Designing histopathology representations: Automatic extraction of relevant information to support cancer decision-making
| dc.contributor.advisor | Romero Castro, Eduardo | spa |
| dc.contributor.advisor | Corredor Prada, German | spa |
| dc.contributor.author | Salguero Lopez, Jennifer | spa |
| dc.contributor.researchgroup | Cim@Lab | spa |
| dc.contributor.subjectmatterexpert | Gonzalez Osorio, Fabio | spa |
| dc.contributor.subjectmatterexpert | Viswanath, Satish | spa |
| dc.contributor.subjectmatterexpert | Shiradkar, Rakesh | spa |
| dc.contributor.subjectmatterexpert | Mirtti, Tuomas | spa |
| dc.date.accessioned | 2026-01-21T20:58:28Z | |
| dc.date.available | 2026-01-21T20:58:28Z | |
| dc.date.issued | 2025-11-24 | |
| dc.description | ilustraciones, diagramas | spa |
| dc.description.abstract | Cancer is among the leading causes of death worldwide and represents a multidimensional challenge where disease evolution depends not only on the affected organ and environmental conditions but most importantly on treatment selection. This complexity has driven cancer management to transition from one-size-fits-all treatments to precision medicine, requiring biomarker-based approaches guided by specific molecular and morphological alterations that characterize individual tumor biology. Histopathology provides the gold standard for cancer diagnosis through direct examination of tissue architecture and cellular patterns. However, not all diagnostic information is easily quantifiable, particularly, histopathological images contain complex pattern correlations and architectural relationships that exceed human analytical capacity, but are useful for precision medicine and are definitely not captured within most clinical scenarios. This dissertation addresses the representation challenge in computational pathology by developing morphological biomarkers that take advantage of domain-knowledge to extract clinically relevant information while maintaining diagnostic utility for cancer decision-making. This approach was validated by progressing from complete tissue variance analysis to specific cellular arrangement patterns to glandular architectural features. The methodology demonstrates how morphological biomarker design can be adapted to capture relevant biological information at different levels of tissue organization. This systematic approach establishes a transferable framework that could be applied to other cancers sharing similar tissue characteristics, morphological patterns, or architectural features, providing a foundation for broader clinical applications in precision medicine. | eng |
| dc.description.abstract | El cáncer se encuentra entre las principales causas de muerte a nivel mundial y representa un desafío multidimensional donde la evolución de la enfermedad depende no solo del órgano afectado y las condiciones ambientales, sino principalmente de la selección del tratamiento. Esta complejidad ha llevado al manejo del cáncer a transicionar de tratamientos únicos para todos los pacientes hacia la medicina de precisión, requiriendo enfoques basados en biomarcadores guiados por alteraciones moleculares y morfológicas específicas que caracterizan la biología tumoral individual. La histopatología proporciona el estándar de oro para el diagnóstico de cáncer a través del examen directo de la arquitectura tisular y los patrones celulares. Sin embargo, no toda la información diagnóstica es fácilmente cuantificable; particularmente, las imágenes histopatológicas contienen correlaciones de patrones complejos y relaciones arquitecturales que exceden la capacidad analítica humana, pero son útiles para la medicina de precisión y definitivamente no son capturadas en la mayoría de escenarios clínicos. Esta disertación aborda el desafío de representación en la patología computacional mediante el desarrollo de biomarcadores morfológicos que aprovechan el conocimiento del dominio para extraer información clínicamente relevante mientras mantienen la utilidad diagnóstica para la toma de decisiones en cáncer. Este enfoque fue validado progresando desde el análisis de varianza de tejido completo hasta patrones específicos de arreglos celulares y características arquitecturales glandulares. La metodología demuestra cómo el diseño de biomarcadores morfológicos puede adaptarse para capturar información biológica relevante en diferentes niveles de organización tisular. Este enfoque sistemático establece un marco transferible que podría aplicarse a otros cánceres que compartan características tisulares, patrones morfológicos o características arquitecturales similares, proporcionando una base para aplicaciones clínicas más amplias en medicina de precisión. (Texto tomado de la fuente). | spa |
| dc.description.degreelevel | Doctorado | spa |
| dc.description.degreename | Doctor en Ingeniería | spa |
| dc.description.researcharea | Engineering in Medicine and Biology | eng |
| dc.description.sponsorship | Research reported in this dissertation was partially supported by projects BPIN 2019000100-060 ''Implementation of a Network for Research, Technological Development and Innovation in Digital Pathology (RedPat) supported by Industry 4.0 technologies'' from FCTeI of SGR resources, approved by OCAD of FCTeI and MinCiencias, and project 110192092354, entitled ''Program for the Early Detection of Premalignant Lesions and Gastric Cancer in urban, rural and dispersed areas in the Department of Narino'' of call No. 920 of 2022 of MinCiencias\\ Additionally, this work was supported by the National Cancer Institute under award numbers R01CA268287A1, U01CA269181, R01CA26820701A1, R01CA249992-01A1, R01CA202752-01A1, R01CA208236-01A1, R01CA216579-01A1, R01CA220581-01A1, R01CA257612-01A1, 1U01CA239055-01, 1U01CA248226-01, 1U54CA254566-01, National Institutes of Health grant T32DK108735, National Heart, Lung and Blood Institute 1R01HL15127701A1, R01HL15807101A1, National Institute of Biomedical Imaging and Bioengineering 1R43EB028736-01, VA Merit Review Award IBX004121A from the United States Department of Veterans Affairs Biomedical Laboratory Research and Development Service the Office of the Assistant Secretary of Defense for Health Affairs, through the Breast Cancer Research Program (W81XWH-19-1-0668), the Prostate Cancer Research Program (W81XWH-20-1-0851), the Lung Cancer Research Program (W81XWH-18-1-0440, W81XWH-20-1-0595), the Peer Reviewed Cancer Research Program (W81XWH-18-1-0404, W81XWH-21-1-0345, W81XWH-21-1-0160), the Kidney Precision Medicine Project (KPMP) Glue Grant and sponsored research agreements from Bristol Myers-Squibb, Boehringer-Ingelheim, Eli-Lilly and AstraZeneca. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health, the U.S. Department of Veterans Affairs, the Department of Defense, or the U.S. Government. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. | eng |
| dc.format.extent | vii, 64 páginas | spa |
| dc.format.mimetype | application/pdf | |
| dc.identifier.instname | Universidad Nacional de Colombia | spa |
| dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
| dc.identifier.repourl | https://repositorio.unal.edu.co/ | |
| dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/89288 | |
| dc.language.iso | eng | |
| dc.publisher | Universidad Nacional de Colombia | spa |
| dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
| dc.publisher.department | Department of Electrical and Electronic Engineering | eng |
| dc.publisher.faculty | Facultad de Ingeniería | spa |
| dc.publisher.place | Bogotá, Colombia | spa |
| dc.publisher.program | Bogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Eléctrica | spa |
| dc.relation.indexed | Bireme | spa |
| dc.relation.references | Hyuna Sung, Jacques Ferlay, Rebecca L Siegel, Mathieu Laversanne, Isabelle Soerjo- mataram, Ahmedin Jemal, and Freddie Bray. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians, 71(3):209–249, 2021 | |
| dc.relation.references | Cancer treatment strategies and outcomes. Scientific Reports, 14, 2024. | |
| dc.relation.references | V Gambardella, N Tarazona, JM Cejalvo, P Lombardi, M Huerta, S Rosell´o, and A Cer- vantes. Personalized medicine: recent progress in cancer therapy. Cancers, 12(4):1009, 2020. | |
| dc.relation.references | A Upadhyay. Cancer: An unknown territory; rethinking before going ahead. Genes & diseases, 8(5):655–661, 2021. | |
| dc.relation.references | ME Porter. What is value in health care? New England Journal of Medicine, 363:2477– 2481, 2010 | |
| dc.relation.references | Markus Glatzer, Cedric Michael Panje, Charlotta Sir´en, Nikola Cihoric, and Paul Mar- tin Putora. Decision making criteria in oncology. Oncology, 98(6):370–378, 2020. | |
| dc.relation.references | M Menoret. The genesis of the notion of stages in oncology: the french permanent cancer survey (1943-1952). Social History of Medicine, 15(2):291–302, 2002. | |
| dc.relation.references | Frank C Detterbeck, Katherine K Nishimura, Vanessa J Cilento, Meredith Giuliani, Mirella Marino, Raymond U Osarogiagbon, Ramon Rami-Porta, Valerie W Rusch, Hisao Asamura, et al. The international association for the study of lung cancer staging project: methods and guiding principles for the development of the ninth edition tnm classification. Journal of Thoracic Oncology, 17(6):806–815, 2022. | |
| dc.relation.references | M Svrcek. A comprehensive overview of tumour deposits in colorectal cancer: Towards a next tnm classification. Cancer Treatment Reviews, 103:102325, 2022. | |
| dc.relation.references | M Roalsø, JR Aunan, and K Søreide. Refined tnm-staging for pancreatic adenocarcinoma–real progress or much ado about nothing? European Journal of Sur- gical Oncology, 46(8):1554–1557, 2020 | |
| dc.relation.references | Constantin N Baxevanis, Sotirios P Fortis, and Sonia A Perez. The balance between breast cancer and the immune system: Challenges for prognosis and clinical benefit from immunotherapies. In Seminars in cancer biology, volume 72, pages 76–89. Else- vier, 2021. | |
| dc.relation.references | I Dagogo-Jack and AT Shaw. Tumour heterogeneity and resistance to cancer therapies. Nature Reviews Clinical Oncology, 15(2):81–94, 2018. | |
| dc.relation.references | MB Amin, FL Greene, SB Edge, CC Compton, JE Gershenwald, RK Brookland, and DP Winchester. The eighth edition ajcc cancer staging manual: continuing to build a bridge from a population-based to a more ”personalized.approach to cancer staging. CA: a cancer journal for clinicians, 67(2):93–99, 2017. | |
| dc.relation.references | E Faulkner et al. Being precise about precision medicine: What should value frame- works incorporate to address precision medicine? a report of the personalized precision medicine special interest group. Value in Health, 23(5):529–539, 2020 | |
| dc.relation.references | AJ Vargas and CC Harris. Biomarker development in the precision medicine era: lung cancer as a case study. Nature Reviews Cancer, 16(8):525–537, 2016. | |
| dc.relation.references | Antonio C Wolff et al. Human epidermal growth factor receptor 2 testing in breast cancer: Asco–college of american pathologists guideline update. Journal of Clinical Oncology, 41:3867–3872, 2023. | |
| dc.relation.references | Christopher J Sweeney, Yu-Hui Chen, Michael Carducci, Glenn Liu, David F Jarrard, Mario Eisenberger, Yu-Ning Wong, Noah Hahn, Manish Kohli, Matthew M Cooney, et al. Chemohormonal therapy in metastatic hormone-sensitive prostate cancer. New England Journal of Medicine, 373(8):737–746, 2015. | |
| dc.relation.references | William Lowrance, Robert Dreicer, David F Jarrard, Kristen R Scarpato, Sennett K Kim, Erin Kirkby, David I Buckley, Jessica C Griffin, and Michael S Cookson. Upda- tes to advanced prostate cancer: Aua/suo guideline (2023). The Journal of Urology, 209(6):1082–1090, 2023. | |
| dc.relation.references | Markus Glatzer, Cedric Michael Panje, Charlotta Sir´en, Nikola Cihoric, and Paul Mar- tin Putora. Decision making criteria in oncology. Oncology, 98(6):370–378, 2020. | |
| dc.relation.references | Y Li, N Li, X Yu, et al. Hematoxylin and eosin staining of intact tissues via delipidation and ultrasound. Scientific Reports, 8:12259, 2018 | |
| dc.relation.references | Vinay Kumar, Abul K Abbas, Nelson Fausto, and Jon C Aster. Robbins and Cotran pathologic basis of disease, professional edition e-book. Elsevier health sciences, 2014. | |
| dc.relation.references | C Genestie, A Auguste, M Al Battal, et al. Histological classification of mucinous ovarian tumors: inter-observer reproducibility, clinical relevance, and role of genetic biomarkers. Virchows Archiv, 478:885–891, 2021. | |
| dc.relation.references | Marie E Robert et al. High interobserver variability among pathologists using combined positive score to evaluate pd-l1 expression in gastric, gastroesophageal junction, and esophageal adenocarcinoma. Modern Pathology, 36(5):100154, 2023. | |
| dc.relation.references | JA Diao, JK Wang, WF Chui, et al. Human-interpretable image features derived from densely mapped cancer pathology slides predict diverse molecular phenotypes. Nature Communications, 12:1613, 2021. | |
| dc.relation.references | Germ´an Corredor, Satvika Bharadwaj, Tilak Pathak, Vidya Sankar Viswanathan, Pau- la Toro, and Anant Madabhushi. A review of ai-based radiomics and computational pathology approaches in triple-negative breast cancer: current applications and pers- pectives. Clinical breast cancer, 23(8):800–812, 2023 | |
| dc.relation.references | Jonathan TC Liu, Adam K Glaser, Kaustav Bera, Lawrence D True, Nicholas P Reder, Kevin W Eliceiri, and Anant Madabhushi. Harnessing non-destructive 3d pathology. Nature biomedical engineering, 5(3):203–218, 2021 | |
| dc.relation.references | Ezgi Mercan, Selim Aksoy, Linda G Shapiro, Donald L Weaver, Tad T Bruny´e, and Joann G Elmore. Localization of diagnostically relevant regions of interest in whole slide images: a comparative study. Journal of Digital Imaging, 29(4):496–506, 2016 | |
| dc.relation.references | Erik Abels, Liron Pantanowitz, Famke Aeffner, Mark D Zarella, Jeroen Van der Laak, Marilyn M Bui, and Celina Kozlowski. Computational pathology definitions, best practices, and recommendations for regulatory guidance: a white paper from the digital pathology association. The Journal of Pathology, 249(3):286–294, 2019. | |
| dc.relation.references | George Verghese, Jochen K Lennerz, Doga Ruta, William Ng, Selvam Thavaraj, Ka- lliopi P Siziopikou, and Anita Grigoriadis. Computational pathology in cancer diag- nosis, prognosis, and prediction–present day and prospects. The Journal of Pathology, 260(5):551–563, 2023. | |
| dc.relation.references | Muhammad Khalid Khan Niazi, Anil V Parwani, and Metin N Gurcan. Artificial intelligence and computational pathology. Laboratory Investigation, 99(4):459–469, 2019. | |
| dc.relation.references | Hang Chang, Nandita Nayak, Paul T Spellman, and Bahram Parvin. Characteriza- tion of tissue histopathology via predictive sparse decomposition and spatial pyramid matching. In International Conference on Medical Image Computing and Computer- Assisted Intervention, pages 91–98. Springer, 2013. | |
| dc.relation.references | Xiao Li, Hongzhong Tang, Dongbo Zhang, Ting Liu, Lizhen Mao, and Tianyu Chen. Histopathological image classification through discriminative feature learning and mu- tual information-based multi-channel joint sparse representation. Journal of Visual Communication and Image Representation, 70:102799, 2020 | |
| dc.relation.references | Rituparna Sarkar and Scott T Acton. Sdl: Saliency-based dictionary learning frame- work for image similarity. IEEE Transactions on Image Processing, 27(2):749–763, 2017. | |
| dc.relation.references | Wenbin He, Tao Liu, Yuliang Han, Wuyi Ming, Juan Du, Yinxia Liu, and Chen Cao. A review: The detection of cancer cells in histopathology based on machine vision. Computers in Biology and Medicine, 146:105636, 2022. | |
| dc.relation.references | N Kumar, M Sharma, VP Singh, C Madan, and S Mehandia. An empirical study of handcrafted and dense feature extraction techniques for lung and colon cancer clas- sification from histopathological images. Biomedical Signal Processing and Control, 75:103596, 2022. | |
| dc.relation.references | Andrew H Beck, Ankur R Sangoi, Samuel Leung, Robert J Marinelli, Torsten O Niel- sen, Marc J Van De Vijver, and Daphne Koller. Systematic analysis of breast cancer morphology uncovers stromal features associated with survival. Science Translational Medicine, 3(108):108ra113–108ra113, 2011. | |
| dc.relation.references | German Corredor, Xiaoxian Wang, Yu Zhou, Cheng Lu, Pingfu Fu, Konstantinos Syrigos, and Anant Madabhushi. Spatial architecture and arrangement of tumor- infiltrating lymphocytes for predicting likelihood of recurrence in early-stage non–small cell lung cancer. Clinical Cancer Research, 25(5):1526–1534, 2019 | |
| dc.relation.references | Joel Saltz, Rajarsi Gupta, Le Hou, Tahsin Kurc, Pankaj Singh, Vu Nguyen, and Lud- mila Danilova. Spatial organization and molecular correlation of tumor-infiltrating lymphocytes using deep learning on pathology images. Cell Reports, 23(1):181–193, 2018. | |
| dc.relation.references | Yinyin Yuan, Henrik Failmezger, Oscar M Rueda, H Raza Ali, Stefan Gr¨af, Suet- Feung Chin, and Florian Markowetz. Quantitative image analysis of cellular heteroge- neity in breast tumors complements genomic profiling. Science Translational Medicine, 4(157):157ra143–157ra143, 2012 | |
| dc.relation.references | Xiaoxian Wang, Andrew Janowczyk, Yu Zhou, Rajat Thawani, Pingfu Fu, Kurt Schal- per, and Anant Madabhushi. Prediction of recurrence in early stage non-small cell lung cancer using computer extracted nuclear features from digital h&e images. Scientific Reports, 7(1):13543, 2017. | |
| dc.relation.references | Cheng Lu, David Romo-Bucheli, Xiaoxian Wang, Andrew Janowczyk, Shridar Gane- san, Hannah Gilmore, and Anant Madabhushi. Nuclear shape and orientation features from h&e images predict survival in early-stage estrogen receptor-positive breast can- cers. Laboratory Investigation, 98(11):1438–1448, 2018 | |
| dc.relation.references | R Castaldo, C Cavaliere, A Soricelli, M Salvatore, L Pecchia, and M Franzese. Radio- mic and genomic machine learning method performance for prostate cancer diagnosis: Systematic literature review. Journal of Medical Internet Research, 23(4):e22394, 2021 | |
| dc.relation.references | I Bhattacharya et al. Corrsignet: Learning correlated prostate cancer signatures from radiology and pathology images for improved computer aided diagnosis. arXiv preprint, 2020 | |
| dc.relation.references | S Chen et al. Clinical use of a machine learning histopathological image signature in diagnosis and survival prediction of clear cell renal cell carcinoma. International Journal of Cancer, 148(3):780–790, 2021. | |
| dc.relation.references | Gabriele Campanella, Matthew G Hanna, Luke Geneslaw, Abel Miraflor, Vitor Wer- neck Krauss Silva, Klaus J Busam, Edi Brogi, Victor E Reuter, David S Klimstra, and Thomas J Fuchs. Clinical-grade computational pathology using weakly supervised deep learning on whole slide images. Nature Medicine, 25(8):1301–1309, 2019 | |
| dc.relation.references | Fahdi Kanavati, Gouji Toyokawa, and Shinkichi Momosaki. A deep learning model for the classification of indeterminate lung carcinoma in biopsy whole slide images. Scientific Reports, 11:8110, 2021 | |
| dc.relation.references | Richard J Chen, Tong Ding, Ming Y Lu, Drew FK Williamson, Guillaume Jaume, Bowen Chen, Andrew Zhang, Daniel Shao, Andrew H Song, Muhammad Shaban, et al. Towards a general-purpose foundation model for computational pathology. Nature Medicine, 30:850–862, 2024. | |
| dc.relation.references | Jana Lipkova, Richard J Chen, Bowen Chen, Ming Y Lu, Matteo Barbieri, Daniel Shao, Anurag J Vaidya, Chengkuan Chen, Luoting Zhu, and Faisal Mahmood. Artificial intelligence for multimodal data integration in oncology. Cancer Cell, 40(10):1095– 1110, 2022. | |
| dc.relation.references | Andrew Janowczyk and Anant Madabhushi. Deep learning for digital pathology ima- ge analysis: A comprehensive tutorial with selected use cases. Journal of Pathology Informatics, 7(1):29, 2016 | |
| dc.relation.references | Karin Stacke, Gabriel Eilertsen, Jonas Unger, and Claes Lundstrom. Measuring domain shift for deep learning in histopathology. IEEE Journal of Biomedical and Health Informatics, 25(2):325–336, 2021 | |
| dc.relation.references | K Al-Thelaya, NU Gilal, M Alzubaidi, F Majeed, M Agus, J Schneider, and M Househ. Applications of discriminative and deep learning feature extraction methods for whole slide image analysis: A survey. Journal of Pathology Informatics, 14:100335, 2023 | |
| dc.relation.references | Jeroen Van der Laak, Geert Litjens, and Francesco Ciompi. Deep learning in histo- pathology: the path to the clinic. Nature Medicine, 27(5):775–784, 2021. | |
| dc.relation.references | Kaustav Bera, Kurt A Schalper, David L Rimm, Vamsidhar Velcheti, and Anant Ma- dabhushi. Artificial intelligence in digital pathologyˆa€”new tools for diagnosis and precision oncology. Nature Reviews Clinical Oncology, 16(11):703–715, 2019. | |
| dc.relation.references | C. L. Srinidhi, O. Ciga, and A. L. Martel. Deep neural network models for compu- tational histopathology: A survey. Medical Image Analysis, 67:101813, 2021 | |
| dc.relation.references | UR Chandran, OP Medvedeva, MM Barmada, PD Blood, A Chakka, S Luthra, A Fe- rreira, KF Wong, AV Lee, Z Zhang, R Budden, JR Scott, A Berndt, JM Berg, and RS Jacobson. Tcga expedition: A data acquisition and management system for tcga data. PLoS One, 11(10):e0165395, 2016. PMID: 27788220; PMCID: PMC5082933 | |
| dc.relation.references | P Moulin, K Granberg, E Barale-Thomas, and JV der Laak. Imi-bigpicture: A central repository for digital pathology. Toxicol Pathol, 49(4):711–713, 2021. Epub 2021 Feb 11. PMID: 33571073. | |
| dc.relation.references | B. Zhao, K. R. Mopuri, and H. Bilen. Dataset condensation with gradient matching, 2020. arXiv preprint arXiv:2006.05929. | |
| dc.relation.references | I. Radosavovic, P. Doll ˜A¡r, R. Girshick, G. Gkioxari, and K. He. Data distillation: Towards omni-supervised learning. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 4119–4128, 2018. | |
| dc.relation.references | R. N. D’souza, P. Y. Huang, and F. C. Yeh. Structural analysis and optimization of convolutional neural networks with a small sample size. Scientific reports, 10(1):834, 2020. | |
| dc.relation.references | T. Nguyen, Z. Chen, and J. Lee. Dataset meta-learning from kernel ridge-regression, 2020. arXiv preprint arXiv:2011.00050 | |
| dc.relation.references | T. Wang, J. Y. Zhu, A. Torralba, and A. A. Efros. Dataset distillation, 2018. arXiv preprint arXiv:1811.10959. | |
| dc.relation.references | N. Melamed, A. Baschat, Y. Yinon, A. Athanasiadis, F. Mecacci, F. Figueras, and M. Hod. Figo (international federation of gynecology and obstetrics) initiative on fetal growth: best practice advice for screening, diagnosis, and management of fetal growth restriction. International Journal of Gynaecology and Obstetrics, 152(Suppl 1):3, 2021 | |
| dc.relation.references | T. Hofmann. Probabilistic latent semantic indexing. In Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval, pages 50–57, 1999. | |
| dc.relation.references | S. Kullback. Information theory and statistics. Courier Corporation, 1997 | |
| dc.relation.references | W. S. Noble. What is a support vector machine? Nature biotechnology, 24(12):1565– 1567, 2006. | |
| dc.relation.references | Y. Zhao, G. Wang, C. Tang, C. Luo, W. Zeng, and Z. J. Zha. A battle of network structures: An empirical study of cnn, transformer, and mlp, 2021. arXiv preprint arXiv:2108.13002. | |
| dc.relation.references | Strother H. Walker and David B. Duncan. Estimation of the probability of an event as a function of several independent variables. Biometrika, 54(1/2):167–179, 1967 | |
| dc.relation.references | J. Ke, Y. Shen, J. D. Wright, N. Jing, X. Liang, and D. Shen. Identifying patch-level msi from histological images of colorectal cancer by a knowledge distillation model. In 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pages 1043–1046, Seoul, Korea (South), 2020. | |
| dc.relation.references | K. Wang, B. Zhao, X. Peng, Z. Zhu, S. Yang, S. Wang, and Y. You. Cafe: Learning to condense dataset by aligning features. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 12196–12205, 2022. | |
| dc.relation.references | J. DiPalma, A. A. Suriawinata, L. J. Tafe, L. Torresani, and S. Hassanpour. Resolution- based distillation for efficient histology image classification. Artificial Intelligence in Medicine, 119:102136, 2021. | |
| dc.relation.references | H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and H. J ˜A©gou. Training data-efficient image transformers & distillation through attention. In International conference on machine learning, pages 10347–10357. PMLR, 2021. | |
| dc.relation.references | Lucrezia Togni, Vito Carlo Alberto Caponio, Nicoletta Zerman, Giuseppe Troiano, Khrystyna Zhurakivska, Lorenzo Lo Muzio, Andrea Balercia, Marco Mascitti, and Andrea Santarelli. The emerging impact of tumor budding in oral squamous cell carcinoma: main issues and clinical relevance of a new prognostic marker. Cancers, 14(15):3571, 2022. | |
| dc.relation.references | Cristian Mesina, CATALIN LIVIU Stoean, Ruxandra Stoean, Adrian Victor Sandita, Theodor Viorel Dumitrescu, STELIAN STEFANIT, A Mogoanta, Daniel Alin Cristian, MIHAELA-IUSTINA Me¸sin˘a-Botoran, George Mitroi, CORINA-LAVINIA Gruia, et al. Immunohistochemical evaluation of tumor budding in colorectal cancer: An important parameter with prognostic value. Rom J Morphol Embryol, 60(3):841–846, 2019. | |
| dc.relation.references | Ashini H Shah, Amisha J Gami, Neetal H Desai, Jahnavi S Gandhi, and Priti P Trivedi. Tumor budding as a prognostic indicator in colorectal carcinoma: a retrospective study of primary colorectal carcinoma cases in a tertiary care center. Indian Journal of Surgical Oncology, 13(3):459–467, 2022. | |
| dc.relation.references | Alessandro Lugli, Richard Kirsch, Yoichi Ajioka, Fred Bosman, Gieri Cathomas, Heather Dawson, Hala El Zimaity, Jean-Fransois FlA©jou, Tine Plato Hansen, Arndt Hartmann, Sanjay Kakar, Cord Langner, Iris Nagtegaal, Giacomo Puppa, Ro- bert Riddell, Ari Ristim ˜A¤ki, Kieran Sheahan, Thomas Smyrk, Kenichi Sugihara, Beno ˜A®t Terris, Hideki Ueno, Michael Vieth, Inti Zlobec, and Phil Quirke. Recom- mendations for reporting tumor budding in colorectal cancer based on the International Tumor Budding Consensus Conference (ITBCC) 2016. Modern Pathology, 30(9):1299– 1311, 2017 | |
| dc.relation.references | Lucrezia Togni, Vito Carlo Alberto Caponio, Nicoletta Zerman, Giuseppe Troiano, Khrystyna Zhurakivska, Lorenzo Lo Muzio, Andrea Balercia, Marco Mascitti, and Andrea Santarelli. The emerging impact of tumor budding in oral squamous cell carcinoma: main issues and clinical relevance of a new prognostic marker. Cancers, 14(15):3571, 2022. | |
| dc.relation.references | Punnya V Angadi, Prakash V Patil, Kaveri Hallikeri, MD Mallapur, Seema Hallike- rimath, and Alka D Kale. Tumor budding is an independent prognostic factor for prediction of lymph node metastasis in oral squamous cell carcinoma. International journal of surgical pathology, 23(2):102–110, 2015. | |
| dc.relation.references | Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao, Jan Kautz, and Bryan Catanzaro. High-resolution image synthesis and semantic manipulation with condi- tional gans. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 8798–8807, 2018. | |
| dc.relation.references | Rahima Khanam and Muhammad Hussain. Yolov11: An overview of the key architec- tural enhancements. arXiv preprint arXiv:2410.17725, 2024. | |
| dc.relation.references | Marc Macenko, Marc Niethammer, James S Marron, David Borland, John T Woosley, Xiaojun Guan, Charles Schmitt, and Nancy E Thomas. A method for normalizing histology slides for quantitative analysis. In 2009 IEEE international symposium on biomedical imaging: from nano to macro, pages 1107–1110. IEEE, 2009 | |
| dc.relation.references | Viktor H Koelzer, Inti Zlobec, Martin D Berger, Gieri Cathomas, Heather Dawson, Klaus Dirschmid, Marion H¨adrich, Daniel Inderbitzin, Felix Offner, Giacomo Puppa, et al. Tumor budding in colorectal cancer revisited: results of a multicenter interob- server study. Virchows Archiv, 466(5):485–493, 2015 | |
| dc.relation.references | Alessandro Lugli, Inti Zlobec, Martin D Berger, Richard Kirsch, and Iris D Nagtegaal. Tumour budding in solid cancers. Nature Reviews Clinical Oncology, 18(2):101–115, 2021. | |
| dc.relation.references | Jonathan I. Epstein, Michael J. Zelefsky, Daniel D. Sjoberg, Joel B. Nelson, Lars Egevad, Cristina Magi-Galluzzi, Andrew J. Vickers, Anil V. Parwani, Victor E. Reuter, Samson W. Fine, James A. Eastham, Peter Wiklund, Misop Han, Chandana A. Reddy, Jay P. Ciezki, Tommy Nyberg, and Eric A. Klein. A contemporary prostate cancer grading system: A validated alternative to the gleason score. 69(3):428–435. | |
| dc.relation.references | Jonathan I Epstein. Diagnosis and reporting of limited adenocarcinoma of the prostate on needle biopsy. 17(3):307–315 | |
| dc.relation.references | George Lee, Rachel Sparks, Sahirzeeshan Ali, Natalie N. C. Shih, Michael D. Feldman, Elaine Spangler, Timothy Rebbeck, John E. Tomaszewski, and Anant Madabhushi. Co- occurring gland angularity in localized subgraphs: Predicting biochemical recurrence in intermediate-risk prostate cancer patients. 9(5):e97954 | |
| dc.relation.references | Patrick Leo, Andrew Janowczyk, Robin Elliott, Nafiseh Janaki, Kaustav Bera, Rakesh Shiradkar, Xavier Farr ˜A©, Pingfu Fu, Ayah El-Fahmawi, Mohammed Shahait, Jessi- ca Kim, David Lee, Kosj Yamoah, Timothy R. Rebbeck, Francesca Khani, Brian D. Robinson, Lauri Eklund, Ivan Jambor, Harri Merisaari, Otto Ettala, Pekka Taimen, Hannu J. Aronen, Peter J. Bostr ˜A¶m, Ashutosh Tewari, Cristina Magi-Galluzzi, Eric Klein, Andrei Purysko, Natalie Nc Shih, Michael Feldman, Sanjay Gupta, Priti Lal, and Anant Madabhushi. Computer extracted gland features from h&e predicts pros- tate cancer recurrence comparably to a genomic companion diagnostic test: a large multi-site study. 5(1):35 | |
| dc.relation.references | Patrick Leo, Sacheth Chandramouli, Xavier Farr ˜A©, Robin Elliott, Andrew Ja- nowczyk, Kaustav Bera, Pingfu Fu, Nafiseh Janaki, Ayah El-Fahmawi, Mohammed Shahait, Jessica Kim, David Lee, Kosj Yamoah, Timothy R. Rebbeck, Francesca Kha- ni, Brian D. Robinson, Natalie N.C. Shih, Michael Feldman, Sanjay Gupta, Jesse Mc- Kenney, Priti Lal, and Anant Madabhushi. Computationally derived cribriform area index from prostate cancer hematoxylin and eosin images is associated with biochemi- cal recurrence following radical prostatectomy and is most prognostic in gleason grade group 2. 7(4):722–732. | |
| dc.relation.references | Takashi Fukagai, Thomas Namiki, Hideo Namiki, Robert G. Carlile, Makoto Shimada, and Hideki Yoshida. Discrepancies between gleason scores of needle biopsy and radical prostatectomy specimens. 51(5):364–370. | |
| dc.relation.references | Tayyar A. Ozkan, Ahmet T. Eruyar, Oguz O. Cebeci, Omur Memik, Levent Ozcan, and Ibrahim Kuskonmaz. Interobserver variability in gleason histological grading of prostate cancer. 50(6):420–424. | |
| dc.relation.references | Ayyathurai Rajinikanth, Murugesan Manoharan, Cynthia T. Soloway, Francisco J. Civantos, and Mark S. Soloway. Trends in gleason score: Concordance between biopsy and prostatectomy over 15 years. 72(1):177–182. | |
| dc.relation.references | Kevin W. Bishop, Lindsey A. Erion Barner, Qinghua Han, Elena Baraznenok, Lydia Lan, Chetan Poudel, Gan Gao, Robert B. Serafin, Sarah S. L. Chow, Adam K. Glaser, Andrew Janowczyk, David Brenes, Hongyi Huang, Dominie Miyasato, Lawrence D. True, Soyoung Kang, Joshua C. Vaughan, and Jonathan T. C. Liu. An end-to-end workflow for nondestructive 3d pathology. 19(4):1122–1148. | |
| dc.relation.references | Jonathan T. C. Liu, Adam K. Glaser, Kaustav Bera, Lawrence D. True, Nicholas P. Reder, Kevin W. Eliceiri, and Anant Madabhushi. Harnessing non-destructive 3d pathology. 5(3):203–218. | |
| dc.relation.references | Can Koyuncu, Andrew Janowczyk, Xavier Farre, Tilak Pathak, Tuomas Mirtti, Pe- dro L. Fernandez, Laura Pons, Nicholas P. Reder, Robert Serafin, Sarah S.L. Chow, Vidya S. Viswanathan, Adam K. Glaser, Lawrence D. True, Jonathan T.C. Liu, and Anant Madabhushi. Visual assessment of 2-dimensional levels within 3-dimensional pathology data sets of prostate needle biopsies reveals substantial spatial heteroge- neity. 103(12):100265 | |
| dc.relation.references | Robert Serafin, Can Koyuncu, Weisi Xie, Hongyi Huang, Adam K Glaser, Nicholas P Reder, Andrew Janowczyk, Lawrence D True, Anant Madabhushi, and Jonathan Tc Liu. Nondestructive <span style=”font-variant:small-caps;”>3d</span> pathology with analysis of nuclear features for prostate cancer risk assessment. 260(4):390–401 | |
| dc.relation.references | Rui Wang, Sarah S. L. Chow, Robert B. Serafin, Weisi Xie, Qinghua Han, Elena Baraznenok, Lydia Lan, Kevin W. Bishop, and Jonathan T. C. Liu. Direct three- dimensional segmentation of prostate glands with nnU-net. 29(3). | |
| dc.relation.references | Weisi Xie, Nadia Postupna, Chenyi Mao, C. Dirk Keene, Joshua C. Vaughan, Adam K. Glaser, and Jonathan T.C. Liu. Thick-tissue tri-labeling with immunofluorescence and a fluorescent analog of h&e for image-translation-assisted segmentation in 3d (ITAS3d). In Biophotonics Congress: Biomedical Optics 2022 (Translational, Microscopy, OCT, OTS, BRAIN), page JM3A.42. Optica Publishing Group. | |
| dc.relation.references | Andrew H. Song, Mane Williams, Drew F.K. Williamson, Sarah S.L. Chow, Guillaume Jaume, Gan Gao, Andrew Zhang, Bowen Chen, Alexander S. Baras, Robert Serafin, Richard Colling, Michelle R. Downes, Xavier Farr ˜A©, Peter Humphrey, Clare Verrill, Lawrence D. True, Anil V. Parwani, Jonathan T.C. Liu, and Faisal Mahmood. Analysis of 3d pathology samples using weakly supervised AI. 187(10):2502–2520.e17. | |
| dc.relation.references | Sarah Hawley, Ladan Fazli, Jesse K. McKenney, Jeff Simko, Dean Troyer, Marlo Ni- colas, Lisa F. Newcomb, Janet E. Cowan, Luis Crouch, Michelle Ferrari, Javier Her- nandez, Antonio Hurtado-Coll, Kyle Kuchinsky, Janet Liew, Rosario Mendez-Meza, Elizabeth Smith, Imelda Tenggara, Xiaotun Zhang, Peter R. Carroll, June M. Chan, Martin Gleave, Raymond Lance, Daniel W. Lin, Peter S. Nelson, Ian M. Thompson, Ziding Feng, Lawrence D. True, and James D. Brooks. A model for the design and construction of a resource for the validation of prognostic prostate cancer biomarkers: The canary prostate cancer tissue microarray. 20(1):39–44. | |
| dc.relation.references | Weisi Xie, Nicholas P. Reder, Can Koyuncu, Patrick Leo, Sarah Hawley, Hongyi Huang, Chenyi Mao, Nadia Postupna, Soyoung Kang, Robert Serafin, Gan Gao, Qinghua Han, Kevin W. Bishop, Lindsey A. Barner, Pingfu Fu, Jonathan L. Wright, C. Dirk Kee- ne, Joshua C. Vaughan, Andrew Janowczyk, Adam K. Glaser, Anant Madabhushi, Lawrence D. True, and Jonathan T.C. Liu. Prostate cancer risk stratification via non- destructive 3d pathology with deep learningˆa€“assisted gland analysis. 82(2):334–345 | |
| dc.relation.references | Fabian Isensee, Paul F. Jaeger, Simon A. A. Kohl, Jens Petersen, and Klaus H. Maier- Hein. nnU-net: a self-configuring method for deep learning-based biomedical image segmentation. 18(2):203–211. | |
| dc.relation.references | M. Sato, I. Bitter, M.A. Bender, A.E. Kaufman, and M. Nakajima. TEASAR: tree- structure extraction algorithm for accurate and robust skeletons. In Proceedings the Eighth Pacific Conference on Computer Graphics and Applications, pages 281–449. IEEE Comput. Soc. | |
| dc.relation.references | William Silversmith, J. Alexander Bae, Peter H. Li, and A.M. Wilson. seung- lab/kimimaro: Zenodo release v1. | |
| dc.relation.references | R. M. Simon, J. Subramanian, M.-C. Li, and S. Menezes. Using cross-validation to evaluate predictive accuracy of survival risk classifiers based on high-dimensional data. 12(3):203–214. Publisher: Oxford University Press (OUP). | |
| dc.relation.references | Kien Nguyen, Bikash Sabata, and Anil K. Jain. Prostate cancer grading: Gland seg- mentation and structural features. 33(7):951–961 | |
| dc.relation.references | Wouter Bulten, Hans Pinckaers, Hester Van Boven, Robert Vink, Thomas De Bel, Bram Van Ginneken, Jeroen Van Der Laak, Christina Hulsbergen-van De Kaa, and Geert Litjens. Automated deep-learning system for gleason grading of prostate cancer using biopsies: a diagnostic study. 21(2):233–241. | |
| dc.relation.references | Savannah R. Duenweg, Michael Brehler, Allison K. Lowman, Samuel A. Bobholz, Fitzgerald Kyereme, Aleksandra Winiarz, Biprojit Nath, Kenneth A. Iczkowski, Ken- neth M. Jacobsohn, and Peter S. LaViolette. Quantitative histomorphometric features of prostate cancer predict patients who biochemically recur following prostatectomy. 103(12):100269. | |
| dc.relation.references | Hersh K. Bhargava, Patrick Leo, Robin Elliott, Andrew Janowczyk, Jon Whitney, San- jay Gupta, Pingfu Fu, Kosj Yamoah, Francesca Khani, Brian D. Robinson, Timothy R. Rebbeck, Michael Feldman, Priti Lal, and Anant Madabhushi. Computationally deri- ved image signature of stromal morphology is prognostic of prostate cancer recurrence following prostatectomy in african american patients. 26(8):1915–1923. | |
| dc.relation.references | Rodrigo De P. Mendes, Xin Yuan, Elizabeth M. Genega, Xiaoyin Xu, Luciano Da F. Costa, and Cesar H. Comin. Gland context networks: A novel approach for improving prostate cancer identification. 94:101999 | |
| dc.relation.references | Esther I. Verhoef, Wiggert A. Van Cappellen, Johan A. Slotman, Gert-Jan Kremers, Patricia C. Ewing-Graham, Adriaan B. Houtsmuller, Martin E. Van Royen, and Geert J. L.H. Van Leenders. Three-dimensional analysis reveals two major architectural subgroups of prostate cancer growth patterns. 32(7):1032–1041. | |
| dc.relation.references | Shulin Wu, Adam S. Feldman, Michelle M. Kim, Sharron X. Lin, Kristine M. Cor- nejo, Mukesh G. Harisinghani, Douglas M. Dahl, and Chin-Lee Wu. Gleason grade group concordance between systematic template combining magnetic resonance ima- ging fusion targeted biopsy and radical prostatectomy specimens: A comparison of transperineal and transrectal approaches. 175:151–156 | |
| dc.relation.references | Theodorus H. Van Der Kwast, Geert J. Van Leenders, Daniel M. Berney, Brett De- lahunt, Andrew J. Evans, Kenneth A. Iczkowski, Jesse K. McKenney, Jae Y. Ro, Hemamali Samaratunga, John R. Srigley, Toyo Tsuzuki, Murali Varma, Thomas M. Wheeler, and Lars Egevad. ISUP consensus definition of cribriform pattern prostate cancer. 45(8):1118–1126. | |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
| dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
| dc.subject.ddc | 000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores | spa |
| dc.subject.ddc | 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería | spa |
| dc.subject.decs | Toma de Decisiones Asistida por Computador | spa |
| dc.subject.decs | Decision Making, Computer-Assisted | eng |
| dc.subject.decs | Neoplasias/diagnóstico | spa |
| dc.subject.decs | Neoplasms/diagnosis | eng |
| dc.subject.decs | Histología | spa |
| dc.subject.decs | Histology | eng |
| dc.subject.proposal | Ingeniería biomédica | spa |
| dc.subject.proposal | Biomedical engineering | eng |
| dc.subject.proposal | Patología computacional | spa |
| dc.subject.proposal | Computational pathology | eng |
| dc.subject.proposal | Pronóstico del cancer | spa |
| dc.subject.proposal | Cancer prognosis | eng |
| dc.subject.proposal | Apoyar la toma de decisiones en cáncer | spa |
| dc.subject.proposal | Support cancer decision-making | eng |
| dc.subject.proposal | Procesamiento de imágenes medicas con IA | spa |
| dc.subject.proposal | Medical imaging AI | eng |
| dc.title | Designing histopathology representations: Automatic extraction of relevant information to support cancer decision-making | eng |
| dc.title.translated | Designing histopathology representations: Automatic extraction of relevant information to support cancer decision-making | spa |
| dc.type | Trabajo de grado - Doctorado | spa |
| dc.type.coar | http://purl.org/coar/resource_type/c_db06 | |
| dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
| dc.type.content | Text | |
| dc.type.driver | info:eu-repo/semantics/doctoralThesis | |
| dc.type.redcol | http://purl.org/redcol/resource_type/TD | |
| dc.type.version | info:eu-repo/semantics/acceptedVersion | |
| dcterms.audience.professionaldevelopment | Estudiantes | spa |
| dcterms.audience.professionaldevelopment | Investigadores | spa |
| oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | |
| oaire.fundername | MinCiencias | spa |
| oaire.fundername | National Cancer Institute (USA) | eng |
| oaire.fundername | United States Department of Veterans Affairs (USA) | eng |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- PhD_Thesis___Jennifer_Salguero_Lopez.pdf
- Tamaño:
- 113.73 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Doctorado en Ingeniería - Ingeniería Eléctrica
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:

