Educational program for the prevention of fires and explosions through emerging technologies

dc.contributor.advisorMolina, Alejandro
dc.contributor.advisorMolina Escobar, Jorge Martin
dc.contributor.authorVallejo-Molina, Luis Francisco
dc.contributor.orcidLuis F. Vallejo-Molina [https://orcid.org/0009-0006-4686-982X]spa
dc.contributor.researchgroupBioprocesos y Flujos Reactivosspa
dc.coverage.countryColombia
dc.date.accessioned2024-03-13T19:06:14Z
dc.date.available2024-03-13T19:06:14Z
dc.date.issued2023-12-30
dc.descriptionilustraciones, fotografías, gráficos, tablas,spa
dc.description.abstractFour real cases of fires and explosions in Colombia were used as the basis for an education program that aimed at training undergraduate and graduate engineering students in fire and explosion safety. A systematic review of the Emerging Technologies (ETs) available indicated those more important for fire and explosion safety. The four real cases of fires and explosions in Colombia were selected from a pool of incidents collected from the local industry as those more suitable for education processes. The educational program was based on four premises: i) Application of Bloom’s taxonomy; ii) Empowering and fostering students' autonomy; iii) Use of real-life problems; iv) Application of modules in mandatory courses. The program was implemented in courses of different engineering undergraduate and graduate programs The program evaluation was conducted by comparing the perspective that experts and students had regarding the competencies required in fire and explosion safety, before and after the students were exposed to the educational modules. In general the students' perception of competencies regarded as important for fire and explosion safety increased after exposure to the education program. (Tomado de la fuente)eng
dc.description.abstractCuatro casos reales de incendios y explosiones en Colombia fueron usados como base para un programa educativo que tuvo como objetivo capacitar a estudiantes de pregrado y posgrado de ingeniería en seguridad contra incendios y explosiones. Una revisión sistemática de las tecnologías emergentes (ETs) disponibles indicó las más importantes para la seguridad contra incendios y explosiones. Los cuatro casos reales de incendios y explosiones en Colombia fueron seleccionados de un conjunto de incidentes recopilados de la industria local como los más adecuados para los procesos educativos. El programa educativo se basó en cuatro premisas: i) Aplicación de la taxonomía de Bloom; ii) empoderar y fomentar la autonomía de los estudiantes; iii) Uso de problemas de la vida real; iv) Aplicación de módulos en cursos obligatorios. El programa se implementó en cursos de diferentes carreras de pregrado y posgrado de ingeniería. La evaluación del programa se realizó comparando la perspectiva que tenían expertos y estudiantes sobre las competencias requeridas en seguridad contra incendios y explosiones, antes y después de que los estudiantes estuvieran expuestos a los módulos educativos. En general, la percepción de los estudiantes sobre las competencias consideradas importantes para la seguridad contra incendios y explosiones aumentó después de la exposición al programa educativo.spa
dc.description.curricularareaIngeniería Química E Ingeniería De Petróleos.Sede Medellínspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería Químicaspa
dc.description.researchareaFlujos Reactivosspa
dc.description.sponsorshipEsta investigación fue patrocinada parcialmente por la "Royal Academy of Engineering" bajo su premio "Transforming Systems Through Partnership 20/21" con referencia TSP2021\100311 (Hermes No. 51980): “Training for the prevention of fires and explosions through the use of data analysis and simulation”. Fundación Juan Pablo Gutiérrez Cáceres (Bogotá, Colombia) - Beca parcial del estudiante de Maestría en Ingeniería Química Luis Francisco Vallejo Molina.spa
dc.format.extent157 páginas + 1 anexo (317 páginas)spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85807
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Ingeniería Químicaspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesBariha N, Mishra IM, Srivastava VC. Fire and explosion hazard analysis during surface transport of liquefied petroleum gas (LPG): A case study of LPG truck tanker accident in Kannur, Kerala, India. 2016. doi:10.1016/j.jlp.2016.01.020spa
dc.relation.referencesPranesh V, Palanichamy K, Saidat O, Peter N. Lack of dynamic leadership skills and human failure contribution analysis to manage risk in deep water horizon oil platform. 2016. doi:10.1016/j.ssci.2016.09.013spa
dc.relation.referencesXi C, Guan W, Jiang Y, Liang J, Zhou Y, Wu J, et al. Numerical simulation of fire flooding for heavy oil reservoirs after steam injection: A case study on Block H1 of Xinjiang Oilfield, NW China. Petroleum Exploration and Development. 2013;40: 766–773.spa
dc.relation.referencesChen C-H, Sheen Y-N, Wang H-Y. Case analysis of catastrophic underground pipeline gas explosion in Taiwan. Eng Fail Anal. 2016;65: 39–47.spa
dc.relation.referencesTaveau J. Explosion of fixed roof atmospheric storage tanks, part 1: Background and review of case histories. Process Saf Prog. 2011;30: 381–392.spa
dc.relation.referencesYang X, Li Y, Chen Y, Li Y, Dai L, Feng R, et al. Case study on the catastrophic explosion of a chemical plant for production of m-phenylenediamine. J Loss Prev Process Indust. 2020;67: 104232.spa
dc.relation.referencesGong Y, Fan Y. Applying HFACS Approach to Accident Analysis in Petro-Chemical Industry in China: Case Study of Explosion at Bi-Benzene Plant in Jilin. 2016; 399–406.spa
dc.relation.referencesJung S, Woo J, Kang C. Analysis of severe industrial accidents caused by hazardous chemicals in South Korea from January 2008 to June 2018. Safety Science. 2020;124. doi:10.1016/j.ssci.2019.104580spa
dc.relation.referencesZhou L, Fu G, Xue Y. Human and organizational factors in Chinese hazardous chemical accidents: a case study of the “8.12” Tianjin Port fire and explosion using the HFACS-HC. Int J Occup Saf Ergon. 2018;24: 329–340.spa
dc.relation.referencesZhang J, Fu J, Hao H, Fu G, Nie F, Zhang W. Root causes of coal mine accidents: Characteristics of safety culture deficiencies based on accident statistics. Process Saf Environ Prot. 2020;136: 78–91.spa
dc.relation.referencesZhu Y, Wang D, Shao Z, Xu C, Zhu X, Qi X, et al. A statistical analysis of coalmine fires and explosions in China. Process Saf Environ Prot. 2019;121: 357–366.spa
dc.relation.referencesHerawati H, Santoso H. Tropical forest susceptibility to and risk of fire under changing climate: A review of fire nature, policy and institutions in Indonesia. For Policy Econ. 2011;13: 227–233.spa
dc.relation.referencesWood DA. Prediction and data mining of burned areas of forest fires: Optimized data matching and mining algorithm provides valuable insight. Artificial Intelligence in Agriculture. 2021;5: 24–42.spa
dc.relation.referencesGarlock M, Paya-Zaforteza I, Kodur V, Gu L. Fire hazard in bridges: Review, assessment and repair strategies. Eng Struct. 2012;35: 89–98.spa
dc.relation.referencesReview on the Fire Safety of Exterior Wall Claddings in High-rise Buildings in China. Procedia Engineering. 2013;62: 663–670.spa
dc.relation.referencesSuzuki S, Manzello SL. The Influence of COVID-19 Stay at Home Measures on Fire Statistics Sampled from New York City, London, San Francisco, and Tokyo. Fire Technol. 2022;58: 679–688.spa
dc.relation.referencesGeorgiadis-Filikas K, Bakas I, Kontoleon K. Statistical Analysis and Review of Fire Incidents Data of Greece, with Special Focus on Residential Cases 2000–2019. Fire Technol. 2022;58: 3191–3233.spa
dc.relation.referencesKegler SR, Dellinger AM, Ballesteros MF, Tsai J. Decreasing residential fire death rates and the association with the prevalence of adult cigarette smoking - United States, 1999-2015. J Safety Res. 2018;67: 197–201.spa
dc.relation.referencesLi S, Rong X, Hu J, Wang M, Qu Q, Huang J, et al. Risk assessment method of gas explosion based on quantification of margins and uncertainties (QMU):a case study on beam structures in buildings. Structures. 2023;50: 52–62.spa
dc.relation.referencesFlores Quiroz N, Walls R, Cicione A, Smith M. Application of the Framework for Fire Investigations in Informal Settlements to large-scale real fire events – Consideration of fire formation patterns, fire spread rates and home survivability. Fire Saf J. 2021;125: 103435.spa
dc.relation.referencesMolina A, López S, Molina-Escobar JM, Copete H, Soto D, Jaramillo L, et al. Hacia una estructura de investigación y educación para la prevención de accidentes por incendios y explosiones en Colombia. Rev Acad Colombiana Cienc Exact Fis Natur. 2022;46: 50–67.spa
dc.relation.referencesUnidad Nacional para la Gestión del Riesgo de Desastres. [cited 6 Jun 2022]. Available: http://portal.gestiondelriesgo.gov.co/spa
dc.relation.referencesAgencia Nacional de Minería ANM. [cited 7 Dec 2021]. Available: https://www.anm.gov.co/spa
dc.relation.referencesUniversity Programs. In: Society of Fire Protection Engineers [Internet]. [cited 25 May 2023]. Available: https://www.sfpe.org/career/students/universityprogramsspa
dc.relation.referencesLinks. In: International Association for Fire Safety Science [Internet]. [cited 25 May 2023]. Available: https://iafss.org/links/spa
dc.relation.referencesFire and Emergency Services College Degree Programs. In: U.S. Fire Administration [Internet]. [cited 25 May 2023]. Available: https://www.usfa.fema.gov/nfa/about/feshe/degree-programs.htmlspa
dc.relation.referencesMaster Of Science in Safety Engineering. In: Texas A&M University [Internet]. [cited 25 May 2023]. Available: https://engineering.tamu.edu/chemical/academics/degrees/graduate/MSSENG.htmlspa
dc.relation.referencesMaster of Science in Process Safety and Loss Prevention. In: The University of Sheffield [Internet]. [cited 25 May 2023]. Available: https://www.sheffield.ac.uk/postgraduate/taught/courses/2023/process-safety-and-loss-prevention-msceng-pg-diplomaspa
dc.relation.referencesMaster of Science in Process Safety. In: University of Aberdeen [Internet]. [cited 25 May 2023]. Available: https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/249/process-safety/spa
dc.relation.referencesSpecialisation in Process safety technology. In: University of Bergen [Internet]. [cited 25 May 2023]. Available: https://www.uib.no/en/studies/MAMN-PRO/SIspa
dc.relation.referencesEspecialización en Ingeniería Contra Incendios y Explosiones. In: Facultad de Minas - Universidad Nacional de Colombia Sede Medellín [Internet]. [cited 7 Jun 2022]. Available: https://minas.medellin.unal.edu.co/formacion/especializaciones/especializacion-en-ingenieria-contra-incendios-y-explosionesspa
dc.relation.referencesBui X-N, Bui H-B, Nguyen H. A Review of Artificial Intelligence Applications in Mining and Geological Engineering. Proceedings of the International Conference on Innovations for Sustainable and Responsible Mining. Springer International Publishing; 2021. pp. 109–142.spa
dc.relation.referencesNaser MZ. Mechanistically Informed Machine Learning and Artificial Intelligence in Fire Engineering and Sciences. Fire Technol. 2021;57: 2741–2784.spa
dc.relation.referencesWu X, Zhang X, Huang X, Xiao F, Usmani A. A real-time forecast of tunnel fire based on numerical database and artificial intelligence. Build Simul. 2022;15: 511–524.spa
dc.relation.referencesLi M, Sun Z, Jiang Z, Tan Z, Chen J. A Virtual Reality Platform for Safety Training in Coal Mines with AI and Cloud Computing. Discrete Dyn Nat Soc. 2020;2020. doi:10.1155/2020/6243085spa
dc.relation.referencesChen N, Liu W, Bai R, Chen A. Application of computational intelligence technologies in emergency management: a literature review. Artificial Intelligence Review. 2019;52: 2131–2168.spa
dc.relation.referencesKhan A, Gupta S, Gupta SK. Multi-hazard disaster studies: Monitoring, detection, recovery, and management, based on emerging technologies and optimal techniques. International Journal of Disaster Risk Reduction. 2020;47: 101642.spa
dc.relation.referencesSu L-C, Wu X, Zhang X, Huang X. Smart performance-based design for building fire safety: Prediction of smoke motion via AI. Journal of Building Engineering. 2021;43: 102529.spa
dc.relation.referencesMuduli L, Mishra DP, Jana PK. Application of wireless sensor network for environmental monitoring in underground coal mines: A systematic review. Journal of Network and Computer Applications. 2018;106: 48–67.spa
dc.relation.referencesVahabi H, Naser MZ, Saeb MR. Fire Protection and Materials Flammability Control by Artificial Intelligence. Fire Technol. 2022;58: 1071–1073.spa
dc.relation.referencesShen VRL, Yang CY. A Special Approach to Teach Artificial Intelligence. International Journal of Engineering Education. 2010;26: 1414–1421.spa
dc.relation.referencesBosman L, Madamanchi A, Bartholomew S, Byrd V. Repeated Use of Adaptive Comparative Judgment to Develop Student Understanding of Artificial Intelligence in Problem Based Learning Assignments. International Journal of Engineering Education. 2022;38: 892–904.spa
dc.relation.referencesQin SJ, Chiang LH. Advances and opportunities in machine learning for process data analytics. Comput Chem Eng. 2019;126: 465–473.spa
dc.relation.referencesGajek A, Fabiano B, Laurent A, Jensen N. Process safety education of future employee 4.0 in Industry 4.0. J Loss Prev Process Indust. 2022;75: 104691.spa
dc.relation.referencesKockmann N. Digital methods and tools for chemical equipment and plants. Reaction Chemistry & Engineering. 2019;4: 1522–1529.spa
dc.relation.referencesJiménez López E, Cuenca Jiménez F, Luna Sandoval G, Ochoa Estrella FJ, Maciel Monteón MA, Muñoz F, et al. Technical Considerations for the Conformation of Specific Competences in Mechatronic Engineers in the Context of Industry 4.0 and 5.0. Processes. 2022;10: 1445.spa
dc.relation.referencesMaluk C, Woodrow M, Torero JL. The potential of integrating fire safety in modern building design. Fire Saf J. 2017;88: 104–112.spa
dc.relation.referencesZhang X, Wu X, Park Y, Zhang T, Huang X, Xiao F, et al. Perspectives of big experimental database and artificial intelligence in tunnel fire research. Tunnelling and Underground Space Technology. 2021;108: 103691.spa
dc.relation.referencesIngberg SH, Griffin HK, Robinson WC, Wilson RE. Fire tests of building columns. J Franklin Inst. 1921;191: 823–827.spa
dc.relation.referencesThomas PH, Webster CT, Raftery MM. Some experiments on buoyant diffusion flames. Combust Flame. 1961;5: 359–367.spa
dc.relation.referencesThomas PH. The size of flames from natural fires. Symp Combust. 1963;9: 844–859.spa
dc.relation.referencesThomas PH. Behavior of fires in enclosures—Some recent progress. Symp Combust. 1973;14: 1007–1020.spa
dc.relation.referencesMurgai MP, Emmons HW. Natural convection above fires. J Fluid Mech. 1960;8: 611–624.spa
dc.relation.referencesLee S-L, Emmons HW. A study of natural convection above a line fire. J Fluid Mech. 1961;11: 353–368.spa
dc.relation.referencesEmmons HW. Fire development theory—An overview. Fire Technol. 1965;1: 175–181.spa
dc.relation.referencesYang KT, Chang LC. UNDSAFE-I: A computer code for buoyant flow in an enclosure. NASA astrophysics data system Harvard University; 1977 p. 33476.spa
dc.relation.referencesYeoh GH, Yuen KK. Chapter 1 - Introduction. In: Yeoh GH, Yuen KK, editors. Computational Fluid Dynamics in Fire Engineering. 2008. pp. 1–28.spa
dc.relation.referencesOlenick SM, Carpenter DJ. An updated international survey of computer models for fire and smoke. J Fire Prot Eng. 2003;13. doi:10.1177/104239103033367spa
dc.relation.referencesOran ES. Understanding explosions – From catastrophic accidents to creation of the universe. Proc Combust Inst. 2015;35: 1–35.spa
dc.relation.referencesSunder SS, Gann RG, Grosshandler WL, Lew HS, Bukowski RW, Sadek F, et al. Final report on the collapse of the World Trade Center towers : Gaithersburg, MD: National Institute of Standards and Technology; 2005. doi:10.6028/nist.ncstar.1spa
dc.relation.referencesTorero JL. Fire-induced structural failure: the World Trade Center, New York. Proc Inst Civ Eng - Forensic Eng. 2011;164: 69–77.spa
dc.relation.referencesUsmani AS, Chung YC, Torero JL. How did the WTC towers collapse: a new theory. Fire Saf J. 2003;38: 501–533.spa
dc.relation.referencesInternational Survey of Computer Models for Fire and Smoke. [cited 6 Feb 2023]. Available: https://www.firemodelsurvey.com/spa
dc.relation.referencesThe Howden Group. Ventsim 3D Mine Ventilation Design. [cited 9 Jul 2022]. Available: https://ventsim.com/spa
dc.relation.referencesBrake DJ. Fire Modelling in Underground Mines using Ventsim VentFIRE. The Australian Mine Ventilation Conference. 2013.spa
dc.relation.referencesStewart CM, Aminossadati SM, Kizil MS. Underground Fire Rollback Simulation in Large Scale Ventilation Models. The 15th North American Mine Ventilation Symposium 2015. 2015.spa
dc.relation.referencesPomeroy C, Brune J, Mischo H, Weyer J. Modeling leakage though utilization of modern software for a historical silver mine. 2015 SME Annual Meeting and Conference. 2015.spa
dc.relation.referencesRădoi F, Boantă C, Ianc N, Matei A, Prodan M. Comparative solving of a ventilation network and its validated results. International Multidisciplinary Scientific Geoconference; 2018.spa
dc.relation.referencesMorar MS, Radu SM, Cioclea D, Gherghe I. Use of IT equipment and specialized programs for solving ventilation networks. 7th International Multidisciplinary Symposium. 2017.spa
dc.relation.referencesCenters for Disease Control and Prevention. MFIRE - 4.0.2.0. [cited 8 Jul 2021]. Available: https://www.cdc.gov/niosh/mining/works/coversheet1816.htmlspa
dc.relation.referencesSchafrik S. Expanding the Limitations of the MFIRE Simulation Model. SME Annual Meeting. 2011.spa
dc.relation.referencesZhou L, Bahrami D. A Derivative Method to Calculate Resistance Sensitivity for Mine Ventilation Networks. Mining, Metallurgy and Exploration. 2022;39: 1833–1839.spa
dc.relation.referencesZhou L, Yuan L, Thomas R, Bahrami D, Rowland J. An Improved Method to Calculate the Heat Release Rate of a Mine Fire in Underground Mines. Mining, Metallurgy and Exploration. 2020;37: 1941–1949.spa
dc.relation.referencesZhou L, Yuan L, Bahrami D, Thomas RA, Rowland JH. Numerical and experimental investigation of carbon monoxide spread in underground mine fires. J Fire Sci. 2018;36: 406–418.spa
dc.relation.referencesZhou L, Smith AC, Yuan L. New Improvements to MFIRE to Enhance Fire Modeling Capabilities. Min Eng. 2016;68: 45–50.spa
dc.relation.referencesYuan L, Zhou L, Smith AC. Modeling carbon monoxide spread in underground mine fires. Appl Therm Eng. 2016;100: 1319–1326.spa
dc.relation.referencesZhou L, Smith AC. Improvement of a mine fire simulation program - Incorporation of smoke rollback into MFIRE 3.0. J Fire Sci. 2012;30: 29–39.spa
dc.relation.referencesZhou L, Luo Y. Improvement and upgrade of mine fire simulation program MFIRE. Journal of Coal Science and Engineering. 2011;17: 275–280.spa
dc.relation.referencesZhou L, Luo Y. A new feature of MFIRE: The moving fire simulation. Int J Min Miner Eng. 2011;3: 141–151.spa
dc.relation.referencesCheng LH, Ueng TH, Liu CW. Simulation of ventilation and fire in the underground facilities. Fire Saf J. 2001;36: 597–619.spa
dc.relation.referencesVentGraph – software for mine ventilation engineers and experts. [cited 9 Dec 2021]. Available: https://imgpan.pl/en/oferta/ventgraph/spa
dc.relation.referencesDziurzyński W, Krach A, Pałka T. Airflow sensitivity assessment based on underground mine ventilation systems modeling. Energies. 2017;10. doi:10.3390/en10101451spa
dc.relation.referencesDziurzynski W, Krach A, Pałka T. A reliable method of completing and compensating the results of measurements of flow parameters in a network of headings. Arch Min Sci. 2015;60: 3–24.spa
dc.relation.referencesGillies ADS, Wala AM, Wu HW. Simulation of the effects of inertisation of fires on mine ventilation systems. 8th International Mine Ventilation Congress. 2005.spa
dc.relation.referencesPeacock RD, Reneke PA, Forney GP. CFAST – consolidated model of fire growth and smoke transport (version 7) volume 1: Technical reference guide. National Institute of Standards and Technology; 2015 Dec. doi:10.6028/nist.tn.1889v1spa
dc.relation.referencesDing L, Li Y, Ji J, Lin C, Wang L. A cost-effective building fire smoke spread prediction approach for risk mitigation based on data assimilation using Ensemble Kalman Filter. Fire Mater. 2022. doi:10.1002/fam.3052spa
dc.relation.referencesFang H, Lo SM, Zhang Y, Shen Y. Development of a machine-learning approach for identifying the stages of fire development in residential room fires. Fire Saf J. 2021;126. doi:10.1016/j.firesaf.2021.103469spa
dc.relation.referencesBuffington T, Cabrera J-M, Kurzawski A, Ezekoye OA. Deep-Learning Emulators of Transient Compartment Fire Simulations for Inverse Problems and Room-Scale Calorimetry. Fire Technol. 2021;57: 2859–2885.spa
dc.relation.referencesPossidente L, Weiss A, De Silva D, Pustorino S, Nigro E, Tondini N. Fire safety engineering principles applied to a multi-storey steel building. Proc Inst Civ Eng Struct Build. 2021;174: 725–738.spa
dc.relation.referencesDi S, Yong J, Xianli Z, Mengjie L. Temperature predictions of a single-room fire based on the cokriging model. Journal of University of Science and Technology of China. 2021;51: 75–86.spa
dc.relation.referencesKurzawski AJ, Ezekoye OA. Inversion for fire heat-release rate using heat flux measurements. J Heat Transfer. 2020;142. doi:10.1115/1.4046264spa
dc.relation.referencesKurzawski A, Cabrera J-M, Ezekoye OA. Model Considerations for Fire Scene Reconstruction Using a Bayesian Framework. Fire Technol. 2020;56: 445–467.spa
dc.relation.referencesLee J. Numerical analysis of how ventilation conditions impact compartment fire suppression by water mist. Ann Nucl Energy. 2020;136. doi:10.1016/j.anucene.2019.107021spa
dc.relation.referencesYemelyanenko S, Ivanusa A, Yakovchuk R, Kuzyk A. Fire risks of public buildings. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences. 2020;6: 75–82.spa
dc.relation.referencesCleary T, Taylor G. Evaluation of Empirical Evidence Against Zone Models for Smoke Detector Activation Prediction. Fire Technol. 2020. doi:10.1007/s10694-020-01061-2spa
dc.relation.referencesMcGrattan KB, Hostikka S, Floyd J, McDermott R, Vanella M, Mueller E. Fire Dynamics Simulator Technical Reference Guide Volume 3: Validation. Gaithersburg, MD: National Institute of Standards and Technology; 2013. doi:10.6028/NIST.SP.1018spa
dc.relation.referencesWang K-H, Liu Y-Q, Zhang P-H, Guo Y-L. Numerical study on the impact of wall thermal inertia on maximum smoke temperature and longitudinal attenuation in long channel fires. Int J Therm Sci. 2023;184. doi:10.1016/j.ijthermalsci.2022.107940spa
dc.relation.referencesKarunaratne TLW, Chow CL. Fire spread along vertical greenery systems from window ejected flame: A study based on a fire dynamic simulator model. Journal of Building Engineering. 2022;62. doi:10.1016/j.jobe.2022.105359spa
dc.relation.referencesVijayan P, Thampi GK, Vishwakarma PK, Palacios A. Evaluation of flame geometry of horizontal turbulent jet fires in reduced pressures: A numerical approach. J Loss Prev Process Indust. 2022;80. doi:10.1016/j.jlp.2022.104931spa
dc.relation.referencesWang Z, Hou S, Zhang M, Xu J, Gao Z, Cozzani V, et al. Assessment of the mass burning rate of LNG pool fires by a validated CFD model. Process Saf Environ Prot. 2022;168: 642–653.spa
dc.relation.referencesBilyaz S, Ezekoye OA. Modeling the dispersion and mixing of light gases in enclosed spaces using the Method of Moments. J Loss Prev Process Indust. 2022;80. doi:10.1016/j.jlp.2022.104877spa
dc.relation.referencesXie J, Li J, Wang J, Jiang J. Fire protection design of a lithium-ion battery warehouse based on numerical simulation results. J Loss Prev Process Indust. 2022;80. doi:10.1016/j.jlp.2022.104885spa
dc.relation.referencesDeng T, Norris S, Sharma RN. Effects of the water spray system on the air-driving force required in longitudinally ventilated road tunnels. Tunnelling and Underground Space Technology. 2022;130. doi:10.1016/j.tust.2022.104753spa
dc.relation.referencesHuang Y-H. Using Fire Dynamics Simulator to reconstruct a fire scene in a hospital-based long-term care facility. J Loss Prev Process Indust. 2022;80. doi:10.1016/j.jlp.2022.104863spa
dc.relation.referencesChen Y, Jia J, Che G. Simulation of Large-Scale Tunnel Belt Fire and Smoke Characteristics under a Water Curtain System Based on CFD. ACS Omega. 2022;7: 40419–40431.spa
dc.relation.referencesLiu Z, Xie H, Han B, Li P, Jiang Z, Yu J. Experimental study on residual bearing capacity of full-size fire-damaged prestressed concrete girders. Structures. 2022;45: 1788–1802.spa
dc.relation.referencesPyroSim. [cited 31 Jul 2023]. Available: https://www.thunderheadeng.com/pyrosimspa
dc.relation.referencesChow WK. A comparison of the use of fire zone and field models for simulating atrium smoke-filling processes. Fire Saf J. 1995;25: 337–353.spa
dc.relation.referencesTuovinen H, Holmstedt G, Bengtson S. Sensitivity calculations of tunnel fires using CFD. Fire Technol. 1996;32: 99–119.spa
dc.relation.referencesWang J, Hua J, Kumar K, Kumar S. Evaluation of CFD Modeling Methods for Fire-induced Airflow in a Room. J Fire Sci. 2006;24: 393–411.spa
dc.relation.referencesBilger R. Computational field models in fire research and engineering. Fire Saf Sci. 1994;4: 95–110.spa
dc.relation.referencesCox G, Kumar S. Field Modelling of Fire in Forced Ventilated Enclosures. Combustion Science and Technology. 1987. pp. 7–23. doi:10.1080/00102208708952565spa
dc.relation.referencesKumar S, Chitty R. CFD study of thermal detection in A closed compartment subject to external fires. Fire Saf Sci. 2000;6: 767–778.spa
dc.relation.referencesCarlsson J. Fire modeling using CFD - An introduction for fire safety engineers. Department of Fire Safety Engineering - Lund Institute of Technology - Lund University; 1999. Report No.: 5025.spa
dc.relation.referencesLiang H, Welch S. Development of an engineering methodology for thermal analysis of protected structural members in fire. Proceedings of the 3rd International Conference on Steel and Composite Structures. 2007.spa
dc.relation.referencesLewis M, Moss J, Rubini P. CFD modelling of combustion and heat transfer in compartment fires. Fire Saf Sci. 1997;5: 463–474.spa
dc.relation.referencesPierce JBM, Moss JB. Smoke production, radiation heat transfer and fire growth in a liquid-fuelled compartment fire. Fire Saf J. 2007;42: 310–320.spa
dc.relation.referencesKoo S-H, Fraser-Mitchell J, Welch S. Sensor-steered fire simulation. Fire Saf J. 2010;45: 193–205.spa
dc.relation.referencesFraser-Mitchell JN. An object-oriented simulation (crisp II) for fire risk assessment. Fire Safety Science - Proceedings of the Fourth International Symposium. 1994.spa
dc.relation.referencesFraser‐Mitchell JN. Modelling human behaviour within the fire risk assessment tool CRISP. Fire Mater. doi:10.1002/(SICI)1099-1018(199911/12)23:6<349::AID-FAM710>3.0.CO;2-3spa
dc.relation.referencesBjörkman J, Mikkola E. Risk assessment of a timber frame building by using CRISP simulation. Fire Mater. 2001. doi:10.1002/fam.770spa
dc.relation.referencesZhang S, Ma H, Huang X, Peng S, Du J, Zhao W. Numerical simulation on natural gas explosion and prevention measures design under water–gas compartment in utility tunnel. Tunnelling and Underground Space Technology. 2022;130. doi:10.1016/j.tust.2022.104754spa
dc.relation.referencesCantera. [cited 30 Nov 2022]. Available: https://cantera.org/spa
dc.relation.referencesPorowski R, Kowalik R, Grzmiączka M, Jurišević N, Gawdzik J. Influence of initial temperature on laminar burning velocity in hydrogen-air mixtures as potential for green energy carrier. Int Commun Heat Mass Transfer. 2023;146: 106861.spa
dc.relation.referencesvan Wingerden M, Skjold T, Roosendans D, Dutertre A, Pekalski A. Chemical inhibition of hydrogen-air explosions: Literature review, simulations and experiments. Process Saf Environ Prot. 2023;176: 1120–1129.spa
dc.relation.referencesPapas P, Cao C, Kim W, Baldwin E, Chattaway A. Fire suppression using trifluoroiodomethane (CF3I)-carbon dioxide (CO2) mixtures. Proc Combust Inst. 2023;39: 3765–3773.spa
dc.relation.referencesWang Z, Lu Z, Yelishala SC, Metghalchi H, Levendis YA. Flame characteristics of propane-air-carbon dioxide blends at elevated temperatures and pressures. Energy. 2021;228. doi:10.1016/j.energy.2021.120624spa
dc.relation.referencesRudy W, Pekalski A, Makarov D, Teodorczyk A, Molkov V. Prediction of deflagrative explosions in variety of closed vessels. Energies. 2021;14. doi:10.3390/en14082138spa
dc.relation.referencesWang Z, Lu Z, Yelishala SC, Metghalchi H, Levendis YA. Laminar burning speeds and flame instabilities of isobutane carbon dioxide air mixtures at high pressures and temperatures. Fuel. 2020;268. doi:10.1016/j.fuel.2020.117410spa
dc.relation.referencesKuznetsov M, Redlinger R, Breitung W, Grune J, Friedrich A, Ichikawa N. Laminar burning velocities of hydrogen-oxygen-steam mixtures at elevated temperatures and pressures. Proc Combust Inst. 2011;33: 895–903.spa
dc.relation.referencesKee RJ, Coltrin ME, Glarborg P, Zhu H. Chemically Reacting Flow: Theory, Modeling, and Simulation. John Wiley & Sons; 2017.spa
dc.relation.referencesCalifornia Institute of Technology. Shock and Detonation Toolbox. In: Explosion Dynamics Laboratory [Internet]. 2021 [cited 30 Nov 2022]. Available: https://shepherd.caltech.edu/EDL/PublicResources/sdt/spa
dc.relation.referencesKao S, Ziegler J, Bitter N, Schmidt B, Lawson J, Shepherd JE. SDToolbox - Numerical Tools for Shock and Detonation Wave Modeling. Explosion Dynamics Laboratory - Graduate Aerospace Laboratories - California Institute of Technology; 2023. Report No.: FM2018.001.spa
dc.relation.referencesWeng Z, Mével R, Chaumeix N. Detonation in ammonia-oxygen and ammonia-nitrous oxide mixtures. Combust Flame. 2023;251: 112680.spa
dc.relation.referencesLi Z, Weng Z, Mével R. Thermo-chemical analyses of steady detonation wave using the Shock and Detonation Toolbox in Cantera. Shock Waves. 2022;32: 759–762.spa
dc.relation.referencesBedick C, Ferguson D. Quantitative Ion Probe Measurements for Application in a Rotating Detonation Engine. AIAA Journal. 2020;58: 4003–4016.spa
dc.relation.referencesXu Y, Worthington D, Oke A, Software D. Correcting the predictions by Baker-Strehlow-Tang (BST) model for the ground effect. Hazards XXI: Process Safety and Environmental Protection in a Changing World - Symposium Series 155 - IChemE. 2009.spa
dc.relation.referencesMarsh BLAST Powered by MaxLoss. [cited 30 Nov 2022]. Available: https://www.marsh.com/us/industries/energy-and-power/products/marsh-blast-powered-by-maxloss.html?bsrc=marshspa
dc.relation.referencesGexcon AS. FLACS-CFD v22.2 User’s Manual. 2023.spa
dc.relation.referencesLim BH, Ng EYK. Comparison of FLACS and BASiL Model for Ro-Pax Ferry LNG Bunkering Leak Analysis. Fluids Barriers CNS. 2022;7. doi:10.3390/fluids7080272spa
dc.relation.referencesMalik AA, Nasif MS, Niazi UM, Al-Waked R. Numerical modelling of wind-influenced above sea gas dispersion and explosion risk analysis due to subsea gas release on multileveled offshore platform. Appl Ocean Res. 2022;124. doi:10.1016/j.apor.2022.103208spa
dc.relation.referencesDiakow PA, Thomas JK, Vivanco E, Rodriguez O. Fireball and flame venting comparisons: Test data, CFD simulations, and industry standard prediction. J Loss Prev Process Indust. 2022;77. doi:10.1016/j.jlp.2022.104794spa
dc.relation.referencesYuan W, Li J, Zhang R, Li X, Xie J, Chen J. Numerical investigation of the leakage and explosion scenarios in China’s first liquid hydrogen refueling station. Int J Hydrogen Energy. 2022;47: 18786–18798.spa
dc.relation.referencesXie X, Xiong Y, Xie W, Li J, Zhang W. Quantitative Risk Analysis of Oil and Gas Fires and Explosions for FPSO Systems in China. Processes. 2022;10. doi:10.3390/pr10050902spa
dc.relation.referencesWang S, Li Z, Fang Q, Yan H, Liu Y. Numerical simulation of overpressure loads generated by gas explosions in utility tunnels. Process Saf Environ Prot. 2022;161: 100–117.spa
dc.relation.referencesCheng R, Chen W, Hao H, Li J. Dynamic response of road tunnel subjected to internal Boiling liquid expansion vapour explosion (BLEVE). Tunnelling and Underground Space Technology. 2022;123. doi:10.1016/j.tust.2022.104363spa
dc.relation.referencesLiu C-M, Kong Q, Wang S-P, Liang Y-H. Numerical study on the temporal and spatial distribution law of natural gas explosion load on an ultra-deepwater semi-submersible drilling platform. Ocean Eng. 2022;250. doi:10.1016/j.oceaneng.2022.110965spa
dc.relation.referencesLi J, Hao H, Chen W, Cheng R. Calculation of BLEVE energy and overpressures inside a tunnel using analytical and CFD methods. Tunnelling and Underground Space Technology. 2022;120. doi:10.1016/j.tust.2021.104263spa
dc.relation.referencesZubair M, Al Suwaidi RR, Al Souqi AA. Behavior of Emergency Core Cooling System (ECCS) during the early stage of Loss of Coolant Accident (LOCA) for APR 1400 with Flownex software. Prog Nuclear Energy. 2021;141: 103949.spa
dc.relation.referencesRousseau PG, du Toit CG, Jun JS, Noh JM. Code-to-code comparison for analysing the steady-state heat transfer and natural circulation in an air-cooled RCCS using GAMMA+ and Flownex. Nucl Eng Des. 2015;291: 71–89.spa
dc.relation.referencesProSAir computational blast loading tool. [cited 1 Dec 2022]. Available: https://www.cranfield.ac.uk/facilities/prosair-computational-blast-loading-toolspa
dc.relation.referencesWada Y, Liou M-S. An Accurate and Robust Flux Splitting Scheme for Shock and Contact Discontinuities. SIAM J Sci Comput. 1997;18: 633–657.spa
dc.relation.referencesCastedo R, Reifarth C, Santos AP, Losada J, López LM, Chiquito M, et al. Application of grid convergence index to shock wave validated with LS-DYNA and ProsAir. Ingeniería e Investigación. 2019;39. doi:10.15446/ing.investig.v39n3.81380spa
dc.relation.referencesAlsubaei FC, El Damatty AA, El Dakhakhni WW. Effectiveness of blast walls designed for blast shielding. Bedard C., Katsanis C.J., editors. Canadian Society for Civil Engineering; 2013.spa
dc.relation.referencesAbdel‐Jawad M. Validation of BLEVE events using the hybrid code exploCFD. Process Saf Prog. 2021;40. doi:10.1002/prs.12208spa
dc.relation.referencesAbdel-Jawad M. CSC coupled Graham Kenney source term for hybrid models of BLEVE events: Formulation, implementation and validation. Process Saf Prog. 2021;40: 281–288.spa
dc.relation.referencesFluidyn-Ventil - Software for HVAC, indoor air quality, explosion, smoke. FLUIDYN; 1 Feb 2019 [cited 1 Dec 2022]. Available: https://www.fluidyn.com/?page_id=100spa
dc.relation.referencesLv P, Zhang J, Ju M, Hu Y, Liang T, Liu K, et al. Influence of branch pipes on the deflagration characteristics of methane in confined space. Process Saf Prog. 2021;40. doi:10.1002/prs.12152spa
dc.relation.referencesLv P, Zhang J, Pang L, Yang K, Sun S. Influence of Multiple Factors on the Explosion Characteristics of Flammable Gases in Municipal Sewage Pipelines. Advances in Civil Engineering. 2020;2020. doi:10.1155/2020/3193012spa
dc.relation.referencesShukla V, Ganju S, Varma S, Sengupta S, Maheshwari NK. Affect of recombiner location on its performance in closed containment under dry and steam conditions. Int J Hydrogen Energy. 2019;44: 25957–25973.spa
dc.relation.referencesEuroplexus Software - EPX. [cited 1 Dec 2022]. Available: http://www-epx.cea.fr/spa
dc.relation.referencesValsamos G, Larcher M, Casadei F. Beirut explosion 2020: A case study for a large-scale urban blast simulation. Saf Sci. 2021;137. doi:10.1016/j.ssci.2021.105190spa
dc.relation.referencesAune V, Valsamos G, Casadei F, Langseth M, Børvik T. Fluid-structure interaction effects during the dynamic response of clamped thin steel plates exposed to blast loading. Int J Mech Sci. 2021;195. doi:10.1016/j.ijmecsci.2020.106263spa
dc.relation.referencesVyazmina E, Jallais S, Beccantini A, Trélat S. Protective walls against effects of vapor cloud fast deflagration: CFD recommendations for design. Process Saf Prog. 2018;37: 56–66.spa
dc.relation.referencesAune V, Valsamos G, Casadei F, Langseth M, Børvik T. On the dynamic response of blast-loaded steel plates with and without pre-formed holes. Int J Impact Eng. 2017;108: 27–46.spa
dc.relation.referencesAune V, Valsamos G, Casadei F, Larcher M, Langseth M, Børvik T. Numerical study on the structural response of blast-loaded thin aluminium and steel plates. Int J Impact Eng. 2017;99: 131–144.spa
dc.relation.referencesFaucher V, Galon P, Beccantini A, Crouzet F, Debaud F, Gautier T. Hybrid parallel strategy for the simulation of fast transient accidental situations at reactor scale. Ann Nucl Energy. 2015;82: 188–194.spa
dc.relation.referencesValsamos G, Casadei F, Solomos G, Larcher M. Risk assessment of blast events in a transport infrastructure by fluid-structure interaction analysis. Saf Sci. 2019;118: 887–897.spa
dc.relation.referencesVelikorodny A, Studer E, Kudriakov S, Beccantini A. Combustion modeling in large scale volumes using EUROPLEXUS code. J Loss Prev Process Indust. 2015;35: 104–116.spa
dc.relation.referencesAnderson JD. Basic Philosophy of CFD. In: Wendt JF, editor. Computational Fluid Dynamics. Berlin, Heidelberg: Springer Berlin Heidelberg; 2009. pp. 3–14.spa
dc.relation.referencesAnsys | Engineering Simulation Software. [cited 8 Jul 2021]. Available: https://www.ansys.com/spa
dc.relation.referencesCOMSOL - CFD Software for Simulating Fluid Flow Applications. [cited 30 Nov 2022]. Available: https://www.comsol.com/cfd-modulespa
dc.relation.referencesOpenFOAM. [cited 30 Nov 2022]. Available: https://www.openfoam.com/spa
dc.relation.referencesBinbin W. Comparative Research on FLUENT and FDS’s Numerical Simulation of Smoke Spread in Subway Platform Fire. Procedia Engineering. 2011;26: 1065–1075.spa
dc.relation.referencesZhong CH. Fire Dynamics Simulation (FDS) Study of Fire in Structures with Curved Geometry. Fah TC, editor. Mechanical Engineering, Universiti Tunku Abdul Rahman. 2013.spa
dc.relation.referencesNIST. CFAST, Fire Growth and Smoke Transport Modeling. [cited 13 Jun 2022]. Available: https://www.nist.gov/el/fire-research-division-73300/product-services/consolidated-fire-and-smoke-transport-model-cfastspa
dc.relation.referencesANSYS Fluent Theory Guide. Ansys, Inc; 2013.spa
dc.relation.referencesCherbański R, Rudniak L, Machniewski P, Molga E, Tępiński J, Klapsa W, et al. Ethanol pool fire on a one-meter test tray - validation of CFD results. Chemical and Process Engineering - Inzynieria Chemiczna i Procesowa. 2022;43: 23–44.spa
dc.relation.referencesKról M, Król A. An Experimental and Numerical Study on Fire Spread in a Furnished Room. Buildings. 2022;12: 2189.spa
dc.relation.referencesSingh GP, Sharma JD, Arora R, Sandhu IS. CFD analysis of shock tube for blast impact testing. Materials Today: Proceedings. 2020;28: 1872–1878.spa
dc.relation.referencesFedorova NN, Fomin PA, Valger SA. Propagation of shock waves formed by explosion of the air-propylene mixture in a T-pipeline. J Phys Conf Ser. 2019;1404: 012057.spa
dc.relation.referencesValger SA, Fomin PA, Fedorova NN. Numerical study of explosion of “propylene-air” mixture cloud in recessed cavity located near complex of bluff bodies. IOP Conf Ser: Mater Sci Eng. 2018;456: 012031.spa
dc.relation.referencesHajji Y, Bouteraa M, Bournot P, Bououdina M. Assessment of an accidental hydrogen leak from a vehicle tank in a confined space. Int J Hydrogen Energy. 2022;47: 28710–28720.spa
dc.relation.referencesSmirnyakov VV, Rodionov VA, Smirnyakova VV, Orlov FA. The influence of the shape and size of dust fractions on their distribution and accumulation in mine workings when changing the structure of air flow. Journal of Mining Institute. 2022;253: 71–81.spa
dc.relation.referencesAlutu C, El-Hassan Z, Leslie T, Durrant A, Rodriguez C. Application of computational fluid dynamics in the study of the caribbean petroleum corporation gasoline vapour dispersion. J Loss Prev Process Indust. 2021;71: 104513.spa
dc.relation.referencesWęgrzyński W, Krajewski G, Kimbar G. Smart Smoke Control as an Efficient Solution for Smoke Ventilation in Converted Cellars of Historic Buildings. Fire Technol. 2021;57: 3101–3123.spa
dc.relation.referencesKubinyecz V, Teodosiu C. Review of numerical studies on ventilation systems for subway networks in emergency situations. IOP Conf Ser: Earth Environ Sci. 2021;664: 012093.spa
dc.relation.referencesKról A, Król M. Some Tips on Numerical Modeling of Airflow and Fires in Road Tunnels. Energies. 2021;14: 2366.spa
dc.relation.referencesFrancisc-Vladimir K, Cătălin T. Verification of Ventilation System Efficiency in a Curved Subway Tunnel in Case of Fire Using Numerical Modeling. 2021 10th International Conference on Energy and Environment (CIEM). 2021. doi:10.1109/CIEM52821.2021.9614790spa
dc.relation.referencesLi T, Chen L, Zhang Y, Ma W, Yang C, Shang F. Study on the smoke movement characteristics in large scale interchange tunnel fire. Int J Vent. 2020;19: 224–232.spa
dc.relation.referencesDing Y, Chen W, Zhang W, Zhang X, Li C, Zhou R, et al. Experimental and numerical simulation study of typical semi-transparent material pyrolysis with in-depth radiation based on micro and bench scales. Energy. 2022;258. doi:10.1016/j.energy.2022.124863spa
dc.relation.referencesAng CD, Peiró J, Riess I, Rein G. Analysis of Fire Throttling in Longitudinally Ventilated Tunnels With a One-dimensional Model. Fire Technol. 2022;58: 2925–2947.spa
dc.relation.referencesMaragkos G, Funk E, Merci B. Analysis of adaptive mesh refinement in a turbulent buoyant helium plume. Int J Numer Methods Fluids. 2022;94: 1398–1415.spa
dc.relation.referencesHenriksen M, Vaagsaether K, Lundberg J, Forseth S, Bjerketvedt D. Numerical study of premixed gas explosion in a 1-m channel partly filled with 18650 cell-like cylinders with experiments. J Loss Prev Process Indust. 2022;77. doi:10.1016/j.jlp.2022.104761spa
dc.relation.referencesVendra CMR, Shelke AV, Buston JEH, Gill J, Howard D, Read E, et al. Numerical and experimental characterisation of high energy density 21700 lithium-ion battery fires. Process Saf Environ Prot. 2022;160: 153–165.spa
dc.relation.referencesMcCarthy-Singh B, Gambaruto A. Experimental and numerical modelling of pressure piling using homogeneous explosive mixtures. Process Saf Environ Prot. 2022;167: 12–20.spa
dc.relation.referencesKang H-S, Kim S-M, Kim J. Safety Issues of a Hydrogen Refueling Station and a Prediction for an Overpressure Reduction by a Barrier Using OpenFOAM Software for an SRI Explosion Test in an Open Space. Energies. 2022;15. doi:10.3390/en15207556spa
dc.relation.referencesIslas A, Fernández AR, Betegón C, Martínez-Pañeda E, Pandal A. Computational assessment of biomass dust explosions in the 20L sphere. Process Saf Environ Prot. 2022;165: 791–814.spa
dc.relation.referencesPan Y, Spijker C, Raupenstrauch H. CFD modeling of particle dispersion behavior in the MIKE 3 apparatus. Alex Eng J. 2022;61: 9305–9313.spa
dc.relation.referencesDavidy A. Multiphysics Design of Pet-Coke Burner and Hydrogen Production by Applying Methane Steam Reforming System. Clean Technol Environ Policy. 2021;3: 260–287.spa
dc.relation.referencesDavidy A. CFD simulation of forced recirculating fired heated reboilers. Processes. 2020;8. doi:10.3390/pr8020145spa
dc.relation.referencesDavidy A. CFD simulation of ethanol steam reforming system for hydrogen production. ChemEngineering. 2018;2: 1–24.spa
dc.relation.referencesDavidy A. Thermal Hydraulics and Thermochemical Design of Fatty Acid Methyl Ester (Biodiesel) Esterification Reactor by Heating with High Boiling Point Phenyl‐Naphthalene Liquid. Fluids Barriers CNS. 2022;7. doi:10.3390/fluids7030093spa
dc.relation.referencesDavidy A. CFD design of hydrogenation reactor for transformation of levulinic acid to γ-valerolactone (GVL) by using high boiling point organic fluids. ChemEngineering. 2019;3: 1–14.spa
dc.relation.referencesDavidy A. CFD simulation and mitigation with boiling liquid expanding vapor explosion (BLEVE) caused by jet fire. ChemEngineering. 2019;3: 1–22.spa
dc.relation.referencesLiu Z, Xie K, Li L, Chen Y. A paradigm of safety management in Industry 4.0. Syst Res Behav Sci. 2020;37: 632–645.spa
dc.relation.referencesLaciok V, Sikorova K, Fabiano B, Bernatik A. Trends and Opportunities of Tertiary Education in Safety Engineering Moving towards Safety 4.0. Sustain Sci Pract Policy. 2021;13: 524.spa
dc.relation.referencesAntonopoulos I, Robu V, Couraud B, Kirli D, Norbu S, Kiprakis A, et al. Artificial intelligence and machine learning approaches to energy demand-side response: A systematic review. Renewable Sustainable Energy Rev. 2020;130: 109899.spa
dc.relation.referencesMurphy KP. Machine Learning: a probabilistic perspective. MIT Press; 2012.spa
dc.relation.referencesJain P, Coogan SCP, Subramanian SG, Crowley M, Taylor S, Flannigan MD. A review of machine learning applications in wildfire science and management. doi:10.1139/er-2020-0019spa
dc.relation.referencesParker S, Wu Z, Christofides PD. Cybersecurity in process control, operations, and supply chain. Comput Chem Eng. 2023;171: 108169.spa
dc.relation.referencesJiao Z, Hu P, Xu H, Wang Q. Machine Learning and Deep Learning in Chemical Health and Safety: A Systematic Review of Techniques and Applications. ACS Chem Health Saf. 2020;27: 316–334.spa
dc.relation.referencesLattimer BY, Hodges JL, Lattimer AM. Using machine learning in physics-based simulation of fire. Fire Saf J. 2020;114: 102991.spa
dc.relation.referencesHodges JL, Lattimer BY, Luxbacher KD. Compartment fire predictions using transpose convolutional neural networks. Fire Saf J. 2019;108: 102854.spa
dc.relation.referencesHodges JL, Lattimer BY. Wildland Fire Spread Modeling Using Convolutional Neural Networks. Fire Technol. 2019;55: 2115–2142.spa
dc.relation.referencesLo SM, Liu M, Zhang PH, Yuen RKK. An Artificial Neural-network Based Predictive Model for Pre-evacuation Human Response in Domestic Building Fire. Fire Technol. 2009;45: 431–449.spa
dc.relation.referencesArshad U, Taqvi SAA, Buang A. Experimental analysis and data-driven machine learning modelling of the minimum ignition temperature (MIT) of aluminium dust. Fuel. 2022;324: 124569.spa
dc.relation.referencesSarbayev M, Yang M, Wang H. Risk assessment of process systems by mapping fault tree into artificial neural network. J Loss Prev Process Indust. 2019;60: 203–212.spa
dc.relation.referencesHarhara A, Arora A, Faruque Hasan MM. Process safety consequence modeling using artificial neural networks for approximating heat exchanger overpressure severity. Comput Chem Eng. 2023;170: 108098.spa
dc.relation.referencesGrégoire Y, Daubech J, Proust C, Leprette E. Vented gas explosion overpressure calculation based on a multi-layered neural network. J Loss Prev Process Indust. 2022;74: 104641.spa
dc.relation.referencesArshad U, Taqvi SAA, Buang A. Modelling of the minimum ignition temperature (MIT) of corn dust using statistical analysis and artificial neural networks based on the synergistic effect of concentration and dispersion pressure. Process Saf Environ Prot. 2021;147: 742–755.spa
dc.relation.referencesPatnaik G, Kaushik A, Singh MJ, Rajput A, Prakash G, Borana L. Damage Prediction of Underground Pipelines Subjected to Blast Loading. Arab J Sci Eng. 2022;47: 13559–13578.spa
dc.relation.referencesLo SM. A Fire Safety Assesment System for Existing Buildings. Fire Technol. 1999;35.spa
dc.relation.referencesLiu M, Lo SM. The quantitative investigation on people’s pre-evacuation behavior under fire. Autom Constr. 2011;20: 620–628.spa
dc.relation.referencesBilgehan M, Kurtoğlu AE. ANFIS-based prediction of moment capacity of reinforced concrete slabs exposed to fire. Neural Comput Appl. 2016;27: 869–881.spa
dc.relation.referencesAhmad MA, Rashid ZA, Alzahrani AA, El-Harbawi M. Safety assessment: predicting fatality rates in methanol plant incidents. Heliyon. 2022;8: e11610.spa
dc.relation.referencesRao MB, Rao CR. Chapter 10 - Bayesian Networks. In: Rao MB, Rao CR, editors. Handbook of Statistics. Elsevier; 2014. pp. 357–385.spa
dc.relation.referencesMirończuk MM. Information Extraction System for Transforming Unstructured Text Data in Fire Reports into Structured Forms: A Polish Case Study. Fire Technol. 2020;56: 545–581.spa
dc.relation.referencesAbidha TE, Mathai PP. Reducing false alarms in vision based fire detection with nb classifier in eadf framework. International Journal of Scientific and Research Publications. 2013;3: 50.spa
dc.relation.referencesNikolić S, Knežević M, Ivančević V, Luković I. Building an ensemble from a single Naive Bayes classifier in the analysis of key risk factors for Polish State Fire Service. 2014 Federated Conference on Computer Science and Information Systems. 2014. pp. 361–367.spa
dc.relation.referencesBahrepour M, Meratnia N, Havinga P. Use of AI Techniques for Residential Fire Detection in Wireless Sensor Networks. IFIP International Conference on Artificial Intelligence Applications & Innovations. 2009.spa
dc.relation.referencesNamazi S, Brankovic L, Moghtaderi B, Zanganeh J. Predicting Deflagration and Detonation in Detonation Tube. Applications of Artificial Intelligence and Machine Learning. Springer Nature Singapore; 2022. pp. 529–543.spa
dc.relation.referencesDavidson Rachel A. Modeling Postearthquake Fire Ignitions Using Generalized Linear (Mixed) Models. J Infrastruct Syst. 2009;15: 351–360.spa
dc.relation.referencesHasofer AM, Thomas I. Analysis of fatalities and injuries in building fire statistics. Fire Saf J. 2006;41: 2–14.spa
dc.relation.referencesFinney M, Grenfell IC, Mc Hugh CW. Modeling containment of large wildfires using generalized linear mixed-model analysis. Forest Science. 2009;55: 249.spa
dc.relation.referencesGuo F, Wang G, Innes JL, Ma Z, Liu A, Lin Y. Comparison of six generalized linear models for occurrence of lightning-induced fires in northern Daxing’an Mountains, China. Res J For. 2016;27: 379–388.spa
dc.relation.referencesVilar del Hoyo L, Isabel MPM, Vega FJM. Logistic regression models for human-caused wildfire risk estimation: Analysing the effect of the spatial accuracy in fire occurrence data. Eur J For Res. 2011;130: 983–996.spa
dc.relation.referencesPan J, Wang W, Li J. Building probabilistic models of fire occurrence and fire risk zoning using logistic regression in Shanxi Province, China. Nat Hazards. 2016;81: 1879–1899.spa
dc.relation.referencesYang L, Dawson CW, Brown MR, Gell M. Neural network and GA approaches for dwelling fire occurrence prediction. Knowledge-Based Systems. 2006;19: 213–219.spa
dc.relation.referencesBoxer PA, Wild D. Psychological distress and alcohol use among fire fighters. Scand J Work Environ Health. 1993;19: 121–125.spa
dc.relation.referencesKim W, Kim J, Jang JA, Kim S-H. Do Perceptions of Hydrogen Energy Effect on Vehicle Preference? A Learning-Based Model Approach. KSCE Journal of Civil Engineering. 2023;27: 805–813.spa
dc.relation.referencesRestrepo CE, Simonoff JS, Zimmerman R. Causes, cost consequences, and risk implications of accidents in US hazardous liquid pipeline infrastructure. Int J Crit Infrastruct Prot. 2009;2: 38–50.spa
dc.relation.referencesWu X, Hou L, Wu Z. Quantitative Analysis of the Cause-Effect Relationship of Incidents Occurred in Tank Farm Based on the Method of Logistic Regression. ASME 2019 Pressure Vessels & Piping Conference. 2019; V007T07A023.spa
dc.relation.referencesEckhoff RK, Ngo M, Olsen W. On the minimum ignition energy (MIE) for propane/air. J Hazard Mater. 2010;175: 293–297.spa
dc.relation.referencesSong X. Parameterized fragility analysis of steel frame structure subjected to blast loads using Bayesian logistic regression method. Struct Saf. 2020;87: 102000.spa
dc.relation.referencesHarmathy TZ. Design of Buildings for Fire Safety. ASTM International; 1976.spa
dc.relation.referencesAmatulli G, Rodrigues MJ, Trombetti M, Lovreglio R. Assessing long-term fire risk at local scale by means of decision tree technique. Journal of Geophysical Research: Biogeosciences. 2006;111. doi:10.1029/2005JG000133spa
dc.relation.referencesChu G, Sun J. Decision analysis on fire safety design based on evaluating building fire risk to life. Saf Sci. 2008;46: 1125–1136.spa
dc.relation.referencesMcNeil JG, Lattimer BY. Autonomous Fire Suppression System for Use in High and Low Visibility Environments by Visual Servoing. Fire Technol. 2016;52: 1343–1368.spa
dc.relation.referencesKusiak A, Song Z. Combustion efficiency optimization and virtual testing: A data-mining approach. IEEE Trans Ind Inf. 2006;2: 176–184.spa
dc.relation.referencesJogarah KK, Soopaul K, Beeharry Y, Hurbungs V. Hybrid machine learning algorithms for fault detection in android smartphones. Trans Emerg Telecommun Technol. 2018;29: e3272.spa
dc.relation.referencesLei C, Deng J, Cao K, Ma L, Xiao Y, Ren L. A random forest approach for predicting coal spontaneous combustion. Fuel. 2018;223: 63–73.spa
dc.relation.referencesOliveira S, Oehler F, San-Miguel-Ayanz J, Camia A, Pereira JMC. Modeling spatial patterns of fire occurrence in Mediterranean Europe using Multiple Regression and Random Forest. For Ecol Manage. 2012;275: 117–129.spa
dc.relation.referencesKim O, Kang D-J. Fire detection system using random forest classification for image sequences of complex background. Opt Eng. 2013;52. doi:10.1117/1.OE.52.6.067202spa
dc.relation.referencesEl-Amin MF, Subasi A. Forecasting a Small-Scale Hydrogen Leakage in Air using Machine Learning Techniques. 2020 2nd International Conference on Computer and Information Sciences (ICCIS). 2020. pp. 1–5.spa
dc.relation.referencesKo BC, Cheong K-H, Nam J-Y. Fire detection based on vision sensor and support vector machines. Fire Saf J. 2009;44: 322–329.spa
dc.relation.referencesWei Y-Y, Zhang J-Y, Wang J. Research on Building Fire Risk Fast Assessment Method Based on Fuzzy comprehensive evaluation and SVM. Pan X., Wang J., Yao H., editors. Elsevier Ltd; 2018.spa
dc.relation.referencesPundir AS, Raman B. Dual Deep Learning Model for Image Based Smoke Detection. Fire Technol. 2019;55: 2419–2442.spa
dc.relation.referencesIshola AA, Valles D. Using Machine Learning and Regression Analysis to Classify and Predict Danger Levels in Burning Sites. 2022 IEEE World AI IoT Congress (AIIoT). 2022. pp. 453–459.spa
dc.relation.referencesChen P, Xie Y, Jin P, Zhang D. A wireless sensor data-based coal mine gas monitoring algorithm with least squares support vector machines optimized by swarm intelligence techniques. Int J Distrib Sens Netw. 2018;14: 1550147718777440.spa
dc.relation.referencesLiu K-W, Wan J-H, Han Z-Z. Hazardous chemicals accident prediction based on accident state vector using multimodal data. Fuzzy Systems and Data Mining II. Amsterdam, NY: IOS Press; 2016. pp. 232–240.spa
dc.relation.referencesWang Q, Teng G, Li C, Zhao Y, Peng Z. Identification and classification of explosives using semi-supervised learning and laser-induced breakdown spectroscopy. J Hazard Mater. 2019;369: 423–429.spa
dc.relation.referencesGoumagias N, Whalley J, Dilaver O, Cunningham J. Making sense of the internet of things: a critical review of internet of things definitions between 2005 and 2019. Internet Res. 2021;31: 1583–1610.spa
dc.relation.referencesSacramento ICC, de Oliveira Fernandes V, Rösch N, de Andrade Marques E. Low-cost multipurpose sensor network integrated with iot and webgis for fire safety concerns. Acta Scientiarum Technology. 2023;45: e61451–e61451.spa
dc.relation.referencesHajovsky R, Pies M, Velicka J, Slany V, Rous R, Danys L, et al. Design of an IoT-Based Monitoring System as a Part of Prevention of Thermal Events in Mining and Landfill Waste Disposal Sites: A Pilot Case Study. IEEE Trans Instrum Meas. 2023;72: 1–14.spa
dc.relation.referencesSafi A, Ahmad Z, Jehangiri AI, Latip R, Zaman SKU, Khan MA, et al. A Fault Tolerant Surveillance System for Fire Detection and Prevention Using LoRaWAN in Smart Buildings. Sensors . 2022;22. doi:10.3390/s22218411spa
dc.relation.referencesHitimana E, Bajpai G, Musabe R, Sibomana L, Jayavel K. Containerized Architecture Performance Analysis for IoT Framework Based on Enhanced Fire Prevention Case Study: Rwanda. Sensors . 2022;22. doi:10.3390/s22176462spa
dc.relation.referencesSingh N, Gunjan VK, Chaudhary G, Kaluri R, Victor N, Lakshmanna K. IoT enabled HELMET to safeguard the health of mine workers. Computer communications. 2022;193: 1–9.spa
dc.relation.referencesChen M, Wu Y, Wang K, Guo H, Ke W. An explosion accident analysis of the laboratory in university. Process Saf Prog. 2020;39: e12150.spa
dc.relation.referencesXie S, Chen Y, Dong S, Zhang G. Risk assessment of an oil depot using the improved multi-sensor fusion approach based on the cloud model and the belief Jensen-Shannon divergence. J Loss Prev Process Indust. 2020;67: 104214.spa
dc.relation.referencesZahid HM, Ahammed R. Application of Industry 4.0 in LPG condition monitoring and emergency systems using IoT approach. World Journal of Engineering. 2021;18: 971–984.spa
dc.relation.referencesSagiroglu S, Sinanc D. Big data: A review. 2013 International Conference on Collaboration Technologies and Systems (CTS). 2013. pp. 42–47.spa
dc.relation.referencesSung Kim B, Yeon Kim D, Won Kim K, Taek Park S. The improvement plan for fire response time using big data. Indian J Sci Technol. 2015;8. doi:10.17485/ijst/2015/v8i23/79198spa
dc.relation.referencesSun X, Cai K, Chen B, Zha J, Zhou G. Application of voice recognition interaction and big data internet of things in urban fire fighting. Journal of Location Based Services. 2022; 1–22.spa
dc.relation.referencesKim J-S, Kim B-S. Analysis of Fire-Accident Factors Using Big-Data Analysis Method for Construction Areas. KSCE Journal of Civil Engineering. 2018;22: 1535–1543.spa
dc.relation.referencesJia J, Chen X, Sun Q. Surrounding Environment and Civil Airport Fire Emergency Management Based on Big Data Simulation. Mobile Information Systems. 2022;2022. doi:10.1155/2022/9050406spa
dc.relation.referencesMuhammad K, Rodrigues JJPC, Kozlov S, Piccialli F, Albuquerque VHC de. Energy-Efficient Monitoring of Fire Scenes for Intelligent Networks. IEEE Netw. 2020;34: 108–115.spa
dc.relation.referencesLee C-A, Sung Y-C, Lin Y-S, Hsiao GL-K. Evaluating the severity of building fires with the analytical hierarchy process, big data analysis, and remote sensing. Nat Hazards. 2020;103: 1843–1856.spa
dc.relation.referencesWang L, Zhao Q, Wen Z, Qu J. RAFFIA: Short-term Forest Fire Danger Rating Prediction via Multiclass Logistic Regression. Sustain Sci Pract Policy. 2018;10: 4620.spa
dc.relation.referencesZhou L, Yuan L, Bahrami D, Thomas RA, Cole GP, Rowland JH. Study on integration of real-time atmospheric monitoring system data and MFIRE simulation. CIM Journal. 2020;11: 131–138.spa
dc.relation.referencesCheng X, Zhang Y. Study on Explosion Safety Distance in LPG Tank Fire. 2019 International Conference on Intelligent Transportation, Big Data & Smart City (ICITBS). 2019. pp. 682–686.spa
dc.relation.referencesZnamenskaya IA, Doroshchenko IA, Sysoev NN, Tatarenkova DI. Results of Quantitative Analysis of High-Speed Shadowgraphy of Shock Tube Flows Using Machine Vision and Machine Learning. Dokl Phys. 2021;66: 93–96.spa
dc.relation.referencesSchunk DH. Learning theories an educational perspective. Pearson Education, Inc; 2012.spa
dc.relation.referencesGarzón J, Kinshuk, Baldiris S, Gutiérrez J, Pavón J. How do pedagogical approaches affect the impact of augmented reality on education? A meta-analysis and research synthesis. Educational Research Review. 2020;31: 100334.spa
dc.relation.referencesPark HY, Licon CV, Sleipness OR. Teaching Sustainability in Planning and Design Education: A Systematic Review of Pedagogical Approaches. Sustain Sci Pract Policy. 2022;14: 9485.spa
dc.relation.referencesWoodrow M, Gillen AL, Woodrow R, Torero J. Investigating varied pedagogical approaches for problem-based learning in a fire safety engineering course. International Journal of Engineering Education. 2020;36: 1605–1614.spa
dc.relation.referencesLozano R, Merrill MY, Sammalisto K, Ceulemans K, Lozano FJ. Connecting Competences and Pedagogical Approaches for Sustainable Development in Higher Education: A Literature Review and Framework Proposal. Sustain Sci Pract Policy. 2017;9: 1889.spa
dc.relation.referencesSprain L, Timpson WM. Pedagogy for Sustainability Science: Case-Based Approaches for Interdisciplinary Instruction. Environmental Communication. 2012;6: 532–550.spa
dc.relation.referencesStalmeijer RE, Gijselaers WH, Wolfhagen IHAP, Harendza S, Scherpbier AJJA. How interdisciplinary teams can create multi-disciplinary education: the interplay between team processes and educational quality. Med Educ. 2007;41: 1059–1066.spa
dc.relation.referencesSegalàs J, Ferrer-Balas D, Mulder KF. What do engineering students learn in sustainability courses? The effect of the pedagogical approach. J Clean Prod. 2010;18: 275–284.spa
dc.relation.referencesDavies M. Concept mapping, mind mapping and argument mapping: what are the differences and do they matter? Higher Education. 2011;62: 279–301.spa
dc.relation.referencesNational Fire Protection Association. Flammable and Combustible Liquids Code: NFPA 30. National fire protection Association; 2014. Report No.: NFPA 30.spa
dc.relation.referencesMcGrattan KB, Baum HR, Hamins A. Thermal radiation from large pool fires. Gaithersburg, MD: National Institute of Standards and Technology; 2000 Nov. doi:10.6028/nist.ir.6546spa
dc.relation.referencesDrysdale DD. Fire Dynamics. In: Meyers RA, editor. Encyclopedia of Physical Science and Technology (Third Edition). New York: Academic Press; 2003. pp. 869–892.spa
dc.relation.referencesLafdal B, Djebbar R, Boulet P, Mehaddi R, Koutaiba E, Beji T, et al. Numerical study of the combustion regimes in naturally-vented compartment fires. Fire Saf J. 2022;131: 103604.spa
dc.relation.referencesFontana M, Kohler J, Fischer K, De Sanctis G. Fire Load Density. In: Hurley MJ, Gottuk D, Hall JR, Harada K, Kuligowski E, Puchovsky M, et al., editors. SFPE Handbook of Fire Protection Engineering. New York, NY: Springer New York; 2016. pp. 1131–1142.spa
dc.relation.referencesReal Decreto 2267/2004, de 3 de diciembre, por el que se aprueba el Reglamento de seguridad contra incendios en los establecimientos industriales. BOE-A-2004-21216. Available: https://www.boe.es/buscar/pdf/2004/BOE-A-2004-21216-consolidado.pdfspa
dc.relation.referencesPolyethylene terephthalate (PET). [cited 12 Jul 2023]. Available: https://materials.fsri.org/materialdetail/polyethylene-terephthalate-petspa
dc.relation.referencesHaddad RK, Maluk C, Reda E, Harun Z. Critical Velocity and Backlayering Conditions in Rail Tunnel Fires: State-of-the-Art Review. Journal of Combustion. 2019;2019. doi:10.1155/2019/3510245spa
dc.relation.referencesHo YT, Kawabata N, Seike M, Hasegawa M, Chien SW, Shen TS. Scale Model Experiments and Simulations to Investigate the Effect of Vehicular Blockage on Backlayering Length in Tunnel Fire. Buildings 2022, Vol 12, Page 1006. 2022;12: 1006.spa
dc.relation.referencesWeng MC, Lu XL, Liu F, Du CX. Study on the critical velocity in a sloping tunnel fire under longitudinal ventilation. Appl Therm Eng. 2016;C: 422–434.spa
dc.relation.referencesLi YZ, Lei B, Ingason H. Study of critical velocity and backlayering length in longitudinally ventilated tunnel fires. Fire Saf J. 2010;45: 361–370.spa
dc.relation.referencesZhang Y, Yao Y, Ren F, Zhu H, Zhang S, Jiang L. Effects of ambient pressure on smoke propagation in inclined tunnel fires under natural ventilation. Environ Sci Pollut Res Int. 2023. doi:10.1007/s11356-023-26774-zspa
dc.relation.referencesAbella A, García-Arango I, Hacar F. Historia y funcionamiento de los sistemas de ventilación en túneles de carretera. Obras y Proyectos. 2021; 16–30.spa
dc.relation.referencesCheong MK, Spearpoint M, Fleischmann CM. Using the peak heat release rate to determine the fire risk level of road tunnels. 2008. doi:10.1243/1748006XJRR169spa
dc.relation.referencesChen F, Leong JC. Smoke flow phenomena and turbulence characteristics of tunnel fires. Appl Math Model. 2011;35: 4554–4566.spa
dc.relation.referencesGheorghe GC, Manrique-Hernández EF, Idrovo AJ. Injuries and fatalities in Colombian mining emergencies (2005 - 2018). medRxiv. 2021. p. 2021.04.04.21254888. doi:10.1101/2021.04.04.21254888spa
dc.relation.referencesJaramillo-Urrego LM. Safety in small-scale underground coal mining in Colombia. University of Leoben. 2019.spa
dc.relation.referencesSekhar BS, Shah Y. Emerging technologies in Indian mining industry: an exploratory empirical investigation regarding the adoption challenges. Journal of Science and Technology Policy Management. 2021;13: 358–381.spa
dc.relation.referencesWang J, Huang Y, Li J, Zhai W, Ouyang S, Gao H, et al. Research on coal mine safety management based on digital twin. Heliyon. 2023;0. doi:10.1016/j.heliyon.2023.e13608spa
dc.relation.referencesDong X, Yang Z, Guo L, Gao Y. Assessment of the Explosion Accident Risk in Non-Coal Mining by Hasse Diagram Technique. Processes. 2023;11: 582.spa
dc.relation.referencesHosseini S, Poormirzaee R, Gilani S-O, Jiskani IM. A reliability-based rock engineering system for clean blasting: risk analysis and dust emissions forecasting. Clean Technologies and Environmental Policy. 2023. doi:10.1007/s10098-023-02479-2spa
dc.relation.referencesJi P, Shi S. Hazard prediction of coal and gas outburst based on the Hamming distance artificial intelligence algorithm (HDAIA). Journal of Safety Science and Resilience. 2023. doi:10.1016/j.jnlssr.2022.12.001spa
dc.relation.referencesYang S, Lian H, Xu B, Thanh HV, Chen W, Yin H, et al. Application of robust deep learning models to predict mine water inflow: Implication for groundwater environment management. Science of The Total Environment. 2023;871: 162056.spa
dc.relation.referencesKamran M, Shahani NM. Decision Support System for the Prediction of Mine Fire Levels in Underground Coal Mining Using Machine Learning Approaches. Mining, Metallurgy and Exploration. 2022;39: 591–601.spa
dc.relation.referencesDey P, Chaulya SK, Kumar S. Hybrid CNN-LSTM and IoT-based coal mine hazards monitoring and prediction system. Process Safety and Environmental Protection. 2021;152: 249–263.spa
dc.relation.referencesAdjiski V, Despodov Z, Serafimovski D. Prototype Model for Fire Safety System in Underground Mining. American Journal of Mining and Metallurgy. 2017;4: 62–67.spa
dc.relation.referencesMeng F, Li C. Safety warning of coal mining face based on big data association rule mining. Journal of Computational Methods in Science and Engineering. 2022;22: 1035–1052.spa
dc.relation.referencesJuganda A, Pinheiro H, Wilson F, Sandoval N, Bogin GE, Brune JF. Investigation of Explosion Hazard in Longwall Coal Mines by Combining CFD with a 1/40th-Scale Physical Model. Mining, Metallurgy & Exploration. 2022;39: 2273–2290.spa
dc.relation.referencesDemirkan DC, Duzgun HS, Juganda A, Brune J, Bogin G. Real-Time Methane Prediction in Underground Longwall Coal Mining Using AI. Energies. 2022;15: 6486.spa
dc.relation.referencesCai Y, Wu S, Zhou M, Gao S, Yu H. Early Warning of Gas Concentration in Coal Mines Production Based on Probability Density Machine. Sensors. 2021;21: 5730.spa
dc.relation.referencesSun S, Gura D, Dong B. Fire safety assessment models based on machine learning methods for the coal industry. Chemometrics and Intelligent Laboratory Systems. 2022;231: 104693.spa
dc.relation.referencesBarros-Daza MJ, Luxbacher KD, Lattimer BY, Hodges JL. Real Time Mine Fire Classification to Support Firefighter Decision Making. Fire Technol. 2022;58: 1545–1578.spa
dc.relation.referencesBarros-Daza MJ, Luxbacher KD, Lattimer BY, Hodges JL. Fire Size and Response Time Predictions in Underground Coal Mines Using Neural Networks. Mining, Metallurgy & Exploration. 2022;39: 1087–1098.spa
dc.relation.referencesKhan AU, Salman S, Muhammad K, Habib M. Modelling Coal Dust Explosibility of Khyber Pakhtunkhwa Coal Using Random Forest Algorithm. Energies. 2022;15: 3169.spa
dc.relation.referencesZhang Y, Yang Y, Zhang J, Wang Y. Sensitivity study of multi-field information maps of typical landslides in mining areas based on transfer learning. Frontiers of Earth Science in China. 2023;11. doi:10.3389/feart.2023.1105985spa
dc.relation.referencesPotapov VP, Oparin VN, Mikov LS, Popov SE. Information Technologies in Problems of Nonlinear Geomechanics. Part I: Earth Remote Sensing Data and Lineament Analysis of Deformation Wave Processes. Journal of Mining Science. 2022;58: 486–502.spa
dc.relation.referencesZhang Y, Zhang J, Wang Q. Scene analysis of landslide geoscience and characterization of scene evolution. Acta Geophysica. 2022. doi:10.1007/s11600-022-00845-0spa
dc.relation.referencesSu Q, Tao W, Mei S, Zhang X, Li K, Su X, et al. Landslide Susceptibility Zoning Using C5.0 Decision Tree, Random Forest, Support Vector Machine and Comparison of Their Performance in a Coal Mine Area. Frontiers of Earth Science in China. 2021;9. doi:10.3389/feart.2021.781472spa
dc.relation.referencesAnantrasirichai N, Biggs J, Kelevitz K, Sadeghi Z, Wright T, Thompson J, et al. Detecting Ground Deformation in the Built Environment Using Sparse Satellite InSAR Data With a Convolutional Neural Network. IEEE Transactions on Geoscience and Remote Sensing. 2021;59: 2940–2950.spa
dc.relation.referencesCórdoba Quiceno CC, Molina Escobar JM. Caracterización de sistemas de ventilación en minería subterránea. Boletín de Ciencias de la Tierra. 2011;29: 73–86.spa
dc.relation.referencesMolina A, López S, Molina JM, Copete H, Soto D, Jaramillo L, et al. Hacia una estructura de investigación y educación para la prevención de accidentes por incendios y explosiones en Colombia. Revista de la Academia Colombiana de Ciencias Exactas, Fisicas y Naturales. 2022;46: 50–67.spa
dc.relation.referencesPerrin L, Muñoz-Giraldo F, Dufaud O, Laurent A. Normative barriers improvement through the MADS/MOSAR methodology. Safety science. 2012;50: 1502–1512.spa
dc.relation.referencesUrrego LJ, Escobar JM, Torrent JG, Pejic L. Implementation of ATEX standards in the context of mining activity in Colombia. Revista Facultad de Ingeniería. 2017;26: 47–60.spa
dc.relation.referencesMcPherson MJ. Incompressible flow relationships. Subsurface Ventilation and Environmental Engineering. 1993. pp. 134–174. doi:10.1007/978-94-011-1550-6_5spa
dc.relation.referencesSoto D, Vallejo-Molina LF, López S, Molina-Escobar JM, Torero J, Molina A. Use of physical modeling tools in the prediction and alert of methane layering in underground mines [Unpublished manuscript]. Process Safety and Environmental Protection. Universidad Nacional de Colombia;spa
dc.relation.referencesRahimi S, Ataee-pour M, Madani H. CFD Modeling of Impact of Gas Content Uncertainty on Methane Distribution in Underground Coal Mine Roadways. Journal of Mining and Environment. 2022;13: 493–502.spa
dc.relation.referencesWang C, Wei L, Hu H, Wang J, Jiang M. Early Warning Method for Coal and Gas Outburst Prediction Based on Indexes of Deep Learning Model and Statistical Model. Front Earth Sci Chin. 2022;10: 1–17.spa
dc.relation.referencesLi M, Wang H, Wang D, Shao Z, He S. Risk assessment of gas explosion in coal mines based on fuzzy AHP and bayesian network. Process Safety and Environmental Protection. 2020;135: 207–218.spa
dc.relation.referencesTan B, Zhang H, Cheng G, Liu Y, Zhang X. Constructing a Gas Explosion Inversion Model in a Straight Roadway Using the GA–BP Neural Network. ACS Omega. 2021;6: 32485–32494.spa
dc.relation.referencesBohannon R, Andrews W. Normal walking speed: a descriptive meta-analysis. Physiotherapy. 97: “182–189.”spa
dc.relation.referencesMagnusson SE, Drysdale DD, Fitzgerald RW, Motevalli V, Mowrer F, Quintiere J, et al. A proposal for a model curriculum in fire safety engineering. Fire Saf J. 1995;25: 1–88.spa
dc.relation.referencesChow WK, Wong LT, Chan KT, Fong NK, Ho PL. Fire safety engineering: comparison of a new degree programme with the model curriculum. Fire Saf J. 1999;32: 1–15.spa
dc.relation.referencesGehandler J. The theoretical framework of fire safety design: Reflections and alternatives. Fire Saf J. 2017;91: 973–981.spa
dc.relation.referencesLi G-Q, Zhang C, Jiang J. A Review on Fire Safety Engineering: Key Issues for High-Rise Buildings. International Journal of High-Rise Buildings. 2018;7: 265–285.spa
dc.relation.referencesLange D, Torero JL, Osorio A, Lobel N, Maluk C, Hidalgo JP, et al. Identifying the attributes of a profession in the practice and regulation of fire safety engineering. Fire Saf J. 2021;121: 103274.spa
dc.relation.referencesLange D, Torero JL, Spinardi G, Law A, Johnson P, Brinson A, et al. A competency framework for fire safety engineering. Fire Saf J. 2022;127: 103511.spa
dc.relation.referencesWoodrow M, Bisby L, Torero JL. A nascent educational framework for fire safety engineering. 2013. doi:10.1016/j.firesaf.2013.02.004spa
dc.relation.referencesWilley RJ, Fogler HS, Cutlip MB. The integration of process safety into a chemical reaction engineering course: Kinetic modeling of the T2 incident. Process Saf Prog. 2011;30: 39–44.spa
dc.relation.referencesMa C, Jing M, Hou S, Jiang J, Zhang B. Current status of safety engineering education in China. Process Saf Prog. 2022;41: 218–225.spa
dc.relation.referencesSofri S, Reddy Prasad DM, Bin Azri MH, Timbang A. Analysis of chemical engineering curriculum to improve process safety competency. Int J Occup Saf Ergon. 2022; 1–9.spa
dc.relation.referencesAmaya-Gómez R, Dumar V, Sánchez-Silva M, Romero R, Arbeláez C, Muñoz F, et al. Process safety part of the engineering education DNA. Educ Chem Eng. 2019;27: 43–53.spa
dc.relation.referencesNolan DP. Handbook of Fire and Explosion Protection Engineering Principles: for Oil, Gas, Chemical and Related Facilities. William Andrew; 2014.spa
dc.relation.referencesSheppard CM. Process safety in the curriculum: Explosion prevention technical elective. Chemical Engineering Education. 1998;32: 270–276.spa
dc.relation.referencesLouvar J, Hendershot D. Education materials for universities and industry. Process Saf Prog. 2007;26: 85–89.spa
dc.relation.referencesInicio - Consejo Nacional de Acreditación - CNA. [cited 3 Apr 2023]. Available: https://www.cna.gov.co/portal/spa
dc.relation.referencesAccreditation Board for Engineering and Technology - ABET. [cited 1 Feb 2023]. Available: https://www.abet.org/spa
dc.relation.referencesEngineering Council. [cited 30 Mar 2023]. Available: https://www.engc.org.uk/spa
dc.relation.referencesEuropean Network for Accreditation of Engineering Education - ENAEE. [cited 30 Mar 2023]. Available: https://www.enaee.eu/spa
dc.relation.referencesNew Jersey Institute of Technology. Accreditation. [cited 31 Jul 2023]. Available: https://accreditation.org/spa
dc.relation.referencesABET - Engineering Accreditation Commission. 2023 - 2024 Criteria for Accrediting Engineering Programs. ABET; 2022.spa
dc.relation.referencesEngineering Council. The UK standard for professional engineering competence and commitment (UK-SPEC). Engineering Council; 2020.spa
dc.relation.referencesEuropean Accreditation of Engineering Programmes EUR-ACE. EUR-ACE Framework Standards and Guidelines. European Network for Accreditation of Engineering Education ENAEE; 2021.spa
dc.relation.referencesUniandes. Clasificación de áreas en atmósferas explosivas y gestión del riesgo de ignición. Universidad de Los Andes; [cited 31 Jul 2023]. Available: https://educacioncontinua.uniandes.edu.co/en/programs/clasificacion-de-areas-en-atmosferas-explosivas-y-gestion-del-riesgo-de-ignicionspa
dc.relation.referencesUniversidad Pontificia Bolivariana-Bucaramanga. Curso de Fundamentos de la Seguridad de Procesos. [cited 31 Jul 2023]. Available: https://www.upb.edu.co/es/formacioncontinua/curso-de-fundamentos-de-la-seguridad-de-procesos-upb-bucaramangaspa
dc.relation.referencesConsejo Colombiano de Seguridad. Seguridad de Procesos. [cited 31 Jul 2023]. Available: https://ccs.org.co/events/seguridad-de-procesos/spa
dc.relation.referencesU.S. Fire Administration. [cited 27 Dec 2022]. Available: https://www.usfa.fema.gov/index.htmlspa
dc.relation.referencesNational Fire Protection Association - NFPA. [cited 30 Jan 2023]. Available: https://www.nfpa.org/spa
dc.relation.referencesU.S. Fire Administration. National Fire Incident Reporting System. [cited 30 Jan 2023]. Available: https://www.usfa.fema.gov/nfirs/spa
dc.relation.referencesXiong Y, Zhang C, Qi H, Liu X. Characteristics and Situation of Fire in China From 1999 to 2019: A Statistical Investigation. Front Environ Sci Eng China. 2022;10. doi:10.3389/fenvs.2022.945171spa
dc.relation.referencesCoal and lignite Production Data. [cited 31 Jul 2023]. Available: https://yearbook.enerdata.net/coal-lignite/coal-production-data.htmlspa
dc.relation.referencesMine Safety and Health Administration - MSHA. [cited 30 Jan 2023]. Available: https://www.msha.gov/spa
dc.relation.referencesThe state council-People’s Republic of China. State Administration of Coal Mine Safety. [cited 30 Jan 2023]. Available: http://english.www.gov.cn/state_council/2014/10/06/content_281474992926692.htmspa
dc.relation.referencesStewart CM. Rapid Dynamic Ventilation Modelling for Improving Health and Safety in Underground Mining. Doctor of Philosophy, The University of Queensland. 2021.spa
dc.relation.referencesBankel J, Berggren KF, Blom K, Crawley EF, Wiklund I, Östlund S. The CDIO syllabus: a comparative study of expected student proficiency. Eur J Eng Educ. 2003;28: 297–315.spa
dc.relation.referencesWoodrow M. Educating Engineers for a Holistic Approach to Fire Safety. Torero J, editor. Doctor of Philosophy, University of Edinburgh. 2013.spa
dc.relation.referencesRamírez J, Soto D, López S, Akroyd J, Nurkowski D, Botero ML, et al. A virtual laboratory to support chemical reaction engineering courses using real-life problems and industrial software. Educ Chem Eng. 2020;33: 36–44.spa
dc.relation.referencesBloom BS, Engelhart MD, Furst EJ, Hill WH, Krathwohl DR. Handbook I: cognitive domain. New York: David McKay. 1956.spa
dc.relation.referencesVallejo-Molina LF, Blandon-Montes A, Lopez S, Molina-Escobar JM, Ortiz A, Soto D, et al. Application of Artificial Intelligence to the Alert of Explosions in Colombian Underground Mines. Mining, Metallurgy & Exploration. Universidad Nacional de Colombia Sede Medellín; 2023.spa
dc.relation.referencesPhillips RL, Urosek JE, Stephan CR, Stolz RT, Swentosky DJ, Harris GW, et al. Report of investigation, fatal underground coal mine explosion, January 2, Sago Mine, Wolf Run Mining Company, Tallmansville, Upshur County, West Virginia. United States Department Of Labor. Mine Safety And Health Administration. Coal Mine Safety And Health; 2007.spa
dc.relation.referencesZipf RK, Gamezo VN, Sapko MJ, Marchewka WP, Mohamed KM, Oran ES, et al. Methane–air detonation experiments at NIOSH Lake Lynn Laboratory. J Loss Prev Process Indust. 2013;26: 295–301.spa
dc.relation.referencesDrysdale D. An Introduction to Fire Dynamics. Scotland: Wiley; 2011.spa
dc.relation.referencesBarros-Daza MJ, Luxbacher KD, Lattimer BY, Hodges JL. Real Time Mine Fire Classification to Support Firefighter Decision Making. Fire Technol. 2022;58: 1545–1578.spa
dc.relation.referencesBarros-Daza MJ, Luxbacher KD, Lattimer BY, Hodges JL. Fire Size and Response Time Predictions in Underground Coal Mines Using Neural Networks. Mining, Metallurgy and Exploration. 2022;39: 1087–1098.spa
dc.relation.referencesBahrami D, Zhou L, Yuan L. Field Verification of an Improved Mine Fire Location Model. Mining, Metallurgy and Exploration. 2021;38: 559–566.spa
dc.relation.referencesYuan L, Thomas RA, Zhou L. Characterization of a mine fire using atmospheric monitoring system sensor data. Mining Eng. 2017;69: 57.spa
dc.relation.referencesRowland JH, Litton CD, Thomas RA. Evaluation of detection and response times of fire sensors using an atmospheric monitoring system. Physiol Behav. 2019;176: 139–148.spa
dc.relation.referencesVorderbrueggen JB. Imperial sugar refinery combustible dust explosion investigation. Process Saf Prog. 2011;30: 66–81.spa
dc.relation.referencesLi G, Yang H-X, Yuan C-M, Eckhoff RK. A catastrophic aluminium-alloy dust explosion in China. J Loss Prev Process Indust. 2016;39: 121–130.spa
dc.relation.referencesFumagalli A, Derudi M, Rota R, Copelli S. Estimation of the deflagration index KSt for dust explosions: A review. J Loss Prev Process Indust. 2016;44: 311–322.spa
dc.relation.referencesRoyal Academy of Engineering. [cited 6 Jun 2022]. Available: https://www.raeng.org.uk/spa
dc.relation.referencesGolden BL, Wasil EA, Harker PT, editors. The Analytic Hierarchy Process. Springer Berlin, Heidelberg; 2012.spa
dc.relation.referencesShyr W-J, Shih F-Y, Liau H-M, Liu P-W. Constructing and Validating Competence Indicators for Professional Technicians in Fire Safety in Taiwan. Sustain Sci Pract Policy. 2021;13: 7058.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc660 - Ingeniería químicaspa
dc.subject.ddc370 - Educaciónspa
dc.subject.lembPrevención de incendios
dc.subject.lembIndustria minera - Prevención de incendios - Colombia
dc.subject.lembMinas - Medidas de seguridad
dc.subject.lembExplosiones en las minas
dc.subject.lembIncendios en las minas
dc.subject.lembQuímicos - Incendios y prevención del fuego
dc.subject.lembSeguridad industrial - Estudio de casos
dc.subject.lembEducación en seguridad industrial
dc.subject.proposalEngineering Educationeng
dc.subject.proposalFire and Explosion Safetyeng
dc.subject.proposalEmerging Technologies (ETs)eng
dc.subject.proposalPhysical Modeling Tools (PMTs)eng
dc.subject.proposalCase Studyeng
dc.subject.proposalEducational Programeng
dc.subject.proposalEducación en ingenieríaspa
dc.subject.proposalPrevención de incendios y explosionesspa
dc.subject.proposalTecnologías emergentes (TEs)spa
dc.subject.proposalHerramientas de modelado físico (HMFs)spa
dc.subject.proposalCaso de estudiospa
dc.subject.proposalPrograma educativospa
dc.titleEducational program for the prevention of fires and explosions through emerging technologieseng
dc.title.translatedPrograma educativo para la prevención de incendios y explosiones mediante tecnologías emergentesspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleTraining for the prevention of fires and explosions through the use of data analysis and simulation TSP2021\100311 (Hermes No. 51980)spa
oaire.fundernameRoyal Academy of Engineeringspa
oaire.fundernameFundación Juan Pablo Gutierrez Cáceresspa

Archivos

Bloque original

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
1152214091.2023.pdf
Tamaño:
5.92 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis Maestría en Ingeniería Química
Cargando...
Miniatura
Nombre:
1152214091.2023_Appendices.pdf
Tamaño:
20.08 MB
Formato:
Adobe Portable Document Format
Descripción:
Apendices Tesis Maestría en Ingeniería Química

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: