi: 10.1111/1751-7915.12268. | spa |
dc.relation.references | [40] J. MacLellan, R. Chen, R. Kraemer, Y. Zhong, Y. Liu, and W. Liao, “Anaerobic treatment of lignocellulosic material to co-produce methane and digested fiber for ethanol biorefining,” Bioresour. Technol., vol. 130, pp. 418–423, 2013, doi: 10.1016/j.biortech.2012.12.032. | spa |
dc.relation.references | [41] M. C. Rulli, D. Bellomi, A. Cazzoli, G. De Carolis, and P. D’Odorico, “The water-land-food nexus of first-generation biofuels,” Sci. Rep., vol. 6, no. March, pp. 1–10, 2016, doi: 10.1038/srep22521. | spa |
dc.relation.references | [42] M. Ramos-Suarez, Y. Zhang, and V. Outram, Current perspectives on acidogenic fermentation to produce volatile fatty acids from waste, vol. 20, no. 2. Springer Netherlands, 2021. | spa |
dc.relation.references | [43] W. Czekała, M. Nowak, and W. Bojarski, “Characteristics of Substrates Used for Biogas Production in Terms of Water Content,” Fermentation, vol. 9, no. 5, 2023, doi: 10.3390/fermentation9050449. | spa |
dc.relation.references | [44] M. Berglund and P. Börjesson, “Assessment of energy performance in the life-cycle of biogas production,” Biomass and Bioenergy, vol. 30, no. 3, pp. 254–266, 2006, doi: 10.1016/j.biombioe.2005.11.011. | spa |
dc.relation.references | [45] F. Abouelenien, Y. Namba, N. Nishio, and Y. Nakashimada, “Dry Co-Digestion of Poultry Manure with Agriculture Wastes,” Appl. Biochem. Biotechnol., vol. 178, no. 5, pp. 932–946, 2016, doi: 10.1007/s12010-015-1919-1. | spa |
dc.relation.references | [46] T. Getahun, M. Gebrehiwot, A. Ambelu, T. Van Gerven, and B. Van Der Bruggen, “The potential of biogas production from municipal solid waste in a tropical climate,” Environ. Monit. Assess., vol. 186, no. 7, pp. 4637–4646, 2014, doi: 10.1007/s10661-014-3727-4. | spa |
dc.relation.references | [47] E. Marañón, L. Castrillón, G. Quiroga, Y. Fernández-Nava, L. Gómez, and M. M. García, “Co-digestion of cattle manure with food waste and sludge to increase biogas production,” Waste Manag., vol. 32, no. 10, pp. 1821–1825, 2012, doi: 10.1016/j.wasman.2012.05.033. | spa |
dc.relation.references | [48] J. Garcia-Aguirre, E. Aymerich, J. González-Mtnez. de Goñi, and M. Esteban-Gutiérrez, “Selective VFA production potential from organic waste streams: Assessing temperature and pH influence,” Bioresour. Technol., vol. 244, pp. 1081–1088, 2017, doi: 10.1016/j.biortech.2017.07.187. | spa |
dc.relation.references | [49] J. Yin et al., “Enhancement of acidogenic fermentation for volatile fatty acid production from food waste: Effect of redox potential and inoculum,” Bioresour. Technol., vol. 216, pp. 996–1003, 2016, doi: 10.1016/j.biortech.2016.06.053. | spa |
dc.relation.references | [50] K. Kuruti, S. Nakkasunchi, S. Begum, S. Juntupally, V. Arelli, and G. R. Anupoju, “Rapid generation of volatile fatty acids (VFA) through anaerobic acidification of livestock organic waste at low hydraulic residence time (HRT),” Bioresour. Technol., vol. 238, pp. 188–193, 2017, doi: 10.1016/j.biortech.2017.04.005. | spa |
dc.relation.references | [51] Y. Chen, X. Jiang, K. Xiao, N. Shen, R. J. Zeng, and Y. Zhou, “Enhanced volatile fatty acids (VFAs) production in a thermophilic fermenter with stepwise pH increase – Investigation on dissolved organic matter transformation and microbial community shift,” Water Res., vol. 112, pp. 261–268, 2017, doi: 10.1016/j.watres.2017.01.067. | spa |
dc.relation.references | [52] S. Zahedi, D. Sales, L. I. Romero, and R. Solera, “Hydrogen production from the organic fraction of municipal solid waste in anaerobic thermophilic acidogenesis: Influence of organic loading rate and microbial content of the solid waste,” Bioresour. Technol., vol. 129, pp. 85–91, 2013, doi: 10.1016/j.biortech.2012.11.003. | spa |
dc.relation.references | [53] J. Jiang, Y. Zhang, K. Li, Q. Wang, C. Gong, and M. Li, “Volatile fatty acids production from food waste: Effects of pH, temperature, and organic loading rate,” Bioresour. Technol., vol. 143, pp. 525–530, 2013, doi: 10.1016/j.biortech.2013.06.025. | spa |
dc.relation.references | [54] T. I. M. Grootscholten, F. Kinsky dal Borgo, H. V. M. Hamelers, and C. J. N. Buisman, “Promoting chain elongation in mixed culture acidification reactors by addition of ethanol,” Biomass and Bioenergy, vol. 48, pp. 10–16, 2013, doi: 10.1016/j.biombioe.2012.11.019. | spa |
dc.relation.references | [55] P. Elefsiniotis, D. G. Wareham, and M. O. Smith, “Effect of a Starch-Rich Industrial Wastewater on the Acid-Phase Anaerobic Digestion Process,” Water Environ. Res., vol. 77, no. 4, pp. 366–371, 2005, doi: 10.1002/j.1554-7531.2005.tb00295.x. | spa |
dc.relation.references | [56] E. B. Sydney et al., “Economic process to produce biohydrogen and volatile fatty acids by a mixed culture using vinasse from sugarcane ethanol industry as nutrient source,” Bioresour. Technol., vol. 159, pp. 380–386, 2014, doi: 10.1016/j.biortech.2014.02.042. | spa |
dc.relation.references | [57] H. Mu et al., “Enhanced methane production by semi-continuous mesophilic co-digestion of potato waste and cabbage waste: Performance and microbial characteristics analysis,” Bioresour. Technol., vol. 236, pp. 68–76, 2017, doi: 10.1016/j.biortech.2017.03.138. | spa |
dc.relation.references | [58] N. Zhai et al., “Effect of initial pH on anaerobic co-digestion of kitchen waste and cow manure,” Waste Manag., vol. 38, no. 1, p. 126, 2015, doi: 10.1016/j.wasman.2014.12.027. | spa |
dc.relation.references | [59] X. Shi, X. Guo, J. Zuo, Y. Wang, and M. Zhang, “A comparative study of thermophilic and mesophilic anaerobic co-digestion of food waste and wheat straw: Process stability and microbial community structure shifts,” Waste Manag., vol. 75, pp. 261–269, 2018, doi: 10.1016/j.wasman.2018.02.004. | spa |
dc.relation.references | [60] Q. Li, H. Li, G. Wang, and X. Wang, “Effects of loading rate and temperature on anaerobic co-digestion of food waste and waste activated sludge in a high frequency feeding system, looking in particular at stability and efficiency,” Bioresour. Technol., vol. 237, pp. 231–239, 2017, doi: 10.1016/j.biortech.2017.02.045. | spa |
dc.relation.references | [61] J. Morken, M. Gjetmundsen, and K. Fjørtoft, “Determination of kinetic constants from the co-digestion of dairy cow slurry and municipal food waste at increasing organic loading rates,” Renew. Energy, vol. 117, pp. 46–51, 2018, doi: 10.1016/j.renene.2017.09.081. | spa |
dc.relation.references | [62] R. Alvarez and G. Lidén, “Semi-continuous co-digestion of solid slaughterhouse waste, manure, and fruit and vegetable waste,” Renew. Energy, vol. 33, no. 4, pp. 726–734, 2008, doi: 10.1016/j.renene.2007.05.001. | spa |
dc.relation.references | [63] S. Paudel, Y. Kang, Y. S. Yoo, and G. T. Seo, “Effect of volumetric organic loading rate (OLR) on H2 and CH4 production by two-stage anaerobic co-digestion of food waste and brown water,” Waste Manag., vol. 61, pp. 484–493, 2017, doi: 10.1016/j.wasman.2016.12.013. | spa |
dc.relation.references | [64] P. Intanoo, P. Chaimongkol, and S. Chavadej, “Hydrogen and methane production from cassava wastewater using two-stage upflow anaerobic sludge blanket reactors (UASB) with an emphasis on maximum hydrogen production,” Int. J. Hydrogen Energy, vol. 41, no. 14, pp. 6107–6114, 2016, doi: 10.1016/j.ijhydene.2015.10.125. | spa |
dc.relation.references | [65] C. A. de Menezes and E. L. Silva, “Hydrogen production from sugarcane juice in expanded granular sludge bed reactors under mesophilic conditions: The role of homoacetogenesis and lactic acid production,” Ind. Crops Prod., vol. 138, no. April, p. 111586, 2019, doi: 10.1016/j.indcrop.2019.111586. | spa |
dc.relation.references | [66] S. Wainaina, M. K. Awasthi, I. S. Horváth, and M. J. Taherzadeh, “Anaerobic digestion of food waste to volatile fatty acids and hydrogen at high organic loading rates in immersed membrane bioreactors,” Renew. Energy, vol. 152, pp. 1140–1148, 2020, doi: 10.1016/j.renene.2020.01.138. | spa |
dc.relation.references | [67] C. Chen, D. Zheng, G. Jin, L. Wei, Y. Long, and Z. Hui, “Continuous dry fermentation of swine manure for biogas production,” Waste Manag., vol. 38, pp. 436–442, 2015, doi: 10.1016/j.wasman.2014.12.024. | spa |
dc.relation.references | [68] F. Abouelenien, Y. Namba, M. R. Kosseva, N. Nishio, and Y. Nakashimada, “Enhancement of methane production from co-digestion of chicken manure with agricultural wastes,” Bioresour. Technol., vol. 159, pp. 80–87, 2014, doi: 10.1016/j.biortech.2014.02.050. | spa |
dc.relation.references | [69] F. Abouelenien, W. Fujiwara, Y. Namba, M. Kosseva, N. Nishio, and Y. Nakashimada, “Improved methane fermentation of chicken manure via ammonia removal by biogas recycle,” Bioresour. Technol., vol. 101, no. 16, pp. 6368–6373, 2010, doi: 10.1016/j.biortech.2010.03.071. | spa |
dc.relation.references | [70] T. Zhang et al., “Biogas Production by Co-Digestion of Goat Manure with Three Crop Residues,” PLoS One, vol. 8, no. 6, pp. 1–7, 2013, doi: 10.1371/journal.pone.0066845. | spa |
dc.relation.references | 71] R. Alvarez and G. Lidén, “Low temperature anaerobic digestion of mixtures of llama, cow and sheep manure for improved methane production,” Biomass and Bioenergy, vol. 33, no. 3, pp. 527–533, 2009, doi: 10.1016/j.biombioe.2008.08.012. | spa |
dc.relation.references | [72] C. González-Fernández, C. León-Cofreces, and P. A. García-Encina, “Different pretreatments for increasing the anaerobic biodegradability in swine manure,” Bioresour. Technol., vol. 99, no. 18, pp. 8710–8714, 2008, doi: 10.1016/j.biortech.2008.04.020. | spa |
dc.relation.references | [73] B. A. Parra-Orobio, A. Donoso-Bravo, J. C. Ruiz-Sánchez, K. J. Valencia-Molina, and P. Torres-Lozada, “Effect of inoculum on the anaerobic digestion of food waste accounting for the concentration of trace elements,” Waste Manag., vol. 71, pp. 342–349, 2018, doi: 10.1016/j.wasman.2017.09.040. | spa |
dc.relation.references | [74] V. Córdoba, M. Fernández, and E. Santalla, “The effect of different inoculums on anaerobic digestion of swine wastewater,” J. Environ. Chem. Eng., vol. 4, no. 1, pp. 115–122, 2016, doi: 10.1016/j.jece.2015.11.003. | spa |
dc.relation.references | [75] T. Forster-Carneiro, M. Pérez, L. I. Romero, and D. Sales, “Dry-thermophilic anaerobic digestion of organic fraction of the municipal solid waste: Focusing on the inoculum sources,” Bioresour. Technol., vol. 98, no. 17, pp. 3195–3203, 2007, doi: 10.1016/j.biortech.2006.07.008. | spa |
dc.relation.references | [76] J. Tang et al., “Enhanced methane production coupled with livestock wastewater treatment using anaerobic membrane bioreactor: Performance and membrane filtration properties,” Bioresour. Technol., vol. 345, no. November 2021, p. 126470, 2022, doi: 10.1016/j.biortech.2021.126470. | spa |
dc.relation.references | [77] S. Begum, G. R. Anupoju, S. Sridhar, S. K. Bhargava, V. Jegatheesan, and N. Eshtiaghi, “Evaluation of single and two stage anaerobic digestion of landfill leachate: Effect of pH and initial organic loading rate on volatile fatty acid (VFA) and biogas production,” Bioresour. Technol., vol. 251, no. November 2017, pp. 364–373, 2018, doi: 10.1016/j.biortech.2017.12.069. | spa |
dc.relation.references | [78] A. Hierholtzer, “Investigating Factors Affecting the Anaerobic Digestion of Seaweed: Modelling and Experimental Approaches –,” pp. 1–251, 2013, [Online]. Available: https://rke.abertay.ac.uk/ws/portalfiles/portal/8473805. | spa |
dc.relation.references | [79] E. Jankowska, J. Chwiałkowska, M. Stodolny, and P. Oleskowicz-Popiel, “Effect of pH and retention time on volatile fatty acids production during mixed culture fermentation,” Bioresour. Technol., vol. 190, pp. 274–280, 2015, doi: 10.1016/j.biortech.2015.04.096. | spa |
dc.relation.references | [80] B. Bharathiraja, T. Sudharsana, J. Jayamuthunagai, R. Praveenkumar, S. Chozhavendhan, and J. Iyyappan, “Biogas production – A review on composition, fuel properties, feed stock and principles of anaerobic digestion,” Renew. Sustain. Energy Rev., vol. 90, no. April, pp. 570–582, 2018, doi: 10.1016/j.rser.2018.03.093. | spa |
dc.relation.references | [81] S. P. Lohani and J. Havukainen, “Anaerobic Digestion: Factors Affecting Anaerobic Digestion Process,” Energy, Environ. Sustain., pp. 343–359, 2018, doi: 10.1007/978-981-10-7413-4_18. | spa |
dc.relation.references | [82] K. S. Bhurat, T. Banerjee, J. K. Pandey, and S. S. Bhurat, “A lab fermenter level study on anaerobic hydrogen fermentation using potato peel waste: effect of pH, temperature, and substrate pre-treatment,” J. Mater. Cycles Waste Manag., vol. 23, no. 4, pp. 1617–1625, 2021, doi: 10.1007/s10163-021-01242-3. | spa |
dc.relation.references | [83] B. S. Zainal et al., “Effect of temperature and hydraulic retention time on hydrogen production from palm oil mill effluent (POME) in an integrated up-flow anaerobic sludge fixed-film (UASFF) bioreactor,” Environ. Technol. Innov., vol. 28, p. 102903, 2022, doi: 10.1016/j.eti.2022.102903. | spa |
dc.relation.references | [84] D. Cysneiros, C. J. Banks, S. Heaven, and K. A. G. Karatzas, “The effect of pH control and ‘hydraulic flush’ on hydrolysis and Volatile Fatty Acids (VFA) production and profile in anaerobic leach bed reactors digesting a high solids content substrate,” Bioresour. Technol., vol. 123, pp. 263–271, 2012, doi: 10.1016/j.biortech.2012.06.060. | spa |
dc.relation.references | [85] B. Stürmer, D. Leiers, V. Anspach, E. Brügging, D. Scharfy, and T. Wissel, “Agricultural biogas production: A regional comparison of technical parameters,” Renew. Energy, vol. 164, pp. 171–182, 2021, doi: 10.1016/j.renene.2020.09.074. | spa |
dc.relation.references | [86] X. S. Shi et al., “Effect of Hydraulic Retention Time on Anaerobic Digestion of Wheat Straw in the Semicontinuous Continuous Stirred-Tank Reactors,” Biomed Res. Int., vol. 2017, 2017, doi: 10.1155/2017/2457805. | spa |
dc.relation.references | [87] A. Kasinath et al., “Biomass in biogas production: Pretreatment and codigestion,” Renew. Sustain. Energy Rev., vol. 150, p. 111509, 2021, doi: 10.1016/j.rser.2021.111509. | spa |
dc.relation.references | [88] R. S. Thompson, “Hydrogen production by anaerobic fermentation using agricultural and food processing wastes utilizing a two-stage digestion system. Master’s Thesis, Utah State University, 1-89.",” All Grad. Theses Diss., p. 76, 2008. | spa |
dc.relation.references | [89] S. Verma, “Anaerobic digestion of biodegradable organics in municipal solid wastes,” no. May, 2002. | spa |
dc.relation.references | [90] J. L. Chen, R. Ortiz, T. W. J. Steele, and D. C. Stuckey, “Toxicants inhibiting anaerobic digestion: A review,” Biotechnol. Adv., vol. 32, no. 8, pp. 1523–1534, 2014, doi: 10.1016/j.biotechadv.2014.10.005. | spa |
dc.relation.references | [91] R. J. Teodorita Al Seadi, Domiik Rutz, Heinz Prassl, Michael Kottner, Tobias Finsterwalder, Silke Volk, Biogas Handbook. 2008. | spa |
dc.relation.references | [92] H. Nikpey Somehsaraei, M. Mansouri Majoumerd, P. Breuhaus, and M. Assadi, “Performance analysis of a biogas-fueled micro gas turbine using a validated thermodynamic model,” Appl. Therm. Eng., vol. 66, no. 1–2, pp. 181–190, 2014, doi: 10.1016/j.applthermaleng.2014.02.010. | spa |
dc.relation.references | [93] Y. Noorollahi, M. Kheirrouz, H. Farabi-Asl, H. Yousefi, and A. Hajinezhad, “Biogas production potential from livestock manure in Iran,” Renew. Sustain. Energy Rev., vol. 50, pp. 748–754, 2015, doi: 10.1016/j.rser.2015.04.190. | spa |
dc.relation.references | [94] O. W. Awe, Y. Zhao, A. Nzihou, D. P. Minh, and N. Lyczko, “A Review of Biogas Utilisation, Purification and Upgrading Technologies,” Waste and Biomass Valorization, vol. 8, no. 2, pp. 267–283, 2017, doi: 10.1007/s12649-016-9826-4. | spa |
dc.relation.references | [95] Q. Zhao, E. Leonhardt, C. MacConnell, C. Frear, and S. Chen, “Purification Technologies for Biogas Generated by Anaerobic Digestion,” Clim. Friendly Farming Improv. Carbon Footpr. Agric. Pacific Northwest. CSANR Res. Rep. 2010-00, p. 24, 2010. | spa |
dc.relation.references | [96] European Commission, “The Future of Biogas in Europe,” PROBIOGAS, vol. 6, no. 2, pp. 78–79, 2007, doi: 10.14512/tatup.6.2.78b. | spa |
dc.relation.references | [97] O. S. Mariana, S. T. J. Camilo, and C. A. C. Ariel, “A comprehensive approach for biorefineries design based on experimental data, conceptual and optimization methodologies: The orange peel waste case,” Bioresour. Technol., vol. 325, no. October 2020, p. 124682, 2021, doi: 10.1016/j.biortech.2021.124682. | spa |
dc.relation.references | [98] V. Vrbová and K. Ciahotný, “Upgrading Biogas to Biomethane Using Membrane Separation,” Energy and Fuels, vol. 31, no. 9, pp. 9393–9401, 2017, doi: 10.1021/acs.energyfuels.7b00120. | spa |
dc.relation.references | [99] N. Tippayawong and P. Thanompongchart, “Biogas quality upgrade by simultaneous removal of CO2 and H2S in a packed column reactor,” Energy, vol. 35, no. 12, pp. 4531–4535, 2010, doi: 10.1016/j.energy.2010.04.014. | spa |
dc.relation.references | [100] P. Anneli and W. Arthur, “‘Biogas upgrading technologies – developements and innovations’, IEA Bioenergy,” IEA Bioenergy, no. August, p. 21, 2014. | spa |
dc.relation.references | [101] R. Kothari, A. K. Pandey, S. Kumar, V. V. Tyagi, and S. K. Tyagi, “Different aspects of dry anaerobic digestion for bio-energy: An overview,” Renew. Sustain. Energy Rev., vol. 39, pp. 174–195, 2014, doi: 10.1016/j.rser.2014.07.011. | spa |
dc.relation.references | [102] I. Khan, “Waste to biogas through anaerobic digestion: Hydrogen production potential in the developing world - A case of Bangladesh,” Int. J. Hydrogen Energy, vol. 45, no. 32, pp. 15951–15962, 2020, doi: 10.1016/j.ijhydene.2020.04.038. | spa |
dc.relation.references | [103] K. E. Lamb, M. D. Dolan, and D. F. Kennedy, “Ammonia for hydrogen storage; A review of catalytic ammonia decomposition and hydrogen separation and purification,” Int. J. Hydrogen Energy, vol. 44, no. 7, pp. 3580–3593, 2019, doi: 10.1016/j.ijhydene.2018.12.024. | spa |
dc.relation.references | [104] F. Collado Martín and M. Felipe Rosa Iglesias, “Estado del arte de la producción de hidrogeno renovable offshore.” 2020. | spa |
dc.relation.references | [105] W. G. Houf, G. H. Evans, I. W. Ekoto, E. G. Merilo, and M. A. Groethe, “Hydrogen fuel-cell forklift vehicle releases in enclosed spaces,” Int. J. Hydrogen Energy, vol. 38, no. 19, pp. 8179–8189, 2013, doi: 10.1016/j.ijhydene.2012.05.115. | spa |
dc.relation.references | [106] Y. Manoharan, S. E. Hosseini, B. Butler, and H. Alzhahrani, “Hydrogen Fuel Cell Vehicles; Current Status and Future Prospect,” Appl. Sci., no. 9, 2019. | spa |
dc.relation.references | [107] P. Mishra, G. Balachandar, and D. Das, “Improvement in biohythane production using organic solid waste and distillery effluent,” Waste Manag., vol. 66, pp. 70–78, 2017, doi: 10.1016/j.wasman.2017.04.040. | spa |
dc.relation.references | [108] A. A. Abreu, F. Tavares, M. M. Alves, and M. A. Pereira, “Boosting dark fermentation with co-cultures of extreme thermophiles for biohythane production from garden waste,” Bioresour. Technol., vol. 219, pp. 132–138, 2016, doi: 10.1016/j.biortech.2016.07.096. | spa |
dc.relation.references | [109] M. Hans and S. Kumar, “Biohythane production in two-stage anaerobic digestion system,” Int. J. Hydrogen Energy, vol. 44, no. 32, pp. 17363–17380, 2019, doi: 10.1016/j.ijhydene.2018.10.022. | spa |
dc.relation.references | [110] A. A. Abreu, D. Karakashev, I. Angelidaki, D. Z. Sousa, and M. M. Alves, “Biohydrogen production from arabinose and glucose using extreme thermophilic anaerobic mixed cultures,” Biotechnol. Biofuels, vol. 5, pp. 1–12, 2012, doi: 10.1186/1754-6834-5-6. | spa |
dc.relation.references | [111] S. Krishnan et al., “Process constraints in sustainable bio-hythane production from wastewater: Technical note,” Bioresour. Technol. Reports, vol. 5, no. March 2018, pp. 359–363, 2019, doi: 10.1016/j.biteb.2018.05.003. | spa |
dc.relation.references | [112] S. A. Abdur Rawoof, P. S. Kumar, D. V. N. Vo, T. Devaraj, and S. Subramanian, “Biohythane as a high potential fuel from anaerobic digestion of organic waste: A review,” Renew. Sustain. Energy Rev., vol. 152, no. August, p. 111700, 2021, doi: 10.1016/j.rser.2021.111700. | spa |
dc.relation.references | [113] A. Głowacka, B. Szostak, and R. Klebaniuk, “Effect of biogas digestate and mineral fertilisation on the soil properties and yield and nutritional value of switchgrass forage,” Agronomy, vol. 10, no. 4, pp. 1–22, 2020, doi: 10.3390/agronomy10040490. | spa |
dc.relation.references | [114] M. Logan and C. Visvanathan, “Management strategies for anaerobic digestate of organic fraction of municipal solid waste : Current status and future prospects,” 2019, doi: 10.1177/0734242X18816793. | spa |
dc.relation.references | [115] F. Häfner, J. Hartung, and K. Möller, “Digestate Composition Affecting N Fertiliser Value and C Mineralisation,” Waste and Biomass Valorization, no. 0123456789, 2022, doi: 10.1007/s12649-022-01723-y. | spa |
dc.relation.references | [116] T. Gao and X. Li, “Bioresource Technology Using thermophilic anaerobic digestate effluent to replace freshwater for bioethanol production,” Bioresour. Technol., vol. 102, no. 2, pp. 2126–2129, 2011, doi: 10.1016/j.biortech.2010.08.088. | spa |
dc.relation.references | [117] J. J. Walsh, D. L. Jones, G. Edwards-Jones, and A. P. Williams, “Replacing inorganic fertilizer with anaerobic digestate may maintain agricultural productivity at less environmental cost,” J. Plant Nutr. Soil Sci., vol. 175, no. 6, pp. 840–845, 2012, doi: 10.1002/jpln.201200214. | spa |
dc.relation.references | [118] K. R. Baral et al., “Greenhouse gas emissions during storage of manure and digestates: Key role of methane for prediction and mitigation,” Agric. Syst., vol. 166, pp. 26–35, Oct. 2018, doi: 10.1016/J.AGSY.2018.07.009. | spa |
dc.relation.references | [119] I. Dragicevic, S. Eich-Greatorex, T. A. Sogn, S. J. Horn, and T. Krogstad, “Use of high metal-containing biogas digestates in cereal production – Mobility of chromium and aluminium,” J. Environ. Manage., vol. 217, pp. 12–22, 2018, doi: 10.1016/j.jenvman.2018.03.090. | spa |
dc.relation.references | [120] J. P. Sheets, L. Yang, X. Ge, Z. Wang, and Y. Li, “Beyond land application: Emerging technologies for the treatment and reuse of anaerobically digested agricultural and food waste,” Waste Manag., vol. 44, pp. 94–115, 2015, doi: 10.1016/j.wasman.2015.07.037. | spa |
dc.relation.references | [121] B. Amuzu-sefordzi and M. Gong, “nickel and alkali catalysts Hydrogen production by supercritical water gasification of food waste using nickel and alkali catalysts,” no. February 2016, 2014, doi: 10.2495/EQ140281. | spa |
dc.relation.references | [122] H. C. Woo and Y. H. Kim, “Eco-efficient recovery of bio-based volatile C2-6 fatty acids,” Biotechnol. Biofuels, vol. 12, no. 1, pp. 1–11, 2019, doi: 10.1186/s13068-019-1433-8. | spa |
dc.relation.references | [123] Y. Li, D. He, D. Niu, and Y. Zhao, “Acetic acid production from food wastes using yeast and acetic acid bacteria micro-aerobic fermentation,” Bioprocess Biosyst. Eng., vol. 38, no. 5, pp. 863–869, 2015, doi: 10.1007/s00449-014-1329-8. | spa |
dc.relation.references | [124] H. Liu, J. Wang, X. Liu, B. Fu, J. Chen, and H. Q. Yu, “Acidogenic fermentation of proteinaceous sewage sludge: Effect of pH,” Water Res., vol. 46, no. 3, pp. 799–807, 2012, doi: 10.1016/j.watres.2011.11.047. | spa |
dc.relation.references | [125] S. Agnihotri et al., “A Glimpse of the World of Volatile Fatty Acids Production and Application: A review,” Bioengineered, vol. 13, no. 1, pp. 1249–1275, 2022, doi: 10.1080/21655979.2021.1996044. | spa |
dc.relation.references | [126] X. Li, J. E. Swan, G. R. Nair, and A. G. Langdon, “Preparation of volatile fatty acid (VFA) calcium salts by anaerobic digestion of glucose,” Biotechnol. Appl. Biochem., vol. 62, no. 4, pp. 476–482, 2015, doi: 10.1002/bab.1301. | spa |
dc.relation.references | [127] Q. L. Wu et al., “Enhancement of volatile fatty acid production by co-fermentation of food waste and excess sludge without pH control: The mechanism and microbial community analyses,” Bioresour. Technol., vol. 216, pp. 653–660, 2016, doi: 10.1016/j.biortech.2016.06.006. | spa |
dc.relation.references | [128] N. A. Mostafa, “Production and recovery of volatile fatty acids from fermentation broth,” Energy Convers. Manag., vol. 40, no. 14, pp. 1543–1553, 1999, doi: 10.1016/S0196-8904(99)00043-6. | spa |
dc.relation.references | [129] J. L. Martín-Espejo, J. Gandara-Loe, J. A. Odriozola, T. R. Reina, and L. Pastor-Pérez, “Sustainable routes for acetic acid production: Traditional processes vs a low-carbon, biogas-based strategy,” Sci. Total Environ., vol. 840, no. May, p. 156663, 2022, doi: 10.1016/j.scitotenv.2022.156663. | spa |
dc.relation.references | [130] Zion market research, “Acetic Acid Market By Application (Vinyl Acetate Monomer, Purified Terephthalic Acid, Acetate Esters, Acetate Anhydride): Global Industry Perspective, Comprehensive Analysis And Forecast, 2020 – 2028.” https://www.zionmarketresearch.com/report/acetic-acid-market (accessed Aug. 03, 2022). | spa |
dc.relation.references | [131] S. W. Noriyuki Yoneda, Satoru Kusano, Makoto Yasui, Peter Pujado, “Recent advances in processes and catalysts for the production of acetic acid Noriyuki,” Elsevier Sci. B.V., vol. 40, no. 1, pp. 137–157, 2017, doi: 10.1111/plar.12209. | spa |
dc.relation.references | [132] S. Rebecchi, D. Pinelli, L. Bertin, F. Zama, F. Fava, and D. Frascari, “Volatile fatty acids recovery from the effluent of an acidogenic digestion process fed with grape pomace by adsorption on ion exchange resins,” Chem. Eng. J., vol. 306, pp. 629–639, 2016, doi: 10.1016/j.cej.2016.07.101. | spa |
dc.relation.references | [133] Research and markets, “Propionic Acid Market by Application and End-User Industry: Global Opportunity Analysis and Industry Forecast, 2019-2026.” https://www.researchandmarkets.com/reports/5031436/propionic-acid-market-by-application-and-end-user (accessed Aug. 04, 2022). | spa |
dc.relation.references | [134] I. Goldberg and J. S. Rokem, “Organic and Fatty Acid Production,” Appled Microbiol. Ind., pp. 421–442, 2009. | spa |
dc.relation.references | [135] J. Coral, S. G. Karp, L. Porto De Souza Vandenberghe, J. L. Parada, A. Pandey, and C. R. Soccol, “Batch fermentation model of propionic acid production by propionibacterium acidipropionici in different carbon sources,” Appl. Biochem. Biotechnol., vol. 151, no. 2–3, pp. 333–341, 2008, doi: 10.1007/s12010-008-8196-1. | spa |
dc.relation.references | [136] B. I. S. Mohammed Dwidar, Jae-Yeon Park, Robert J Michaell, “The future of buritic acid in industry,” Cient. word J., vol. 1, pp. 539–547, 2012. | spa |
dc.relation.references | [137] Acumen research and consulting, “Butyric Acid Derivatives Market Surpass US$ 170 Mn by 2026.” https://www.globenewswire.com/news-release/2019/05/10/1821543/0/en/Butyric-Acid-Derivatives-Market-Surpass-US-170-Mn-by-2026.html (accessed Aug. 04, 2022). | spa |
dc.relation.references | [138] J. Zigová and E. Šturdík, “Advances in biotechnological production of butyric acid,” J. Ind. Microbiol. Biotechnol., vol. 24, no. 3, pp. 153–160, 2000, doi: 10.1038/sj.jim.2900795. | spa |
dc.relation.references | [139] M. J. Taherzadeh and K. Karimi, Pretreatment of Lignocellulosic Wastes to Improve Ethanol and Biogas Production : A Review. 2008. | spa |
dc.relation.references | [140] J. R. Kim, Y. Hu, V. M. Zavala, and K. G. Karthikeyan, “Techno-economic analysis of pretreatments to dairy manure biomass for enhanced biogas production,” Bioresour. Technol. Reports, vol. 20, no. August, p. 101275, 2022, doi: 10.1016/j.biteb.2022.101275. | spa |
dc.relation.references | [141] B. Ruffino et al., “Preliminary Technical and Economic Analysis of Alkali and Low Temperature Thermo-alkali Pretreatments for the Anaerobic Digestion of Waste Activated Sludge,” Waste and Biomass Valorization, vol. 7, no. 4, pp. 667–675, 2016, doi: 10.1007/s12649-016-9537-x. | spa |
dc.relation.references | [142] L. Wu et al., “Phosphorus and short-chain fatty acids recovery from waste activated sludge by anaerobic fermentation: Effect of acid or alkali pretreatment,” Bioresour. Technol., vol. 240, pp. 192–196, 2017, doi: 10.1016/j.biortech.2017.03.016. | spa |
dc.relation.references | [143] X. Li et al., “An efficient and green pretreatment to stimulate short-chain fatty acids production from waste activated sludge anaerobic fermentation using free nitrous acid,” Chemosphere, vol. 144, pp. 160–167, 2016, doi: 10.1016/j.chemosphere.2015.08.076. | spa |
dc.relation.references | [144] L. Lin, R. hong Li, and X. yan Li, “Recovery of organic resources from sewage sludge of Al-enhanced primary sedimentation by alkali pretreatment and acidogenic fermentation,” J. Clean. Prod., vol. 172, pp. 3334–3341, 2018, doi: 10.1016/j.jclepro.2017.11.199. | spa |
dc.relation.references | [145] B. Dong, P. Gao, D. Zhang, Y. Chen, L. Dai, and X. Dai, “A new process to improve short-chain fatty acids and bio-methane generation from waste activated sludge,” J. Environ. Sci. (China), vol. 43, pp. 159–168, 2016, doi: 10.1016/j.jes.2015.10.004. | spa |
dc.relation.references | [146] L. Ozkan, T. H. Erguder, and G. N. Demirer, “Effects of pretreatment methods on solubilization of beet-pulp and bio-hydrogen production yield,” Int. J. Hydrogen Energy, vol. 36, no. 1, pp. 382–389, 2011, doi: 10.1016/j.ijhydene.2010.10.006. | spa |
dc.relation.references | [147] J. D. Blasig, M. T. Holtzapple, B. E. Dale, C. R. Engler, and F. M. Byers, “Volatile fatty acid fermentation of AFEX-treated bagasse and newspaper by rumen microorganisms,” Resour. Conserv. Recycl., vol. 7, no. 1–3, pp. 95–114, 1992, doi: 10.1016/0921-3449(92)90009-Q. | spa |
dc.relation.references | [148] A. E. Tugtas, “Recovery of volatile fatty acids via membrane contactor using flat membranes: Experimental and theoretical analysis,” Waste Manag., vol. 34, no. 7, pp. 1171–1178, 2014, doi: 10.1016/j.wasman.2014.01.020. | spa |
dc.relation.references | [149] A. J. J. Straathof, “Transformation of biomass into commodity chemicals using enzymes or cells,” Chem. Rev., vol. 114, no. 3, pp. 1871–1908, 2014, doi: 10.1021/cr400309c. | spa |
dc.relation.references | [150] F. Bonk, J. R. Bastidas-Oyanedel, and J. E. Schmidt, “Converting the organic fraction of solid waste from the city of Abu Dhabi to valuable products via dark fermentation - Economic and energy assessment,” Waste Manag., vol. 40, pp. 82–91, 2015, doi: 10.1016/j.wasman.2015.03.008. | spa |
dc.relation.references | [151] P. Fasahati and J. Liu, Techno-economic analysis of production and recovery of volatile fatty acids from brown algae using membrane distillation, vol. 34, no. 2009. Elsevier, 2014. | spa |
dc.relation.references | [152] A. Yousuf, F. Bonk, J. R. Bastidas-Oyanedel, and J. E. Schmidt, “Recovery of carboxylic acids produced during dark fermentation of food waste by adsorption on Amberlite IRA-67 and activated carbon,” Bioresour. Technol., vol. 217, pp. 137–140, 2016, doi: 10.1016/j.biortech.2016.02.035. | spa |
dc.relation.references | [153] T. Mumtaz, S. Abd-Aziz, N. A. Rahman, L. Y. Phang, Y. Shirai, and M. A. Hassan, “Pilot-scale recovery of low molecular weight organic acids from anaerobically treated palm oil mill effluent (POME) with energy integrated system,” African J. Biotechnol., vol. 7, no. 21, pp. 3900–3905, 2008. | spa |
dc.relation.references | [154] R. J. Jones, J. Massanet-Nicolau, M. J. J. Mulder, G. Premier, R. Dinsdale, and A. Guwy, “Increased biohydrogen yields, volatile fatty acid production and substrate utilisation rates via the electrodialysis of a continually fed sucrose fermenter,” Bioresour. Technol., vol. 229, pp. 46–52, 2017, doi: 10.1016/j.biortech.2017.01.015. | spa |
dc.relation.references | [155] E. Reyhanitash, B. Zaalberg, S. R. A. Kersten, and B. Schuur, “Extraction of volatile fatty acids from fermented wastewater,” Sep. Purif. Technol., vol. 161, pp. 61–68, 2016, doi: 10.1016/j.seppur.2016.01.037. | spa |
dc.relation.references | [156] Z. A. Raza, S. Abid, and I. M. Banat, “Polyhydroxyalkanoates: Characteristics, production, recent developments and applications,” Int. Biodeterior. Biodegrad., vol. 126, no. January 2017, pp. 45–56, 2018, doi: 10.1016/j.ibiod.2017.10.001. | spa |
dc.relation.references | [157] Yustinah, N. Hidayat, R. Alamsyah, A. M. Roslan, H. Hermansyah, and M. Gozan, “Production of polyhydroxybutyrate from oil palm empty fruit bunch (OPEFB) hydrolysates by Bacillus cereus suaeda B-001,” Biocatal. Agric. Biotechnol., vol. 18, 2019, doi: 10.1016/j.bcab.2019.01.057. | spa |
dc.relation.references | [163] N. Shen and Y. Zhou, “Enhanced biological phosphorus removal with different carbon sources,” Appl. Microbiol. Biotechnol., vol. 100, no. 11, pp. 4735–4745, 2016, doi: 10.1007/s00253-016-7518-4. | spa |
dc.relation.references | [164] C. Sawatdeenarunat et al., “Anaerobic biorefinery : Current status, challenges, and opportunities,” Bioresour. Technol., vol. 215, pp. 304–313, 2016, doi: 10.1016/j.biortech.2016.03.074. | spa |
dc.relation.references | [165] R. Millati, R. Wikandari, T. Ariyanto, N. Hasniah, and M. J. Taherzadeh, “Anaerobic digestion biorefinery for circular bioeconomy development,” Bioresour. Technol. Reports, vol. 21, no. December 2022, 2023, doi: 10.1016/j.biteb.2022.101315. | spa |
dc.relation.references | [166] M.-H. D. and O. O. Pierre Fabre, “Methodological brief for agri-bases value chain analysis. Frame and tools-Key features,” no. February, 2021. | spa |
dc.relation.references | [167] M. Ortiz-sanchez, J. C. Solarte-toro, C. Ariel, and C. Alzate, “Food waste valorization applying the biorefinery concept in the Colombian context : Pre-feasibility analysis of the organic kitchen food waste processing,” Biochem. Eng. J., vol. 194, no. October 2022, p. 108864, 2023, doi: 10.1016/j.bej.2023.108864. | spa |
dc.relation.references | [168] E. L. V. Vásquez, “Gestión de Residuos Sólidos en la zona urbana del Municipio de Sincelejo , Sucre.” 2023. | spa |
dc.relation.references | [169] and D. T. R. Ruiz, C. Scarlata, J. Sluiter, “Determination of Extractives in Biomass,” Tech. Rep. NREL/TP-510-42619, vol. 33, no. 10, pp. 838–852, 2016, doi: 10.1016/j.rmr.2016.02.006. | spa |
dc.relation.references | [170] B. Rivas, A. Torrado, P. Torre, A. Converti, and J. M. Domínguez, “Submerged citric acid fermentation on orange peel autohydrolysate,” J. Agric. Food Chem., vol. 56, no. 7, pp. 2380–2387, 2008, doi: 10.1021/jf073388r. | spa |
dc.relation.references | [171] H. Machrafi, Zero-Carbon Energy Kyoto 2011. 2012. | spa |
dc.relation.references | [172] A. Sluiter et al., “Determination of structural carbohydrates and lignin in Biomass - NREL/TP-510-42618,” Lab. Anal. Proced., no. April 2008, p. 17, 2012, [Online]. Available: http://www.nrel.gov/docs/gen/fy13/42618.pdf. | spa |
dc.relation.references | [173] British Standards Institution, “Standard Test Method for Volatile Matter in the Analysis of Particulate Wood Fuels,” vol. 3, no. 1, pp. 2013–2015, 2013, doi: 10.1520/E0872-82R13.2. | spa |
dc.relation.references | [174] ASTM, “E1756−08: Standard Test Method for Determination of Total Solids in Biomass,” Astm, vol. 08, no. Reapproved, pp. 1–3, 2015, doi: 10.1520/E1756-08R20.2. | spa |
dc.relation.references | [175] R. M. L.-R. Vernon L, Singleton, Rudolf Orthofer, “Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent,” vol. 213, no. 1974, pp. 281–286, 2016, doi: 10.1016/j.scienta.2016.11.004. | spa |
dc.relation.references | [176] G. Marinova and V. Batchvarov, “Evaluation of the methods for determination of the free radical scavenging activity by DPPH,” Bulg. J. Agric. Sci., vol. 17, no. 1, pp. 11–24, 2011. | spa |
dc.relation.references | [177] G. L. Miller, “Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar,” Anal. Chem., vol. 31, no. 3, pp. 426–428, 1959, doi: 10.1021/ac60147a030. | spa |
dc.relation.references | [178] F. R. Energien, “VDI 4630 Fermentation of organic materials. Characterisation of the substrate, sampling, collection of material data, fermentation test.” 2006. | spa |
dc.relation.references | [179] I. Angelidaki et al., “Defining the biomethane potential (BMP) of solid organic wastes and energy crops: A proposed protocol for batch assays,” Water Sci. Technol., vol. 59, no. 5, pp. 927–934, 2009, doi: 10.2166/wst.2009.040. | spa |
dc.relation.references | [180] R. I. Iglesias, “Sustainable bioproduction of volatile fatty acids through fermentation of organic wastes,” 2021. | spa |
dc.relation.references | [181] Z. Zuo, S. Wu, W. Zhang, and R. Dong, “Effects of organic loading rate and effluent recirculation on the performance of two-stage anaerobic digestion of vegetable waste,” Bioresour. Technol., vol. 146, pp. 556–561, 2013, doi: 10.1016/j.biortech.2013.07.128. | spa |
dc.relation.references | [182] J. Yin, K. Wang, Y. Yang, D. Shen, M. Wang, and H. Mo, “Improving production of volatile fatty acids from food waste fermentation by hydrothermal pretreatment,” Bioresour. Technol., vol. 171, pp. 323–329, 2014, doi: 10.1016/j.biortech.2014.08.062. | spa |
dc.relation.references | [183] J. C. Solarte-Toro, M. Ortiz-Sanchez, and C. A. Cardona Alzate, “Sustainability analysis of biorefineries based on country socio-economic and environmental context: A step-by-step way for the integral analysis of biomass upgrading processes,” Renew. Energy, vol. 206, no. February, pp. 1147–1157, 2023, doi: 10.1016/j.renene.2023.02.065. | spa |
dc.relation.references | [184] J. C. Solarte-Toro, Sustainability assessment of different biorefinery schemes to enhance the development of post-conflict areas in the Colombian context: The Montes de Maria case. 2022. | spa |
dc.relation.references | [185] J. C. Solarte-Toro, Y. Chacón-Pérez, and C. A. Cardona-Alzate, “Evaluation of biogas and syngas as energy vectors for heat and power generation using lignocellulosic biomass as raw material,” Electron. J. Biotechnol., vol. 33, pp. 52–62, 2018, doi: 10.1016/j.ejbt.2018.03.005. | spa |
dc.relation.references | [186] C. A. Cardona Alzate, J. C. Solarte Toro, and Á. G. Peña, “Fermentation, thermochemical and catalytic processes in the transformation of biomass through efficient biorefineries,” Catal. Today, vol. 302, pp. 61–72, 2018, doi: 10.1016/j.cattod.2017.09.034. | spa |
dc.relation.references | [187] G. J. Ruiz-Mercado, R. L. Smith, and M. A. Gonzalez, “Sustainability Indicators for Chemical Processes: II. Data Needs,” Ind. Eng. Chem. Res., vol. 51, no. 5, pp. 2329–2353, 2012, doi: 10.1021/ie200755k. | spa |
dc.relation.references | [188] “Índices de costos: habilidades sobresalientes.” https://toweringskills.com/financial-analysis/cost-indices/ (accessed Apr. 13, 2023). | spa |
dc.relation.references | [189] J. C. Solarte-Toro, Y. Chacón-Pérez, and C. A. Cardona-Alzate, “Evaluation of biogas and syngas as energy vectors for heat and power generation using lignocellulosic biomass as raw material,” Electron. J. Biotechnol., vol. 33, pp. 52–62, 2018, doi: 10.1016/j.ejbt.2018.03.005. | spa |
dc.relation.references | [190] C. A. García-Velásquez and C. A. Cardona, “Comparison of the biochemical and thermochemical routes for bioenergy production: A techno-economic (TEA), energetic and environmental assessment,” Energy, vol. 172, pp. 232–242, 2019, doi: 10.1016/j.energy.2019.01.073. | spa |
dc.relation.references | [191] Departamento Nacional de Planeación, “Encuenta a municipios sobre gestión de residuos solidos domiciliarios,” vol. 1, no. 1, 2019. | spa |
dc.relation.references | [192] “Colombia: ethanol fuel price 2022 | Statista.” https://www.statista.com/statistics/1113843/colombia-ethanol-fuel-sales-price/ (accessed Oct. 12, 2023). | spa |
dc.relation.references | [193] L. Jurgutis, A. Šlepetienė, J. Šlepetys, and J. Cesevičienė, “Towards a full circular economy in biogas plants: Sustainable management of digestate for growing biomass feedstocks and use as biofertilizer,” Energies, vol. 14, no. 14, 2021, doi: 10.3390/en14144272. | spa |
dc.relation.references | [194] “Outlook for biogas and biomethane: Prospects for organic growth – Analysis - IEA.” https://www.iea.org/reports/outlook-for-biogas-and-biomethane-prospects-for-organic-growth (accessed Oct. 12, 2023). | spa |
dc.relation.references | [195] “Polymer Additive Price, 2023 Polymer Additive Price Manufacturers & Suppliers.” https://www.made-in-china.com/products-search/hot-china-products/Polymer_Additive_Price.html (accessed Oct. 12, 2023). | spa |
dc.relation.references | [196] C. Alvarez, “Análisis de la producción de polihidroxibutirato usando lactosuero como materia prima,” p. 114, 2015. | spa |
dc.relation.references | [197] C. De Klein, R. Novoa, S. Ogle, K. Smith, P. Rochette, and T. Wirth, “Emisiones de N2O de los suelos gestionados y emisiones de CO2 derivadas de da aplicación de Cal y UREA,” in Directrices del IPCC de 2006 para los inventarios nacionales de gases de efecto invernadero, vol. 4, 2006, pp. 1–56. | spa |
dc.relation.references | [198] V. Prasuhn, “Erfassung der PO4-Austräge für die Ökobilanzierung - SALCA-Phosphor,” Agroescope Reckenholz, p. 20, 2006. | spa |
dc.relation.references | [199] E. Arroyo Morales et al., Apuestas del departamento de Sucre en sectores Agroindustria y Minería. 2019. | spa |
dc.relation.references | [200] M. Cadena, E. Villarraga, D. Luján, and J. Salcedo, “Evaluación de la agroindustria del almidón agrio de yuca (Manihot esculenta, Crantz) en Córdoba y Sucre,” Temas Agrar., vol. 11, no. 1, pp. 43–53, 2006, doi: 10.21897/rta.v11i1.639. | spa |
dc.relation.references | [201] G. Aguirre and K. Chamorro, “Caracterización de la cadena productiva de la Yuca en el departamento de Bolivar en el 2008, mediante un modelo de simulación de redes,” Univ. Cart., pp. 2–152, 2009. | spa |
dc.relation.references | [202] X. Liu et al., “Technical progress and perspective on the thermochemical conversion of kitchen waste and relevant applications: A comprehensive review,” Fuel, vol. 331, no. P1, p. 125803, 2023, doi: 10.1016/j.fuel.2022.125803. | spa |
dc.relation.references | [203] H. Durak, “Comprehensive Assessment of Thermochemical Processes for Sustainable Waste Management and Resource Recovery,” Processes, vol. 11, no. 7, 2023, doi: 10.3390/pr11072092. | spa |
dc.relation.references | [204] V. S. Sikarwar, M. Pohořelý, E. Meers, S. Skoblia, J. Moško, and M. Jeremiáš, “Potential of coupling anaerobic digestion with thermochemical technologies for waste valorization,” Fuel, vol. 294, no. March, 2021, doi: 10.1016/j.fuel.2021.120533. | spa |
dc.relation.references | [205] G. D. Zupančič, N. Uranjek-Ževart, and M. Roš, “Full-scale anaerobic co-digestion of organic waste and municipal sludge,” Biomass and Bioenergy, vol. 32, no. 2, pp. 162–167, 2008, doi: 10.1016/j.biombioe.2007.07.006. | spa |
dc.relation.references | [206] M. R. Islam, Q. Wang, Y. Guo, W. Wang, S. Sharmin, and C. Ebere Enyoh, “Physico-Chemical Characterization of Food Wastes for Potential Soil Application,” Processes, vol. 11, no. 1, pp. 1–19, 2023, doi: 10.3390/pr11010250. | spa |
dc.relation.references | [207] Abdul-Sattar Nizami; Iqbal Ismail; Mohammad Rehan; Omar Ouda, “Waste Biorefinery in Makkah: A Solution to Convert Waste produced during Hajj and Umrah Seasons into Wealth,” 15th Sci. Symp. Hajj, Umr. Madinah Visit, no. February 2016, 2015, doi: 10.13140/RG.2.1.4303.6560. | spa |
dc.relation.references | [208] M. Castrica, R. Rebucci, C. Giromini, M. Tretola, D. Cattaneo, and A. Baldi, “Total phenolic content and antioxidant capacity of agri-food waste and by-products,” Ital. J. Anim. Sci., vol. 18, no. 1, pp. 336–341, 2019, doi: 10.1080/1828051X.2018.1529544. | spa |
dc.relation.references | [209] N. Babbar, H. S. Oberoi, D. S. Uppal, and R. T. Patil, “Total phenolic content and antioxidant capacity of extracts obtained from six important fruit residues,” Food Res. Int., vol. 44, no. 1, pp. 391–396, 2011, doi: 10.1016/j.foodres.2010.10.001. | spa |
dc.relation.references | [210] T. Fan et al., “Hydrolysis of food waste by hot water extraction and subsequent Rhizopus fermentation to fumaric acid,” J. Environ. Manage., vol. 270, no. June, p. 110954, 2020, doi: 10.1016/j.jenvman.2020.110954. | spa |
dc.relation.references | [215] Y. Li, Y. Jin, J. Li, H. Li, and Z. Yu, “Effects of thermal pretreatment on the biomethane yield and hydrolysis rate of kitchen waste,” Appl. Energy, vol. 172, no. 1020, pp. 47–58, 2016, doi: 10.1016/j.apenergy.2016.03.080. | spa |
dc.relation.references | [216] J. Ma, T. H. Duong, M. Smits, W. Verstraete, and M. Carballa, “Enhanced biomethanation of kitchen waste by different pre-treatments,” Bioresour. Technol., vol. 102, no. 2, pp. 592–599, 2011, doi: 10.1016/j.biortech.2010.07.122. | spa |
dc.relation.references | [217] X. Liao, H. Li, Y. Zhang, C. Liu, and Q. Chen, “Accelerated high-solids anaerobic digestion of sewage sludge using low-temperature thermal pretreatment,” Int. Biodeterior. Biodegrad., vol. 106, pp. 141–149, 2016, doi: 10.1016/j.ibiod.2015.10.023. | spa |
dc.relation.references | [218] X. Zhuang et al., “Liquid hot water pretreatment of lignocellulosic biomass for bioethanol production accompanying with high valuable products,” Bioresour. Technol., vol. 199, pp. 68–75, 2016, doi: 10.1016/j.biortech.2015.08.051. | spa |
dc.relation.references | [219] N. Liu, Q. Wang, J. Jiang, and H. Zhang, “Effects of salt and oil concentrations on volatile fatty acid generation in food waste fermentation,” Renew. Energy, vol. 113, pp. 1523–1528, 2017, doi: 10.1016/j.renene.2017.07.042. | spa |
dc.relation.references | [220] L. Blasco, M. Kahala, E. Tampio, M. Vainio, S. Ervasti, and S. Rasi, “Effect of inoculum pretreatment on the composition of microbial communities in anaerobic digesters producing volatile fatty acids,” Microorganisms, vol. 8, no. 4, pp. 1–21, 2020, doi: 10.3390/microorganisms8040581. | spa |
dc.relation.references | [221] E. A. Tampio, L. Blasco, M. M. Vainio, M. M. Kahala, and S. E. Rasi, “Volatile fatty acids (VFAs) and methane from food waste and cow slurry: Comparison of biogas and VFA fermentation processes,” GCB Bioenergy, vol. 11, no. 1, pp. 72–84, 2019, doi: 10.1111/gcbb.12556. | spa |
dc.relation.references | doi: 10.1111/gcbb.12556. [222] E. Jankowska, J. Chwialkowska, M. Stodolny, and P. Oleskowicz-Popiel, “Volatile fatty acids production during mixed culture fermentation – The impact of substrate complexity and pH,” Chem. Eng. J., vol. 326, pp. 901–910, 2017, doi: 10.1016/j.cej.2017.06.021. | spa |
dc.relation.references | [223] S. Bengtsson, A. Werker, M. Christensson, and T. Welander, “Production of polyhydroxyalkanoates by activated sludge treating a paper mill wastewater,” Bioresour. Technol., vol. 99, no. 3, pp. 509–516, 2008, doi: 10.1016/j.biortech.2007.01.020. | spa |
dc.relation.references | [224] J. Yin, X. Yu, K. Wang, and D. Shen, “Acidogenic fermentation of the main substrates of food waste to produce volatile fatty acids,” Int. J. Hydrogen Energy, vol. 41, no. 46, pp. 21713–21720, 2016, doi: 10.1016/j.ijhydene.2016.07.094. | spa |
dc.relation.references | [225] M. A. Dareioti, A. I. Vavouraki, and M. Kornaros, “Effect of pH on the anaerobic acidogenesis of agroindustrial wastewaters for maximization of bio-hydrogen production: A lab-scale evaluation using batch tests,” Bioresour. Technol., vol. 162, pp. 218–227, 2014, doi: 10.1016/j.biortech.2014.03.149. | spa |
dc.relation.references | [230] Y. M. Wong, T. Y. Wu, and J. C. Juan, “A review of sustainable hydrogen production using seed sludge via dark fermentation,” Renew. Sustain. Energy Rev., vol. 34, pp. 471–482, 2014, doi: 10.1016/j.rser.2014.03.008. | spa |
dc.relation.references | [231] B. Sen and R. R. Suttar, “Mesophilic fermentative hydrogen production from sago starch-processing wastewater using enriched mixed cultures,” Int. J. Hydrogen Energy, vol. 37, no. 20, pp. 15588–15597, 2012, doi: 10.1016/j.ijhydene.2012.04.027. | spa |
dc.relation.references | [232] H. Caillet et al., “Anaerobic digestion of vinasse and cfd modelling approach,” 2018. | spa |
dc.relation.references | [233] A. Cruz-Salomón, R. Meza-Gordillo, A. Rosales-Quintero, C. Ventura-Canseco, S. Lagunas-Rivera, and J. Carrasco-Cervantes, “Biogas production from a native beverage vinasse using a modified UASB bioreactor,” Fuel, vol. 198, pp. 170–174, 2017, doi: 10.1016/j.fuel.2016.11.046. | spa |
dc.relation.references | [234] J. Iltchenco et al., “Microbial consortia composition on the production of methane from sugarcane vinasse,” Biomass Convers. Biorefinery, vol. 10, no. 2, pp. 299–309, 2020, doi: 10.1007/s13399-019-00426-0. | spa |
dc.relation.references | [235] E. L. Barrera, E. Rosa, H. Spanjers, O. Romero, S. De Meester, and J. Dewulf, “A comparative assessment of anaerobic digestion power plants as alternative to lagoons for vinasse treatment: Life cycle assessment and exergy analysis,” J. Clean. Prod., vol. 113, pp. 459–471, 2016, doi: 10.1016/j.jclepro.2015.11.095. | spa |
dc.relation.references | [236] M. Zhou, B. Yan, J. W. C. Wong, and Y. Zhang, “Enhanced volatile fatty acids production from anaerobic fermentation of food waste: A mini-review focusing on acidogenic metabolic pathways,” Bioresour. Technol., vol. 248, pp. 68–78, 2018, doi: 10.1016/j.biortech.2017.06.121. | spa |
dc.relation.references | [237] L. Alibardi, L. Favaro, M. C. Lavagnolo, M. Basaglia, and S. Casella, “Effects of heat treatment on microbial communities of granular sludge for biological hydrogen production,” Water Sci. Technol., vol. 66, no. 7, pp. 1483–1490, 2012, doi: 10.2166/wst.2012.336. | spa |
dc.relation.references | [238] F. Girotto, M. C. Lavagnolo, A. Pivato, and R. Cossu, “Acidogenic fermentation of the organic fraction of municipal solid waste and cheese whey for bio-plastic precursors recovery – Effects of process conditions during batch tests,” Waste Manag., vol. 70, pp. 71–80, 2017, doi: 10.1016/j.wasman.2017.09.015. | spa |
dc.relation.references | [239] R. Rafieenia, A. Pivato, and M. C. Lavagnolo, “Effect of inoculum pre-treatment on mesophilic hydrogen and methane production from food waste using two-stage anaerobic digestion,” Int. J. Hydrogen Energy, vol. 43, no. 27, pp. 12013–12022, 2018, doi: 10.1016/j.ijhydene.2018.04.170. | spa |
dc.relation.references | [240] M. Atasoy, O. Eyice, A. Schnürer, and Z. Cetecioglu, “Volatile fatty acids production via mixed culture fermentation: Revealing the link between pH, inoculum type and bacterial composition,” Bioresour. Technol., vol. 292, no. May, p. 121889, 2019, doi: 10.1016/j.biortech.2019.121889. | spa |
dc.relation.references | [241] F. E. Magrini et al., “Effect of different heat treatments of inoculum on the production of hydrogen and volatile fatty acids by dark fermentation of sugarcane vinasse,” Biomass Convers. Biorefinery, vol. 11, no. 6, pp. 2443–2456, 2021, doi: 10.1007/s13399-020-00687-0. | spa |
dc.relation.references | [242] K. Budzinski et al., “Introduction of a process mass intensity metric for biologics,” N. Biotechnol., vol. 49, no. April, pp. 37–42, 2019, doi: 10.1016/j.nbt.2018.07.005. | spa |
dc.relation.references | [243] M. Sofokleous, A. Christofi, D. Malamis, S. Mai, and E. M. Barampouti, “Bioethanol and biogas production: an alternative valorisation pathway for green waste,” Chemosphere, vol. 296, no. November 2021, p. 133970, 2022, doi: 10.1016/j.chemosphere.2022.133970. | spa |
dc.relation.references | [244] Y. Yan et al., “Environmental impacts and optimization simulation of aerobic anaerobic combination treatment technology for food waste with life cycle assessment,” Waste Manag., vol. 164, no. February, pp. 228–237, 2023, doi: 10.1016/j.wasman.2023.03.036. | spa |
dc.relation.references | [245] S. Evangelisti, P. Lettieri, D. Borello, and R. Clift, “Life cycle assessment of energy from waste via anaerobic digestion: A UK case study,” Waste Manag., vol. 34, no. 1, pp. 226–237, 2014, doi: 10.1016/j.wasman.2013.09.013. | spa |
dc.relation.references | [246] K. Birkhofer, H. G. Smith, and M. Rundlöf, “Environmental Impacts of Organic Farming,” eLS, pp. 1–7, 2016, doi: 10.1002/9780470015902.a0026341. | spa |
dc.relation.references | [247] E. Debuschewitz and J. Sanders, “Environmental impacts of organic agriculture and the controversial scientific debates,” Org. Agric., vol. 12, no. 1, pp. 1–15, 2022, doi: 10.1007/s13165-021-00381-z. | spa |
dc.relation.references | [248] L. Falconer, T. Telfer, K. L. Pham, and L. Ross, GIS Technologies for Sustainable Aquaculture, vol. 3. Elsevier, 2017. | spa |
dc.relation.references | [249] R. Kitamura et al., “Effects of Three Types of Organic Fertilizers on Greenhouse Gas Emissions in a Grassland on Andosol in Southern Hokkaido, Japan,” Front. Sustain. Food Syst., vol. 5, Apr. 2021, doi: 10.3389/fsufs.2021.649613. | spa |
dc.relation.references | [250] J. Havukainen, V. Uusitalo, K. Koistinen, M. Liikanen, and M. Horttanainen, “Carbon footprint evaluation of biofertilizers,” Int. J. Sustain. Dev. Plan., vol. 13, no. 8, pp. 1050–1060, 2018, doi: 10.2495/SDP-V13-N8-1050-1060. | spa |
dc.relation.references | [251] M. Yuttitham, “Comparison of carbon footprint of organic and conventional farming of chinese kale,” Environ. Nat. Resour. J., vol. 17, no. 1, pp. 78–92, 2019, doi: 10.32526/ennrj.17.1.2019.08. | spa |
dc.relation.references | [252] H. Lin, A. Borrion, W. A. da Fonseca-Zang, J. W. Zang, W. M. Leandro, and L. C. Campos, “Life cycle assessment of a biogas system for cassava processing in Brazil to close the loop in the water-waste-energy-food nexus,” J. Clean. Prod., vol. 299, p. 126861, 2021, doi: 10.1016/j.jclepro.2021.126861. | spa |
dc.relation.references | [253] T. U. Tonello, C. L. Andreani, A. G. Mari, J. R. Fernandes, and S. D. Gomes, “Biohydrogen production in AnSBBR in fed-batch from starch effluent: Influence of organic load,” Eng. Agric., vol. 38, no. 5, pp. 768–775, 2018, doi: 10.1590/1809-4430-Eng.Agric.v38n5p768-775/2018. | spa |
dc.relation.references | [254] J. Lansche, S. Awiszus, S. Latif, and J. Müller, “Potential of biogas production from processing residues to reduce environmental impacts from cassava starch and crisp production-a case study from Malaysia,” Appl. Sci., vol. 10, no. 8, 2020, doi: 10.3390/APP10082975. | spa |
dc.relation.references | [255] T. Tran, G. Da, M. A. Moreno-santander, G. A. Vélez-hernández, A. Giraldo-toro, and K. Piyachomkwan, “Resources , Conservation and Recycling A comparison of energy use , water use and carbon footprint of cassava starch production in Thailand , Vietnam and Colombia,” "Resources, Conserv. Recycl., vol. 100, pp. 31–40, 2015, doi: 10.1016/j.resconrec.2015.04.007. | spa |
dc.relation.references | [256] R. Kingsley, A. Chimphango, and A. Paul, “Economic and environmental analysis of waste-based bioenergy integration into industrial cassava starch processes in Africa,” Sustain. Prod. Consum., vol. 31, pp. 67–81, 2022, doi: 10.1016/j.spc.2022.02.002. | spa |
dc.relation.references | [257] X. Xu, B. Zhang, Y. Liu, Y. Xue, and B. Di, “Carbon footprints of rice production in five typical rice districts in China,” Acta Ecol. Sin., vol. 33, no. 4, pp. 227–232, 2013, doi: 10.1016/j.chnaes.2013.05.010. | spa |
dc.relation.references | [258] M. M. Parascanu, N. Sanchez, F. Sandoval-Salas, C. M. Carreto, G. Soreanu, and L. Sanchez-Silva, “Environmental and economic analysis of bioethanol production from sugarcane molasses and agave juice,” Environ. Sci. Pollut. Res., vol. 28, no. 45, pp. 64374–64393, 2021, doi: 10.1007/s11356-021-15471-4. | spa |
dc.relation.references | [259] J. R. Fern and A. C. Pe, “Sistema de gestión ambiental en una planta de acido sulfurico,” 2017. | spa |
dc.relation.references | [260] T. Yamane, “Yield of poly‐D(‐)‐3‐hydroxybutyrate from various carbon sources: A theoretical study,” Biotechnol. Bioeng., vol. 41, no. 1, pp. 165–170, 1993, doi: 10.1002/bit.260410122. | spa |
dc.relation.references | [158] W. S. Lee, A. S. M. Chua, H. K. Yeoh, and G. C. Ngoh, “A review of the production and applications of waste-derived volatile fatty acids,” Chem. Eng. J., vol. 235, pp. 83–99, 2014, doi: 10.1016/j.cej.2013.09.002 | spa |
dc.relation.references | [159] I. K. Kookos, “Technoeconomic and environmental assessment of a process for biodiesel production from spent coffee grounds (SCGs),” Resour. Conserv. Recycl., vol. 134, no. February, pp. 156–164, 2018, doi: 10.1016/j.resconrec.2018.02.002. | spa |
dc.relation.references | [160] Q. Fei, H. N. Chang, L. Shang, J. dal rae Choi, N. J. Kim, and J. W. Kang, “The effect of volatile fatty acids as a sole carbon source on lipid accumulation by Cryptococcus albidus for biodiesel production,” Bioresour. Technol., vol. 102, no. 3, pp. 2695–2701, 2011, doi: 10.1016/j.biortech.2010.10.141. | spa |
dc.relation.references | [161] G. W. Park et al., “Production of microbial lipid by Cryptococcus curvatus on rice straw hydrolysates,” Process Biochem., vol. 56, pp. 147–153, 2017, doi: 10.1016/j.procbio.2017.02.020. | spa |
dc.relation.references | [162] H. Liu, P. Han, H. Liu, G. Zhou, B. Fu, and Z. Zheng, “Full-scale production of VFAs from sewage sludge by anaerobic alkaline fermentation to improve biological nutrients removal in domestic wastewater,” Bioresour. Technol., vol. 260, no. March, pp. 105–114, 2018, doi: 10.1016/j.biortech.2018.03.105. | spa |
dc.relation.references | [212] C. Zhang, G. Xiao, L. Peng, H. Su, and T. Tan, “The anaerobic co-digestion of food waste and cattle manure,” Bioresour. Technol., vol. 129, pp. 170–176, 2013, doi: 10.1016/j.biortech.2012.10.138. | spa |
dc.relation.references | [213] G. Antonopoulou, “Designing efficient processes for sustainable bioethanol and bio-hydrogen production from grass lawn waste,” Molecules, vol. 25, no. 12, 2020, doi: 10.3390/molecules25122889. | spa |
dc.relation.references | [214] M. Wang et al., “Low-Temperature Pretreatment of Biomass for Enhancing Biogas Production: A Review,” Fermentation, vol. 8, no. 10, pp. 1–22, 2022, doi: 10.3390/fermentation8100562. | spa |
dc.relation.references | [226] X. Lu et al., “Operation performance and granule characterization of upflow anaerobic sludge blanket (UASB) reactor treating wastewater with starch as the sole carbon source,” Bioresour. Technol., vol. 180, pp. 264–273, 2015, doi: 10.1016/j.biortech.2015.01.010. | spa |
dc.relation.references | [227] P. Elaiyaraju and N. Partha, “Biogas production from sago (Tapioca) wastewater using anaerobic batch reactor,” Energy Environ., vol. 23, no. 4, pp. 631–645, 2012, doi: 10.1260/0958-305X.23.4.631. | spa |
dc.relation.references | [228] B. Wang et al., “Effects of substrate concentration on methane potential and degradation kinetics in batch anaerobic digestion,” Bioresour. Technol., vol. 194, pp. 240–246, 2015, doi: 10.1016/j.biortech.2015.07.034. | spa |
dc.relation.references | [229] B. Pendyala, S. R. Chaganti, J. A. Lalman, S. R. Shanmugam, D. D. Heath, and P. C. K. Lau, “Pretreating mixed anaerobic communities from different sources: Correlating the hydrogen yield with hydrogenase activity and microbial diversity,” Int. J. Hydrogen Energy, vol. 37, no. 17, pp. 12175–12186, 2012, doi: 10.1016/j.ijhydene.2012.05.105. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.ddc | 660 - Ingeniería química::668 - Tecnología de otros productos orgánicos | spa |
dc.subject.lemb | Fuente de energía renovable | |
dc.subject.proposal | Digestión anaerobia convencional | spa |
dc.subject.proposal | digestión anaerobia modificada | spa |
dc.subject.proposal | biorrefinería | spa |
dc.subject.proposal | biogás | spa |
dc.subject.proposal | ácidos grasos volátiles | spa |
dc.subject.proposal | cadena de valor | spa |
dc.subject.proposal | sostenibilidad | spa |
dc.subject.proposal | Conventional anaerobic digestion | eng |
dc.subject.proposal | modified anaerobic digestion | eng |
dc.subject.proposal | biorefinery | eng |
dc.subject.proposal | biogas | eng |
dc.subject.proposal | mixed volatile fatty acids | eng |
dc.subject.proposal | value chain | eng |
dc.subject.proposal | sustainability | eng |
dc.title | Analysis of the sustainable VFAs production using anaerobic digestion through the biorefinery concept | eng |
dc.title.translated | Análisis de la producción sostenible de AGV mediante digestión anaerobia a través del concepto de biorrefinería | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Bibliotecarios | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1060656627.2024.pdf
- Tamaño:
- 2.64 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Ingeniería Química
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: