Estudio computacional del efecto de cargas mecánicas en el comportamiento biomecánico de un injerto alveolar

dc.contributor.advisorGarzón Alvarado, Diego Alexanderspa
dc.contributor.advisorGuerrero Vargas, José Alejandrospa
dc.contributor.authorVélez Muriel, Sandra Melisa spa
dc.contributor.researchgroupGNUM - Grupo de Modelado y Métodos Numericos en Ingenieríaspa
dc.date.accessioned2020-10-21T14:39:21Zspa
dc.date.available2020-10-21T14:39:21Zspa
dc.date.issued2020spa
dc.description.abstractEl labio leporino y el paladar hendido es un defecto congénito que afecta la cavidad oral. Dependiendo de su severidad, la cirugía de injerto alveolar y las terapias ortopédicas maxilares deben realizarse como parte del tratamiento. Es ampliamente aceptado que las terapias deben realizarse antes de la cirugía del injerto. Sin embargo, algunos autores han sugerido que un estímulo mecánico como el de las terapias maxilares podría mejorar la tasa de éxito del injerto. El objetivo de este estudio es determinar computacionalmente el efecto de las cargas de las terapias maxilares en la respuesta biomecánica de un injerto alveolar con diferentes grados de osificación. También se explora cómo el ancho transversal de la hendidura afecta el comportamiento del injerto y se comparan los resultados con un cráneo sin hendidura. Los resultados sugieren que los esfuerzos aumentan dentro del injerto a medida que este se osifica y son mayores si se aplica la terapia de expansión maxilar. Esto tiene consecuencias en los procesos de remodelación ósea necesarios para la osteointegración del injerto. Las terapias ortopédicas maxilares después de la cirugía de injerto podrían considerarse como parte del tratamiento de pacientes, ya que parecen actuar como un estímulo adicional positivo que puede beneficiar al injerto.spa
dc.description.abstractCleft lip and palate is a congenital defect that affects the oral cavity. Depending on its severity, alveolar graft surgery and maxillary orthopedic therapies must be carried out as part of the treatment. It is widely accepted that the therapies should be performed before the graft placement. Nevertheless, some authors have suggested that mechanical stimulus such as those from the maxillary therapies could improve the success rate of the graft. The aim of this study is to computationally determine the effect of maxillary therapies loads on the biomechanical response of an alveolar graft with different degrees of ossification. We also explore how the transverse width of the cleft affects the graft behavior and compare results with a non-cleft skull. Results suggest that stresses increase within the graft as it ossifies and are greater if maxillary expansion therapy is applied. This has consequences in the bone remodeling processes necessary for the graft osteointegration. Maxillary orthopedic therapies after graft surgery could be considered as part of the treatment since they seem to act as a positive extra stimulus that can benefit the graft.spa
dc.description.additionalLínea de Investigación: Biomecánicaspa
dc.description.degreelevelMaestríaspa
dc.format.extent106spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78552
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Mecánicaspa
dc.relation.referencesMaldonado Maldonado, L. A. (2016). Aproximación a la determinación social del labio y paladar hendido no sindrómico, en los pacientes que asisten a la Fundación Niños que Ríen (Moca-República Dominicana). Departamento de Salud Pública.spa
dc.relation.referencesMossey, P. A., Little, J., Munger, R. G., Dixon, M. J., & Shaw, W. C. (2009). Cleft lip and palate. The Lancet, 374(9703), 1773-1785.spa
dc.relation.referencesVarela, I. Y. C. (2017). Desarrollo del cráneo y su importancia para la antropología forense. Morfolia, 9(2), 16-28spa
dc.relation.referencesCastillo Penagos, F. M. Construcción de cartilla educativa para la promoción de la salud oral y prevención de la aparición de nuevos casos de labio y/o paladar hendido no sindrómico, en la población de Tarapacá, departamento del amazonas, Colombia (Doctoral dissertation, Unifversidad Nacional de Colombia).spa
dc.relation.referencesMeruane, M., Smok, C., & Rojas, M. (2012). Desarrollo de cara y cuello en vertebrados. International Journal of Morphology, 30(4), 1373-1388.spa
dc.relation.referencesOtero, L., Gutierrez, S., Chaves, M., Vargas, C., & Bérmudez, L. (2007). Association of MSX1 with nonsyndromic cleft lip and palate in a Colombian population. The Cleft palate-craniofacial journal, 44(6), 653-656.spa
dc.relation.referencesMinisterio de Salud. (2014). IV Estudio Nacional de Salud Bucal ENSAB IV. Situación en Salud Bucal. Para Saber Cómo Estamos y Saber Qué Hacemos.spa
dc.relation.referencesKawalec, A., Nelke, K., Pawlas, K., & Gerber, H. (2015). Risk factors involved in orofacial cleft predisposition–review. Open Medicine, 10(1).spa
dc.relation.referencesVeros, C., & Iakovidou-Kritsi, Z. (2016). The genetic basis of cleft lip and cleft palate. Aristotle University Medical Journal, 43(2), 25-36.spa
dc.relation.referencesHopper, R. A., Cutting, C., & Grayson, B. (2007). Cleft lip and palate. Grabb and Smith’s Plastic Surgery. 6th Edition. Philladelphia: Lippincott Williams and Wilkins, 201.spa
dc.relation.referencesWalker, N. F. (1950). Discordant monozygotic twins with retinoblastoma and cleft palate. American journal of human genetics, 2(4), 375.spa
dc.relation.referencesMarazita, M. L., & Mooney, M. P. (2004). Current concepts in the embryology and genetics of cleft lip and cleft palate. Clinics in plastic surgery, 31(2), 125-140.spa
dc.relation.referencesS Sharif, F., Rehman, I. U., Muhammad, N., & MacNeil, S. (2016). Dental materials for cleft palate repair. Materials Science and Engineering: C, 61, 1018-1028.spa
dc.relation.referencesMerritt, L. (2005). Part 2. Physical assessment of the infant with cleft lip and/or palate. Advances in Neonatal Care, 5(3), 125-134.spa
dc.relation.referencesDahl, E. (1979). Transverse maxillary growth in combined cleft lip and palate; a longitudinal roentgencephalometric study by the implant method. The Cleft palate journal, 16(1), 34-41.spa
dc.relation.referencesIsaacson, R. J., & Murphy, T. D. (1964). Some Effects Of Rapid Maxillary Expansion In Cleft Lip And Palate Patients. The Angle Orthodontist, 34(3), 143-154.spa
dc.relation.referencesClemente, V. G., TORRES, J. L. G., Gago, A. M., SÁNCHEZ, I. N., & FERNÁNDEZ, L. A. (2017). Protocolo ortopédico-ortodóncico de actuación en pacientes con fisura labio-alveolar y palatina. Odontol Pediátr (Madrid), 25(3), 173-190.spa
dc.relation.referencesYang, C. J., Pan, X. G., Qian, Y. F., & Wang, G. M. (2012). Impact of rapid maxillary expansion in unilateral cleft lip and palate patients after secondary alveolar bone grafting: review and case report. Oral surgery, oral medicine, oral pathology and oral radiology, 114(1), e25-e30.spa
dc.relation.referencesChen, Z., Pan, X., Zhao, N., Chen, Z., & Shen, G. (2015). Asymmetric maxillary protraction for unilateral cleft lip and palate patients using finite element analysis. Journal of Craniofacial Surgery, 26(2), 388-392.spa
dc.relation.referencesBerkowitz, S. (Ed.). (2006). Cleft lip and palate: diagnosis and management. Springer Science & Business Media.spa
dc.relation.referencesSantiago, P. E., Schuster, L. A., & Levy-Bercowski, D. (2014). Management of the alveolar cleft. Clinics in plastic surgery, 41(2), 219-232.spa
dc.relation.referencesMendoza, K., González-Carrera, M. C., & Díaz, Í. I. M. (2014). Efectividad de la máscara facial y un aparato intraoral en pacientes con labio y paladar hendido: una revisión sistemática. Universitas Odontológica, 33(70), 107-119.spa
dc.relation.referencesNgan, P. (2009). Growth: Is it a friend or foe to orthodontic treatment?. orthodontic waves, 68(1), 1-5.spa
dc.relation.referencesYang, I. H., Chang, Y. I., Kim, T. W., Ahn, S. J., Lim, W. H., Lee, N. K., & Baek, S. H. (2012). Effects of cleft type, facemask anchorage method, and alveolar bone graft on maxillary protraction: a three-dimensional finite element analysis. The Cleft palate-craniofacial journal, 49(2), 221-229.spa
dc.relation.referencesLee, N. K., & Baek, S. H. (2012). Stress and displacement between maxillary protraction with miniplates placed at the infrazygomatic crest and the lateral nasal wall: a 3-dimensional finite element analysis. American journal of orthodontics and dentofacial orthopedics, 141(3), 345-351.spa
dc.relation.referencesYatabe, M. G. (2017). Bone-anchored maxillary protraction therapy in patients with unilateral complete cleft lip and palate: 3-dimensional assessment of maxillary effects. American Journal of Orthodontics and Dentofacial Orthopedics, 327-335.spa
dc.relation.referencesCarvalho Trojan, L., Andrés González‐Torres, L., Claudia Moreira Melo, A., & Barbosa de Las Casas, E. (2017). Stresses and strains analysis using different palatal expander appliances in upper jaw and midpalatal suture. Artificial organs, 41(6), E41-E51.spa
dc.relation.referencesGuerrero-Vargas, J. A., Silva, T. A., Macari, S., de Las Casas, E. B., & Garzón-Alvarado, D. A. (2019). Influence of interdigitation and expander type in the mechanical response of the midpalatal suture during maxillary expansion. Computer methods and programs in biomedicine, 176, 195-209.spa
dc.relation.referencesLocks, A., Weissheimer, A., Ritter, D. E., Ribeiro, G. L. U., Menezes, L. M. D., Derech, C. D. A., & Rocha, R. (2008). Mordida cruzada posterior: uma classificação mais didática. Revista Dental Press de Ortodontia e Ortopedia Facial, 13(2), 146-158.spa
dc.relation.referencesde Oliveira Cavassan, A., de Albuquerque, M. D. A., & Capelozza Filho, L. (2004). Rapid maxillary expansion after secondary alveolar bone graft in a patient with bilateral cleft lip and palate. The Cleft palate-craniofacial journal, 41(3), 332-339.spa
dc.relation.referencesda Silva Filho, O. G., Boiani, E., de Oliveira Cavassan, A., & Santamaria Jr, M. (2009). Rapid maxillary expansion after secondary alveolar bone grafting in patients with alveolar cleft. The Cleft palate-craniofacial journal, 46(3), 331-338.spa
dc.relation.referencesAnver, T. D., Mirzai, L., Li, P., Powell, K. K., & Waite, P. D. (2019). Long-Term Postoperative Cone-Beam Computed Tomography Analysis of Secondary Bone Grafting in 79 Patients With Unrepaired Alveolar Clefts. Journal of Oral and Maxillofacial Surgery.spa
dc.relation.referencesHorswell, B. B., & Henderson, J. M. (2003). Secondary osteoplasty of the alveolar cleft defect1. Journal of oral and maxillofacial surgery, 61(9), 1082-1090.spa
dc.relation.referencesSimonsen, E. K. (1986). Secondary bone-grafting for repair of residual cleft defects in the alveolar process and hard palate: a new surgical technique. International journal of oral and maxillofacial surgery, 15(1), 1-7.spa
dc.relation.referencesWeissler, E. H., Paine, K. M., Ahmed, M. K., & Taub, P. J. (2016). Alveolar bone grafting and cleft lip and palate: A review. Plastic and reconstructive surgery, 138(6), 1287-1295.spa
dc.relation.referencesRychlik, D., Wójcicki, P., & Koźlik, M. (2012). Osteoplasty of the alveolar cleft defect. Adv Clin Exp Med, 21(2), 255-62.spa
dc.relation.referencesKhalil, W., de Musis, C. R., Volpato, L. E. R., Veiga, K. A., Vieira, E. M. M., & Aranha, A. M. (2014). Clinical and Radiographic Assessment of Secondary Bone Graft Outcomes in Cleft Lip and Palate Patients. International scholarly research notices, 2014.spa
dc.relation.referencesJia, Y. L., Fu, M. K., & Ma, L. (2006). Long-term outcome of secondary alveolar bone grafting in patients with various types of cleft. British Journal of Oral and Maxillofacial Surgery, 44(4), 308-312.spa
dc.relation.referencesKumar, R., Heggie, A., Shand, J., Dominguez-Gonzalez, S., Kilpatrick, N., & Shah, J. (2017). Secondary bone grafting of alveolar clefts: a review of outcome at two centres in Australia and the UK. British Journal of Oral and Maxillofacial Surgery, 55(5), 496-499.spa
dc.relation.referencesWu, C., Pan, W., Feng, C., Su, Z., Duan, Z., Zheng, Q., ... & Li, C. (2018). Grafting materials for alveolar cleft reconstruction: a systematic review and best-evidence synthesis. International journal of oral and maxillofacial surgery, 47(3), 345-356.spa
dc.relation.referencesBeaman, F. D., Bancroft, L. W., Peterson, J. J., & Kransdorf, M. J. (2006). Bone graft materials and synthetic substitutes. Radiologic Clinics, 44(3), 451-461.spa
dc.relation.referencesTitsinides, S., Agrogiannis, G., & Karatzas, T. (2019). Bone grafting materials in dentoalveolar reconstruction: A comprehensive review. Japanese Dental Science Review, 55(1), 26-32.spa
dc.relation.referencesZhang, Z. (2011). Bone regeneration by stem cell and tissue engineering in oral and maxillofacial region. Frontiers of medicine, 5(4), 401-413.spa
dc.relation.referencesNakajima, K., Kunimatsu, R., Ando, K., Ando, T., Hayashi, Y., Kihara, T., ... & Nikawa, H. (2018). Comparison of the bone regeneration ability between stem cells from human exfoliated deciduous teeth, human dental pulp stem cells and human bone marrow mesenchymal stem cells. Biochemical and biophysical research communications, 497(3), 876-882.spa
dc.relation.referencesRachmiel, A., Emodi, O., Gutmacher, Z., Blumenfeld, I., & Aizenbud, D. (2013). Oral and dental restoration of wide alveolar cleft using distraction osteogenesis and temporary anchorage devices. Journal of Cranio-Maxillofacial Surgery, 41(8), 728-734.spa
dc.relation.referencesBorba, A. M., Borges, A. H., da Silva, C. S. V., Brozoski, M. A., da Graça Naclério-Homem, M., & Miloro, M. (2014). Predictors of complication for alveolar cleft bone graft. British Journal of Oral and Maxillofacial Surgery, 52(2), 174-178.spa
dc.relation.referencesDissaux, C., Bodin, F., Grollemund, B., Bridonneau, T., Kauffmann, I., Mattern, J. F., & Bruant-Rodier, C. (2016). Evaluation of success of alveolar cleft bone graft performed at 5 years versus 10 years of age. Journal of Cranio-Maxillofacial Surgery, 44(1), 21-26.spa
dc.relation.referencesRychlik, D., & Wójcicki, P. (2012). Bone graft healing in alveolar osteoplasty in patients with unilateral lip, alveolar process, and palate clefts. Journal of Craniofacial Surgery, 23(1), 118-123.spa
dc.relation.referencesPerez-Gonzalez, A., Shinji-Pérez, K., Theurel-Cuevas, A., Jimenez-Murat, Y., & Carrillo-Córdova, J. R. (2017). Autologous alveolar bone graft integration based on the Bergland scale in patients with primary lip and palate cleft: Experience in a third level hospital in Mexico City. Journal of Cleft Lip Palate and Craniofacial Anomalies, 4(2), 154.spa
dc.relation.referencesAnver, T. D., Mirzai, L., Li, P., Powell, K. K., & Waite, P. D. (2019). Long-Term Postoperative Cone-Beam Computed Tomography Analysis of Secondary Bone Grafting in 79 Patients With Unrepaired Alveolar Clefts. Journal of Oral and Maxillofacial Surgery.spa
dc.relation.referencesZhang, Y. J. (2018). Dentoskeletal effects of facemask therapy in skeletal Class III cleft patients with or without bone graft. American Journal of Orthodontics and Dentofacial Osthopedics, 542-549.spa
dc.relation.referencesGarib, D. Y. (2018). Bone-anchored maxillary protraction in a patient with complete cleft lip and palate: A case report. American Journal of Orthodontics and Dentofacial Orthopedics, 290-297.spa
dc.relation.referencesUzel, A., Benlidayı, M. E., Kürkçü, M., & Kesiktaş, E. (2019). The effects of maxillary expansion on late alveolar bone grafting in patients with unilateral cleft lip and palate. Journal of Oral and Maxillofacial Surgery, 77(3), 607-614.spa
dc.relation.referencesLogan, D. L. (2011). A first course in the finite element method. Cengage Learning.spa
dc.relation.referencesTrivedi, S. (2014). Finite element analysis: A boon to dentistry. Journal of oral biology and craniofacial research, 4(3), 200-203.spa
dc.relation.referencesBurkhart, T. A., Andrews, D. M., & Dunning, C. E. (2013). Finite element modeling mesh quality, energy balance and validation methods: A review with recommendations associated with the modeling of bone tissue. Journal of biomechanics, 46(9), 1477-1488.spa
dc.relation.referencesLee, H., Nguyen, A., Hong, C., Hoang, P., Pham, J., & Ting, K. (2016). Biomechanical effects of maxillary expansion on a patient with cleft palate: A finite element analysis. American Journal of Orthodontics and Dentofacial Orthopedics, 150(2), 313-323.spa
dc.relation.referencesChen, Z., Pan, X., Shao, Q., & Chen, Z. (2013). Biomechanical effects on maxillary protraction of the craniofacial skeleton with cleft lip and palate after alveolar bone graft. Journal of Craniofacial Surgery, 24(2), 446-453.spa
dc.relation.referencesWang, D., Cheng, L., Wang, C., Qian, Y., & Pan, X. (2009). Biomechanical analysis of rapid maxillary expansion in the UCLP patient. Medical engineering & physics, 31(3), 409-417.spa
dc.relation.referencesPan, X., Qian, Y., Yu, J., Wang, D., Tang, Y., & Shen, G. (2007). Biomechanical effects of rapid palatal expansion on the craniofacial skeleton with cleft palate: a three-dimensional finite element analysis. The Cleft palate-craniofacial journal, 44(2), 149-154.spa
dc.relation.referencesKurniawan, D., Nor, F. M., Lee, H. Y., & Lim, J. Y. (2012). Finite element analysis of bone–implant biomechanics: refinement through featuring various osseointegration conditions. International journal of oral and maxillofacial surgery, 41(9), 1090-1096.spa
dc.relation.referencesBosiakov, S., Vinokurova, A., & Dosta, A. (2017). Craniofacial stress patterns and displacements after activation of hyrax device: finite element modelling. Facta Universitatis, Series: Mechanical Engineering, 15(3), 517-533.spa
dc.relation.referencesEom, J., Bayome, M., Park, J. H., Lim, H. J., Kook, Y. A., & Han, S. H. (2018). Displacement and stress distribution of the maxillofacial complex during maxillary protraction using palatal plates: A three-dimensional finite element analysis. The korean journal of orthodontics, 48(5), 304-315.spa
dc.relation.referencesTrojan-Serpe, L. C., Dorneles, L. S., Claudia, A., Melo, M., Barbosa, E., & Las Casas, D. (2013). STRAIN LEVEL AT MIDPALATAL SUTURE-CORRELATION WITH MECHANOBIOLOGICAL CONCEPTS. In 22nd Int. Congr. Mech. Eng. (pp. 8523-8531).spa
dc.relation.referencesHartono, N., Soegiharto, B. M., & Widayati, R. (2018). The difference of stress distribution of maxillary expansion using rapid maxillary expander (RME) and maxillary skeletal expander (MSE)—a finite element analysis. Progress in orthodontics, 19(1), 33.spa
dc.relation.referencesZhao, L., Herman, J. E., & Patel, P. K. (2008). The structural implications of a unilateral facial skeletal cleft: a three-dimensional finite element model approach. The Cleft Palate-Craniofacial Journal, 45 (2), 121-130.spa
dc.relation.referencesCerón Zapata, A. M., López Palacio, A. M., Aristizábal Puerta, G. M., & Uribe Álvarez, C. (2010). A retrospective characterization study on patients with oral clefts in Medellín, Colombia, South America. Revista Facultad de Odontología Universidad de Antioquia, 22(1), 81-87.spa
dc.relation.referencesArias Urueña, L., Briceño Balcazar, I., Martinez Lozano, J., Collins, A., & Uricoechea Patiño, D. A. (2015). Clinical aspects associated with syndromic forms of Orofacial Clefts in a Colombian population. Colombia Médica, 46(4), 162-167.spa
dc.relation.referencesConway, J. C., Taub, P. J., Kling, R., Oberoi, K., Doucette, J., & Jabs, E. W. (2015). Ten-year experience of more than 35,000 orofacial clefts in Africa. BMC pediatrics, 15(1), 8.spa
dc.relation.referencesUniversity of Iowa Roy J. and Lucille A. Carver College of Medicine (2018). Cleft palate (general considerations). University of Iowa Health Care: Iowa Head ad Neck Protocols. From https://medicine.uiowa.edu/iowaprotocols/cleft-palate-general-considerations.spa
dc.relation.referencesLam, D. J., Chiu, L. L., Sie, K. C., & Perkins, J. A. (2012). Impact of cleft width in clefts of secondary palate on the risk of velopharyngeal insufficiency. Archives of facial plastic surgery, 14(5), 360-364.spa
dc.relation.referencesLeVeau, B. F. (1984). Biomechanics: a summary of perspectives. Physical therapy, 64(12), 1812-1812.spa
dc.relation.referencesHibbeler, R. C. Mechanics of Materials, 1997.spa
dc.relation.referencesGonçalves, C. A., Araújo, J. A., & Mamiya, E. N. (2005). Multiaxial fatigue: a stress-based criterion for hard metals. International Journal of Fatigue, 27(2), 177-187.spa
dc.relation.referencesHiguera, G. A., van Boxtel, A., van Blitterswijk, C. A., & Moroni, L. (2012). The physics of tissue formation with mesenchymal stem cells. Trends in biotechnology, 30(11), 583-590.spa
dc.relation.referencesRamaswamy, G., Bidez, M. W., & Misch, C. E. (2015). Bone response to mechanical loads. In Dental Implant Prosthetics (pp. 107-125). Mosby.spa
dc.relation.referencesBidez, M., & Misch, C. (2015). Clinical Biomechanics in implant dentistry. In Dental Implant Prosthetics (pp. 95-106). Mosby.spa
dc.relation.referencesZhao, Y. H., Lv, X., Liu, Y. L., Zhao, Y., Li, Q., Chen, Y. J., & Zhang, M. (2015). Hydrostatic pressure promotes the proliferation and osteogenic/chondrogenic differentiation of mesenchymal stem cells: the roles of RhoA and Rac1. Stem cell research, 14(3), 283-296.spa
dc.relation.referencesYamamoto, T., Kita, M., Kimura, I., Oseko, F., Amemiya, T., Nakanishi, A., ... & Kanamura, N. (2006). Hydrostatic pressure induces cytokine production in human periodontal ligament cells. Oral Science International, 3(2), 64-71.spa
dc.relation.referencesBaumgart, F. (2000). Stiffness-an unknown world of mechanical science?. Injury-International Journal for the Care of the Injured, 31(2), 14-23.spa
dc.relation.referencesMandalunis, P. (2006). Remodelación ósea. Actualizaciones en Osteología, 2(1), 16-18.spa
dc.relation.referencesGarcía, R. R., Moreno, P. R., & Muñoz-Torres, M. (2008). Regulación del proceso de remodelado óseo. Revista Española de Enfermedades Metabólicas Óseas, 17(1), 10-14.spa
dc.relation.referencesKomori, T. (2014). A review of the differing roles of dead and live osteocytes. Journal of Oral Biosciences, 56(3), 101-104.spa
dc.relation.referencesBellomo, F. J., Armero, F., Nallim, L. G., & Oller, S. (2012). A constitutive model for tissue adaptation: necrosis and stress driven growth. Mechanics Research Communications, 42, 51-59.spa
dc.relation.referencesHernández-Gil, I., Gracia, M. A. A., Pingarrón, M., & Jerez, L. (2006). Physiological bases of bone regeneration II. The remodeling process. Med Oral Patol Oral Cir Bucal, 11, E151-215.spa
dc.relation.referencesRalston, S. H. (2017). Bone structure and metabolism. Medicine, 45(9), 560-564.spa
dc.relation.referencesSun, J., Zhang, X., Li, R., Chen, Z., Huang, Y., & Chen, Z. (2018). Biological Effects of Orthodontic Tooth Movement Into the Grafted Alveolar Cleft. Journal of Oral and Maxillofacial Surgery, 76(3), 605-615.spa
dc.relation.referencesTokugawa, Y., Kubota, M., Nishimura, M., Haruyama, N., & Igarashi, K. (2012). Bone regeneration of canine artificial alveolar clefts using bone-marrow-derived mesenchymal stromal cells and β-tricalcium phosphate: A preliminary study. Orthodontic Waves, 71(2), 51-58.spa
dc.relation.referencesThuaksuban, N., & Nuntanaranont, T. (2006). Iliac crest bone grafting of the alveolar cleft: Clinical and Quantitative Radiographic Assessment. Asian Journal of Oral and Maxillofacial Surgery, 18(2), 105-112.spa
dc.relation.referencesKappen, I. F. P. M., Bittermann, G. K. P., Bitterman, D., van der Molen, A. B. M., Shaw, W., & Breugem, C. C. (2017). Long-term follow-up study of patients with a unilateral complete cleft of lip, alveolus, and palate following the Utrecht treatment protocol: Dental arch relationships. Journal of Cranio-Maxillofacial Surgery, 45(5), 649-654.spa
dc.relation.referencesO'Mahony, A. M., Williams, J. L., & Spencer, P. (2001). Anisotropic elasticity of cortical and cancellous bone in the posterior mandible increases peri‐implant stress and strain under oblique loading. Clinical oral implants research, 12(6), 648-657.spa
dc.relation.referencesPetrie, C. S., & Williams, J. L. (2005). Comparative evaluation of implant designs: influence of diameter, length, and taper on strains in the alveolar crest: A three‐dimensional finite‐element analysis. Clinical oral implants research, 16(4), 486-494.spa
dc.relation.referencesBaccetti, T., McGill, J. S., Franchi, L., McNamara Jr, J. A., & Tollaro, I. (1998). Skeletal effects of early treatment of Class III malocclusion with maxillary expansion and face-mask therapy. American Journal of Orthodontics and Dentofacial Orthopedics, 113(3), 333-343.spa
dc.relation.referencesLagravère, M. O., Carey, J., Heo, G., Toogood, R. W., & Major, P. W. (2010). Transverse, vertical, and anteroposterior changes from bone-anchored maxillary expansion vs traditional rapid maxillary expansion: a randomized clinical trial. American Journal of Orthodontics and Dentofacial Orthopedics, 137(3), 304-e1.spa
dc.relation.referencesSivarajasingam, V., Pell, G., Morse, M., & Shepherd, J. P. (2001). Secondary bone grafting of alveolar clefts: a densitometric comparison of iliac crest and tibial bone grafts. The Cleft palate-craniofacial journal, 38(1), 11-14.spa
dc.relation.referencesANSYS. (2020). ANSYS mechanical user’s guide.spa
dc.relation.referencesPrendergast, P. J., Huiskes, R., & Søballe, K. (1997). Biophysical stimuli on cells during tissue differentiation at implant interfaces. Journal of biomechanics, 30(6), 539-548.spa
dc.relation.referencesTiwari, A. K., & Prasad, J. (2017). Computer modelling of bone’s adaptation: the role of normal strain, shear strain and fluid flow. Biomechanics and modeling in mechanobiology, 16(2), 395-410.spa
dc.relation.referencesZhao, F., Chella, R., & Ma, T. (2007). Effects of shear stress on 3‐D human mesenchymal stem cell construct development in a perfusion bioreactor system: Experiments and hydrodynamic modeling. Biotechnology and bioengineering, 96(3), 584-595.spa
dc.relation.referencesMa, Q., Ma, Z., Liang, M., Luo, F., Xu, J., Dou, C., & Dong, S. (2019). The role of physical forces in osteoclastogenesis. Journal of Cellular Physiology, 234(8), 12498-12507.spa
dc.relation.referencesOlivares, A. L., Marsal, È., Planell, J. A., & Lacroix, D. (2009). Finite element study of scaffold architecture design and culture conditions for tissue engineering. Biomaterials, 30(30), 6142-6149.spa
dc.relation.referencesSteward, A. J., & Kelly, D. J. (2015). Mechanical regulation of mesenchymal stem cell differentiation. Journal of anatomy, 227(6), 717-731.spa
dc.relation.referencesLoboa, E. G., Fang, T. D., Parker, D. W., Warren, S. M., Fong, K. D., Longaker, M. T., & Carter, D. R. (2005). Mechanobiology of mandibular distraction osteogenesis: finite element analyses with a rat model. Journal of orthopaedic research, 23(3), 663-670.spa
dc.relation.referencesYan, X., He, W., Lin, T., Liu, J., Bai, X., Yan, G., & Lu, L. (2013). Three-dimensional finite element analysis of the craniomaxillary complex during maxillary protraction with bone anchorage vs conventional dental anchorage. American Journal of Orthodontics and Dentofacial Orthopedics, 143(2), 197-205spa
dc.relation.referencesGautam, P., Valiathan, A., & Adhikari, R. (2009). Maxillary protraction with and without maxillary expansion: a finite element analysis of sutural stresses. American journal of orthodontics and dentofacial orthopedics, 136(3), 361-366.spa
dc.relation.referencesYu, H. S., Baik, H. S., Sung, S. J., Kim, K. D., & Cho, Y. S. (2007). Three-dimensional finite-element analysis of maxillary protraction with and without rapid palatal expansion. The European Journal of Orthodontics, 29(2), 118-125.4spa
dc.relation.referencesPark, J. H., Bayome, M., Zahrowski, J. J., & Kook, Y. A. (2017). Displacement and stress distribution by different bone-borne palatal expanders with facemask: A 3-dimensional finite element analysis. American Journal of Orthodontics and Dentofacial Orthopedics, 151(1), 105-117.spa
dc.relation.referencesMathew, S., Shivamurthy, P., Sabrish, S., Khan, Y., & Athar, S. (2020). A 3D Finite Element Analysis of Stress on Temporomandibular Joint Due to Maxillary Protraction Appliances with Varied Force Levels and Angulations. World Journal of Dentistry, 11, 128-133.spa
dc.relation.referencesTanaka, O. M., Saga, A. Y., Pithon, M. M., & Argenta, M. A. (2016). Stresses in the midpalatal suture in the maxillary protraction therapy: a 3D finite element analysis. Progress in orthodontics, 17(1), 1-5.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afinesspa
dc.subject.proposalInjerto Alveolarspa
dc.subject.proposalAlveolar grafteng
dc.subject.proposalMétodo de los Elementos Finitosspa
dc.subject.proposalFinite Element Methodeng
dc.subject.proposalMaxillary therapyeng
dc.subject.proposalTerapia Maxilarspa
dc.subject.proposalExpansión Maxilarspa
dc.subject.proposalMaxillary Expansioneng
dc.subject.proposalProtracción Maxilarspa
dc.subject.proposalMaxillary Protractioneng
dc.subject.proposalBiomechanicseng
dc.subject.proposalBiomecánicaspa
dc.titleEstudio computacional del efecto de cargas mecánicas en el comportamiento biomecánico de un injerto alveolarspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
DocFinal_MelisaVelez.pdf
Tamaño:
5.57 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.8 KB
Formato:
Item-specific license agreed upon to submission
Descripción: