Power conversion systems for increasing the efficiency in DC microgrids based on renewable sources

dc.contributor.advisorSaavedra-Montes, Andrés Julián
dc.contributor.advisorRamos-Paja, Carlos Andres
dc.contributor.authorHenao Bravo, Elkin Edilberto
dc.contributor.cvlacHenao Bravo, Elkin Edilberto [0001526319]spa
dc.contributor.googlescholarhttps://scholar.google.com/citations?user=HISSQZUAAAAJ&hl=esspa
dc.contributor.orcidHenao Bravo, Elkin Edilberto [0000-0001-9663-1082]spa
dc.contributor.researchgatehttps://www.researchgate.net/profile/Elkin-Henao-Bravospa
dc.contributor.researchgroupAutomática, Electrónica y Ciencias Computacionalesspa
dc.date.accessioned2023-05-25T21:19:18Z
dc.date.available2023-05-25T21:19:18Z
dc.date.issued2023
dc.descriptiongraficas, tablasspa
dc.description.abstractThis thesis reports the contributions obtained while developing doctoral studies in the Doctorado en Ingeniería Automática from the Universidad Nacional de Colombia. The thesis focuses on power converters for processing energy in DC microgrids. The document contains six chapters; each chapter begins with a brief introduction of the specific topics; then, the methodology focuses on system analysis, design, modeling, or/and control. The chapters also present the validations of the proposed methodology. Finally, each chapter presents conclusions about its topic. To validate the contributions of this thesis, specialized software and experimental validations are used for corroborating the design process for the power converters and their controllers. DC microgrids formed by PV systems and batteries are the subject of study for this thesis; therefore, the energy flow optimization in those DC microgrids is the main research area faced by designing, modeling, and controlling power converters that can be used with PV panels or with batteries as chargers/dischargers. In this sense, this thesis proposes the design, modeling, and control of the double active bridge (DAB) converter for photovoltaic (PV) panels, which is aimed to improve the harvesting and flow of energy in PV systems in a DC microgrid. Additionally, this thesis proposes chargers/dischargers based on Zeta/Sepic converters for batteries in DC microgrids. This solution allows adapting different battery banks to microgrids with a DC bus voltage lower, equal, or higher than the batteries; it also allows for regulating the DC bus voltage in the presence of change of loads or sources by proposing sliding mode controllers (SMC) for the charger/discharger.(Texto tomado de la fuente)eng
dc.description.abstractEsta tesis reporta los aportes obtenidos durante el desarrollo de los estudios de Doctorado en Ingeniería Automática de la Universidad Nacional de Colombia. La tesis se centra en los convertidores de potencia para el procesamiento de energía en microrredes de corriente continua. El documento contiene seis capítulos; cada capítulo comienza con una breve introducción de los temas específicos; luego, la metodología se centra en el análisis, diseño, modelado y/o control del sistema. Los capítulos también presentan las validaciones de la metodología propuesta. Por último, cada capítulo presenta las conclusiones sobre su tema. Para validar las aportaciones de esta tesis, se utiliza software especializado y validaciones experimentales para corroborar el proceso de diseño de los convertidores de potencia y sus controladores. Las microrredes de corriente continua formadas por sistemas fotovoltaicos y baterías son el objeto de estudio de esta tesis; por lo tanto, la optimización del flujo de energía en dichas microrredes de corriente continua es la principal área de investigación que se aborda mediante el diseño, modelado y control de los convertidores de potencia que se pueden utilizar con los paneles fotovoltaicos o con las baterías como cargadores/descargadores. En este sentido, esta tesis propone el diseño, modelado y control del convertidor de doble puente activo (DAB por su nombre en inglés) para paneles fotovoltaicos (FV), cuyo objetivo es mejorar la recolección y el flujo de energía en sistemas FV en una microrred de corriente continua. Además, esta tesis propone cargadores/descargadores basados en convertidores Zeta/Sepic para baterías en microrredes CC. Esta solución permite adaptar diferentes bancos de baterías a las microrredes con una tensión del bus CC inferior, igual o superior a la de las baterías; también permite regular la tensión del bus CC ante el cambio de cargas o fuentes proponiendo controladores en modos deslizantes (SMC por su nombre en inglés) para el cargador/descargador.spa
dc.description.curricularareaEléctrica, Electrónica, Automatización Y Telecomunicacionesspa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingenieríaspa
dc.description.researchareaElectrónica y Energías Renovablesspa
dc.format.extentxxxiii, 198 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83876
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizalesspa
dc.publisher.facultyFacultad de Ingeniería y Arquitecturaspa
dc.publisher.placeManizales, Colombiaspa
dc.publisher.programManizales - Ingeniería y Arquitectura - Doctorado en Ingeniería - Automáticaspa
dc.relation.references[1]E. E. Henao-Bravo, C. A. Ramos-Paja, A. J. Saavedra-Montes, D. Gonzalez-Montoya, and J. Sierra-P´erez, “Design method of dual active bridge converters for photovoltaic systems with high voltage gain,” Energies, vol. 13, no. 7, pp. 1–31, 2020spa
dc.relation.references[2]D. A. Herrera-Jaramillo, E. E. Henao-Bravo, D. Gonzalez Montoya, C. A. Ramos-Paja, and A. J. Saavedra-Montes, “Control-Oriented Model of Photovoltaic Systems Based on a Dual Active Bridge Converter,” Sustainability, vol. 13, no. 14, p. 7689, jul 2021. [Online]. Available: https://www.mdpi.com/2071-1050/13/14/7689spa
dc.relation.references[3]E. E. Henao-Bravo, C. A. Ramos-paja, and A. J. Saavedra-montes, “Adaptive control of photovoltaic systems based on dual active bridge converters,” Computation, vol. 10, pp. 1–24, 2022. [Online]. Available: https://www.mdpi.com/2079-3197/10/6/89/htmspa
dc.relation.references[4]D. A. Herrera-Jaramillo, D. Gonzalez Montoya, E. E. Henao-Bravo, C. A. Ramos-Paja, and A. J. Saavedra-Montes, “Systematic analysis of control techniques for the dual active bridge converter in photovoltaic applications,” International Journal of Circuit Theory and Applications, no. April, p. cta.3031, apr 2021. [Online]. Available: https://onlinelibrary.wiley.com/doi/10.1002/cta.3031spa
dc.relation.references[5]E. E. Henao-Bravo, A. J. Saavedra-Montes, C. A. Ramos-Paja, J. D. Bastidas- Rodriguez, and D. G. Montoya, “Charging/discharging system based on zeta/sepic converter and a sliding mode controller for dc bus voltage regulation,” IET Power Electronics, vol. 13, no. 8, pp. 1514–1527, 2020.spa
dc.relation.references[6]J. P. Villegas-Ceballos, C. A. Ramos-Paja, and E. E. Henao-Bravo, “Sliding-mode controller for a step up-down battery charger with a single current sensor,” International Journal of Electrical and Computer Engineering (IJECE), vol. 12, pp. 1251–1264, 2022.spa
dc.relation.references[7]N. Earth Science Communications Team.(2019-12-04), “Effects — Facts – Climate Change: Vital Signs of the Planet [online]. available:https://climate.nasa.gov/effects/,” 2018. [Online]. Available: https://climate.nasa.gov/effects/spa
dc.relation.references[8]C. Garcia Arbelaez, G. Vallejo Lopez, M. Lou Higgins, and E. M. Escobar, El Acuerdo De Par´ıs: As´ı Actuar´a Colombia Frente Al Cambio Clim´atico, 1st ed., WWF - Colombia, Ed. Cali - Colombia: WWF-Colombia, 2016. [Online]. Available: http://www.minambiente.gov.co/images/cambioclimatico/pdfspa
dc.relation.references[9] International Energy Agency, World Energy Outlook 2018: Electricity. Paris, France: IEA Publications, 2018. [Online]. Available: www.iea.orgspa
dc.relation.references[10] REN21, “Renewables 2018 Global Status Report,” Renewable Energy Policy Network for the 21st Century, Tech. Rep., 2018. [Online]. Available: http://www.ren21.net/gsr- 2018/spa
dc.relation.references[11] CELSIA, “Celsia Solar Espinal [online]. available: https://www.celsia.com/es/proyectos/celsia-solar-espinal,” 2018. [Online]. Available: https://www.celsia.com/es/Proyectos/Celsia-Solar-Espinalspa
dc.relation.references[12] CELSIA., “Inicia operaciones Celsia Solar Bol´ıvar, la nueva granja de generaci´on de energ´ıa solar de Celsia para beneficio de los colombianos [online]. available:https://www.celsia.com/es/sala-prensa/inicia- operaciones-celsia-solar-bol237var-la-nueva-granja-de-generaci243n-de-energ237a- solar-de-celsia-para-beneficio-de-los-colombianos,” 2018. [Online]. Available: https://www.celsia.com/es/sala-prensa/inicia-operaciones-celsia-solar-bol237var- la-nueva-granja-de-generaci243n-de-energ237a-solar-de-celsia-para-beneficio-de-los- colombianosspa
dc.relation.references[13]O. Pupo-Roncallo, J. Campillo, D. Ingham, K. Hughes, and M. Pourkashanian, “Renewable energy production and demand dataset for the energy system of colombia,” Data in Brief, vol. 28, p. 105084, 2020. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S2352340919314404spa
dc.relation.references[14] UPME, “Boletín Estadístico de Minas y Energía 2016-2018,” Unidad de Planeación Minero Energética, Ed. Bogotá D.C., Colombia: Unidad de Planeación Minero Energética, 2018, pp. 1–162. [Online]. Available: www.upme.gov.cospa
dc.relation.references[15]A. R. López, A. Krumm, L. Schattenhofer, T. Burandt, F. C. Montoya, N. Oberl¨ander, and P.-Y. Oei, “Solar pv generation in colombia - a qualitative and quantitative approach to analyze the potential of solar energy market,” Renewable Energy, vol. 148, pp. 1266 – 1279, 2020. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0960148119315575spa
dc.relation.references[16]O. Pupo-Roncallo, J. Campillo, D. Ingham, K. Hughes, and M. Pourkashanian, “Large scale integration of renewable energy sources (res) in the future colombian energy system,” Energy, vol. 186, p. 115805, 2019. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S036054421931477Xspa
dc.relation.references[17] El Congreso De Colombia, “Ley 1715 - Por Medio De La Cual Se Regula La Integración De Las Energías Renovables No Convencionales Al Sistema Energético Nacional,” 2014.spa
dc.relation.references[18] UPME, Integración de las energías renovables no convencionales en Colombia, La Imprenta Editores SA, Ed. Bogotá D.C.: Unidad de Planeación Minero Energética, 2015. [Online]. Available: https://www1.upme.gov.co/spa
dc.relation.references[19]G. Spagnuolo, S. Kouro, and D. Vinnikov, “Photovoltaic Module and Submodule Level Power Electronics and Control,” IEEE Transactions on Industrial Electronics, vol. 66, no. 5, pp. 3856–3859, 2019.spa
dc.relation.references[20] REN21 Secretariat, “Renewables 2021 Global Status Report,” Paris, France, Tech. Rep., 2021. [Online]. Available: https://www.ren21.net/wp- content/uploads/2019/05/GSR2021 Full Report.pdfspa
dc.relation.references[21] IEA, “World Energy Outlook 2021,” International Energy Agency, Paris, France, Tech. Rep., 2021. [Online]. Available: www.iea.org/weospa
dc.relation.references[22]E. Romero-Cadaval, G. Spagnuolo, L. G. Franquelo, C. A. Ramos-Paja, T. Suntio, and W. M. Xiao, “Grid-connected photovoltaic generation plants: Components and operation,” IEEE Industrial Electronics Magazine, vol. 7, no. 3, pp. 6–20, 2013.spa
dc.relation.references[23]J. L. Dos Santos de Morais, Julio Cezar Dos Santos de Morais and R. Gules, “Photovoltaic AC Module Based on a Cuk Converter with a Switched-Inductor Structure,” IEEE Transactions on Industrial Electronics, vol. 66, no. 5, pp. 3881–3890, may 2019. [Online]. Available: https://ieeexplore.ieee.org/document/8415742/spa
dc.relation.references[24]H. Ardi, A. Ajami, and M. Sabahi, “A Novel High Step-Up DC–DC Converter With Continuous Input Current Integrating Coupled Inductor for Renewable Energy Applications,” IEEE Transactions on Industrial Electronics, vol. 65, no. 2, pp. 1306– 1315, feb 2018. [Online]. Available: http://ieeexplore.ieee.org/document/7995100/spa
dc.relation.references[25]A. M. S. S. Andrade, L. Schuch, and M. L. da Silva Martins, “Analysis and design of high-efficiency hybrid high step-Up DC-DC converter for distributed PV generation systems,” IEEE Transactions on Industrial Electronics, vol. 66, no. 5, pp. 3860–3868, may 2019. [Online]. Available: https://ieeexplore.ieee.org/document/8370773/spa
dc.relation.references[26]R. A. Messenger and J. Ventre, Photovoltaic Systems Engineering, 2nd ed., C. PRESS, Ed. Taylor & Francis e-Library, 2003. [Online]. Available: http://doi.wiley.com/10.1002/1521-3773/820010316/940spa
dc.relation.references[27]A. Rajaei, R. Khazan, M. Mahmoudian, M. Mardaneh, and M. Gitizadeh, “A Dual Inductor High Step-Up DC/DC Converter Based on the Cockcroft–Walton Multiplier,” IEEE Transactions on Power Electronics, vol. 33, no. 11, pp. 9699–9709, nov 2018. [Online]. Available: https://ieeexplore.ieee.org/document/8253836/spa
dc.relation.references[28]J. Velez-Sanchez, J. D. Bastidas-Rodriguez, C. A. Ramos-Paja, D. Gonzalez-Montoya, and L. A. Trejos-Grisales, “A non-invasive procedure for estimating the exponential model parameters of bypass diodes in photovoltaic modules,” Energies, vol. 12, no. 2, p. 303, 2019.spa
dc.relation.references[29]M. E. Basoglu, “An Improved 0.8 V OC Model Based GMPPT Technique for Module Level Photovoltaic Power Optimizers,” IEEE Transactions on Industry Applications, vol. 55, no. 2, pp. 1913–1921, mar 2019. [Online]. Available: https://ieeexplore.ieee.org/document/8565882/spa
dc.relation.references[30]S. Hosseini, S. Taheri, M. Farzaneh, and H. Taheri, “A High-Performance Shade-Tolerant MPPT Based on Current-Mode Control,” IEEE Transactions on Power Electronics, vol. 34, no. 10, pp. 10 327–10 340, oct 2019. [Online]. Available: https://ieeexplore.ieee.org/document/8620516/spa
dc.relation.references[31]K. Bataineh, “Improved hybrid algorithms-based MPPT algorithm for PV system operating under severe weather conditions,” IET Power Electronics, vol. 12, no. 4, pp. 703–711, apr 2019. [Online]. Available: https://digital- library.theiet.org/content/journals/10.1049/iet-pel.2018.5651spa
dc.relation.references[32]J. D. Bastidas-Rodriguez, E. Franco, G. Petrone, C. A. Ramos-Paja, and G. Spagnuolo, “Maximum power point tracking architectures for photovoltaic systems in mismatching conditions: a review,” IET Power Electronics, vol. 7, no. 6, pp. 1396–1413, jun 2014.spa
dc.relation.references[33]D. Vinnikov, A. Chub, E. Liivik, R. Kosenko, and O. Korkh, “Solar optiverter - A novel hybrid approach to the photovoltaic module level power electronics,” IEEE Transactions on Industrial Electronics, vol. 66, no. 5, pp. 3869–3880, may 2019. [Online]. Available: https://ieeexplore.ieee.org/document/8402238/spa
dc.relation.references[34]Q. Huang, A. Huang, R. Yu, P. Liu, and W. Yu, “High-Efficiency and High-Density Single-Phase Dual-Mode Cascaded Buck-Boost Multilevel Transformerless PV Inverter with GaN AC Switches,” IEEE Transactions on Power Electronics, vol. 34, no. 8, pp. 7474–7488, 2018.spa
dc.relation.references[35]H. S. Lee and J. J. Yun, “Quasi-Resonant Voltage Doubler with Snubber Capacitor for Boost Half-Bridge DC-DC Converter in Photovoltaic Micro-Inverter,” IEEE Transac- tions on Power Electronics, vol. 34, no. 9, pp. 8377–8388, 2018.spa
dc.relation.references[36]J. Roy, Y. Xia, and R. Ayyanar, “High Step-Up Transformerless Inverter for AC Module Applications with Active Power Decoupling,” IEEE Transactions on Industrial Electronics, vol. 66, no. 5, pp. 3891–3901, may 2019. [Online]. Available: https://ieeexplore.ieee.org/document/8425065/spa
dc.relation.references[37]N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics. Converters, Ap- plications and Design, 3rd ed. John Wiley and Sons, Inc, 2003.spa
dc.relation.references[38]J. Ravishankar, D. Binu Ben Jose, and N. Ammasai Gounden, “Simple power electronic controller for photovoltaic fed grid-tied systems using line commutated inverter with fixed firing angle,” IET Power Electronics, vol. 7, no. 6, pp. 1424–1434, jun 2014. [Online]. Available: https://digital-library.theiet.org/content/journals/10.1049/iet- pel.2013.0440spa
dc.relation.references[39]K. Li, Y. Hu, and A. Ioinovici, “Generation of the Large DC Gain Step- Up Nonisolated Converters in Conjunction With Renewable Energy Sources Starting From a Proposed Geometric Structure,” IEEE Transactions on Power Electronics, vol. 32, no. 7, pp. 5323–5340, jul 2017. [Online]. Available: http://ieeexplore.ieee.org/document/7567545/spa
dc.relation.references[40]R. K. Surapaneni and P. Das, “A Z-Source-Derived Coupled-Inductor-Based High Voltage Gain Microinverter,” IEEE Transactions on Industrial Elec- tronics, vol. 65, no. 6, pp. 5114–5124, jun 2018. [Online]. Available: http://ieeexplore.ieee.org/document/8017498/spa
dc.relation.references[41]V. Gautam and P. Sensarma, “Design of C´uk-Derived Transformerless Common- Grounded PV Microinverter in CCM,” IEEE Transactions on Industrial Electronics, vol. 64, no. 8, pp. 6245–6254, aug 2017. [Online]. Available: http://ieeexplore.ieee.org/document/7869382/spa
dc.relation.references[42]J. Kan, Y. Wu, Y. Tang, S. Xie, and L. Jiang, “Hybrid Control Scheme for Photovoltaic Micro-Inverter with Adaptive Inductor,” IEEE Transactions on Power Electronics, pp. 1–1, 2018. [Online]. Available: https://ieeexplore.ieee.org/document/8556060/spa
dc.relation.references[43]N. Sukesh, M. Pahlevaninezhad, and P. K. Jain, “Analysis and Implementation of a Single-Stage Flyback PV Microinverter With Soft Switching,” IEEE Transactions on Industrial Electronics, vol. 61, no. 4, pp. 1819–1833, apr 2014. [Online]. Available: http://ieeexplore.ieee.org/document/6517272/spa
dc.relation.references[44]R. K. Surapaneni and A. K. Rathore, “A Single-Stage CCM Zeta Microinverter for Solar Photovoltaic AC Module,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 3, no. 4, pp. 892–900, dec 2015. [Online]. Available: http://ieeexplore.ieee.org/document/7113782/spa
dc.relation.references[45]D. Meneses, O. Garcia, P. Alou, J. A. Oliver, and J. A. Cobos, “Grid-Connected Forward Microinverter With Primary-Parallel Secondary-Series Transformer,” IEEE Transactions on Power Electronics, vol. 30, no. 9, pp. 4819–4830, sep 2015. [Online]. Available: http://ieeexplore.ieee.org/document/6940259/spa
dc.relation.references[46]S.-H. Lee, W.-J. Cha, J.-M. Kwon, and B.-H. Kwon, “Control Strategy of Flyback Microinverter With Hybrid Mode for PV AC Modules,” IEEE Transactions on Industrial Electronics, vol. 63, no. 2, pp. 995–1002, feb 2016. [Online]. Available: http://ieeexplore.ieee.org/document/7274697/spa
dc.relation.references[47]S.-H. Lee, W.-J. Cha, B.-H. Kwon, and M. Kim, “Discrete-Time Repetitive Control of Flyback CCM Inverter for PV Power Applications,” IEEE Transactions on Industrial Electronics, vol. 63, no. 2, pp. 976–984, feb 2016. [Online]. Available: http://ieeexplore.ieee.org/document/7247692/spa
dc.relation.references[48]A. Chub, D. Vinnikov, F. Blaabjerg, and F. Z. Peng, “A review of galvanically isolated impedance-source DC-DC converters,” pp. 2808–2828, apr 2016.spa
dc.relation.references[49]L. G. Junior, M. A. De Brito, L. P. Sampaio, and C. A. Canesin, “Single stage con- verters for low power stand-alone and grid-connected PV systems,” in Proceedings - ISIE 2011: 2011 IEEE International Symposium on Industrial Electronics, 2011, pp. 1112–1117.spa
dc.relation.references[50]B. Zhao, Q. Song, W. Liu, and Y. Sun, “Overview of dual-active-bridge isolated bidirectional DC-DC converter for high-frequency-link power-conversion system,” IEEE Transactions on Power Electronics, vol. 29, no. 8, pp. 4091–4106, 2014. [Online]. Available: http://dx.doi.org/10.1109/TPEL.2013.2289913spa
dc.relation.references[51]F. Yazdani and M. Zolghadri, “Design of dual active bridge isolated bi-directional DC converter based on current stress optimization,” in 2017 8th Power Electronics, Drive Systems & Technologies Conference (PEDSTC). IEEE, 2017, pp. 247–252. [Online]. Available: http://ieeexplore.ieee.org/document/7910331/spa
dc.relation.references[52]D. S. Segaran, “Dynamic Modelling and Control of Dual Active Bridge Bi- directional DC-DC Converters for Smart Grid Applications,” Ph.D. dissertation, Royal Melbourne Institute of Technology University, 2013. [Online]. Available: https://researchbank.rmit.edu.au/eserv/rmit:160330/Segaran.pdfspa
dc.relation.references[53]Y. C. Jeung and D. C. Lee, “Voltage and current regulations of bidirectional isolated dual-active-bridge DC-DC converters based on a double-integral sliding mode control,” IEEE Transactions on Power Electronics, vol. 34, no. 7, pp. 6937–6946, 2019.spa
dc.relation.references[54]D. Wang, B. Nahid-Mobarakeh, and A. Emadi, “Second Harmonic Current Reduction for a Battery-Driven Grid Interface With Three-Phase Dual Active Bridge DC–DC Converter,” IEEE Transactions on Industrial Electronics, vol. 66, no. 11, pp. 9056– 9064, nov 2019. [Online]. Available: https://ieeexplore.ieee.org/document/8654202/spa
dc.relation.references[55]H. Bayat and A. Yazdani, “A Hybrid MMC-Based Photovoltaic and Bat- tery Energy Storage System,” IEEE Power and Energy Technology Sys- tems Journal, vol. 6, no. 1, pp. 32–40, mar 2019. [Online]. Available: https://ieeexplore.ieee.org/document/8612921/spa
dc.relation.references[56]D. Gonzalez-Agudelo, A. Escobar-Mejia, and H. Ramirez-Murrillo, “Dynamic model of a dual active bridge suitable for solid state transformers,” International Power Electronics Congress - CIEP, vol. 2016-Augus, pp. 350–355, 2016.spa
dc.relation.references[57]A. Agrawal, C. S. Nalamati, and R. Gupta, “Hybrid DC–AC Zonal Microgrid Enabled by Solid-State Transformer and Centralized ESD Integration,” IEEE Transactions on Industrial Electronics, vol. 66, no. 11, pp. 9097–9107, nov 2019. [Online]. Available: https://ieeexplore.ieee.org/document/8648411/spa
dc.relation.references[58]T. M. Parreiras, A. P. MacHado, F. V. Amaral, G. C. Lobato, J. A. Brito, and B. C. Filho, “Forward Dual-Active-Bridge Solid-State Transformer for a SiC-Based Casca- ded Multilevel Converter Cell in Solar Applications,” IEEE Transactions on Industry Applications, vol. 54, no. 6, pp. 6353–6363, nov 2018.spa
dc.relation.references[59]A. Mansour, B. Faouzi, G. Jamel, and E. Ismahen, “Design and analysis of a high fre- quency DC–DC converters for fuel cell and super-capacitor used in electrical vehicle,” International Journal of Hydrogen Energy, vol. 39, no. 3, pp. 1580–1592, jan 2014. [Onli- ne]. Available: https://www.sciencedirect.com/science/article/pii/S0360319913010100spa
dc.relation.references[60]M. I. Marei, H. El-Helw, and M. Al-Hasheem, “A grid-connected PV interface system based on the DAB-converter,” in 2015 IEEE 15th International Conference on Environment and Electrical Engineering (EEEIC). IEEE, jun 2015, pp. 161–165. [Online]. Available: http://ieeexplore.ieee.org/document/7165534/spa
dc.relation.references[61]H. M. El-Helw, M. Al-Hasheem, and M. I. Marei, “Control strategies for the DAB based PV interface system,” PLoS ONE, vol. 11, no. 8, pp. 1–19, 2016.spa
dc.relation.references[62]J. Hu, P. Joebges, G. C. Pasupuleti, N. R. Averous, and R. W. De Doncker, “A Maximum-Output-Power-Point-Tracking Contro- lled Dual-Active Bridge Converter for Photovoltaic Energy Integration in- to MVDC Grids,” IEEE Transactions on Energy Conversion, pp. 1–1, 2018. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0- 85054670210&doi=10.1109/FTEC.2018.2874936spa
dc.relation.references[63]Y. Shi, R. Li, Y. Xue, and H. Li, “High-Frequency-Link-Based Grid-Tied PV System With Small DC-Link Capacitor and Low-Frequency Ripple-Free Maximum Power Point Tracking,” IEEE Transactions on Power Electronics, vol. 31, no. 1, pp. 328–339, jan 2016. [Online]. Available: http://dx.doi.org/10.1109/TPEL.2015.2411858 http://ieeexplore.ieee.org/document/7058411/spa
dc.relation.references[64]T. Liu, X. Yang, W. Chen, Y. Li, Y. Xuan, L. Huang, and X. Hao, “Design and Implementation of High Efficiency Control Scheme of Dual Active Bridge Based 10 kV/1 MW Solid State Transformer for PV Application,” IEEE Transactions on Power Electronics, vol. 34, no. 5, pp. 4223–4238, may 2019.spa
dc.relation.references[65]G. Xu, D. Sha, Y. Xu, and X. Liao, “Dual-Transformer-Based DAB Converter with Wide ZVS Range for Wide Voltage Conversion Gain Application,” IEEE Transactions on Industrial Electronics, vol. 65, no. 4, pp. 3306–3316, 2018.spa
dc.relation.references[66]H. Wang, T. Wei, X. Sun, X. Wan, F. Wang, and F. Zhuo, “The application of cascade power electronic transformer in large-scale photovoltaic power generation system,” in PEDG 2019 - 2019 IEEE 10th International Symposium on Power Electronics for Distributed Generation Systems. Institute of Electrical and Electronics Engineers Inc., jun 2019, pp. 425–428.spa
dc.relation.references[67]M. Aguirre and A. Yazdani, “A single-phase dc-ac dual-active-bridge based resonant converter for grid-connected Photovoltaic (PV) applications,” in 2019 21st European Conference on Power Electronics and Applications, EPE 2019 ECCE Europe. Institute of Electrical and Electronics Engineers Inc., sep 2019.spa
dc.relation.references[68]A. Rodriguez, A. Vazquez, D. G. Lamar, M. M. Hernando, and J. Sebastian, “Different purpose design strategies and techniques to improve the performance of a Dual Active Bridge with phase-shift control,” IEEE Transactions on Power Electronics, vol. 30, no. 2, pp. 790–804, 2015.spa
dc.relation.references[69]K. S. Kim, S. G. Jeong, and B. H. Kwon, “Single power-conversion DAB microinverter with safe commutation and high efficiency for PV power applications,” Solar Energy, vol. 193, pp. 676–683, nov 2019.spa
dc.relation.references[70]A. Mohapatra, B. Nayak, P. Das, and K. B. Mohanty, “A review on mppt techniques of pv system under partial shading condition,” Renewable and Sustainable Energy Reviews, vol. 80, pp. 854–867, 2017.spa
dc.relation.references[71]E. Mamarelis, G. Petrone, and G. Spagnuolo, “Design of a sliding-mode-controlled sepic for pv mppt applications,” IEEE Transactions on Industrial Electronics, vol. 61, no. 7, pp. 3387–3398, 2014.spa
dc.relation.references[72]S. Bacha, I. Munteanu, and A. I. Bratcu, “Introduction to power electronic converters modeling,” in Power Electronic Converters Modeling and Control. Springer, 2014, pp. 9–25.spa
dc.relation.references[73]R. Naayagi, A. J. Forsyth, and R. Shuttleworth, “High-power bidirectional dc–dc con- verter for aerospace applications,” IEEE Transactions on Power Electronics, vol. 27, no. 11, pp. 4366–4379, 2012.spa
dc.relation.references[74]S. Kulasekaran and R. Ayyanar, “Analysis, design, and experimental results of the semidual-active-bridge converter,” IEEE Transactions on power electronics, vol. 29, no. 10, pp. 5136–5147, 2013.spa
dc.relation.references[75]F. Zhang and W. Li, “An equivalent circuit method for modeling and simulation of dual active bridge converter based marine distribution system,” in 2019 IEEE Electric Ship Technologies Symposium (ESTS). IEEE, 2019, pp. 382–387.spa
dc.relation.references[76]S. D. F. Zambrano, “A dc-dc multiport converter based solid state transformer inte- grating distributed generation and storage,” Approved Jun, 2011.spa
dc.relation.references[77]H. Qin and J. W. Kimball, “Generalized average modeling of dual active bridge dc–dc converter,” IEEE Transactions on power electronics, vol. 27, no. 4, pp. 2078–2084, 2011.spa
dc.relation.references[78]S. S. Shah and S. Bhattacharya, “Large & small signal modeling of dual active bridge converter using improved first harmonic approximation,” in 2017 IEEE Applied Power Electronics Conference and Exposition (APEC). IEEE, 2017, pp. 1175–1182.spa
dc.relation.references[79]S. Marti and H. Krishnaswami, “Control algorithm for port power imbalance in two-stage, N-port modular multilevel cascaded photovoltaic inverters,” in 2017 IEEE Texas Power and Energy Conference (TPEC). Department of Electrical and Computer Engineering, University of Texas at San Antonio, San Antonio, TX, United States: IEEE, feb 2017, pp. 1–6. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85016623184spa
dc.relation.references[80]L. Guan, F. Xiao, C. Tu, and Z. Lan, “Modal analysis method of dab based on phase shift control,” in 2019 IEEE Energy Conversion Congress and Exposition (ECCE). IEEE, 2017, pp. 5954–5959.spa
dc.relation.references[81]X. Liu, Z. Zhu, D. A. Stone, M. P. Foster, W. Chu, I. Urquhart, and J. Greenough, “No- vel dual-phase-shift control with bidirectional inner phase shifts for a dual-active-bridge converter having low surge current and stable power control,” IEEE Transactions on Power Electronics, vol. 32, no. 5, pp. 4095–4106, 2016.spa
dc.relation.references[82]J. Everts, Everts, and Jordi, “Design and Optimization of an Efficient (96.1 %) and Compact (2 kW/dm3) Bidirectional Isolated Single-Phase Dual Active Bridge AC-DC Converter,” Energies, vol. 9, no. 10, p. 799, oct 2016. [Online]. Available: http://www.mdpi.com/1996-1073/9/10/799spa
dc.relation.references[83]L. Cao, K. H. Loo, and Y. M. Lai, “Output-Impedance Shaping of Bidirectional DAB DC–DC Converter Using Double-Proportional-Integral Feedback for Near-Ripple-Free DC Bus Voltage Regulation in Renewable Energy Systems,” IEEE Transactions on Power Electronics, vol. 31, no. 3, pp. 2187–2199, mar 2016. [Online]. Available: http://ieeexplore.ieee.org/document/7108066/spa
dc.relation.references[84]R. Sharma and S. K. Sharma, “Solar photovoltaic supply system integrated with solid state transformer,” in 2021 IEEE 4th International Conference on Computing, Power and Communication Technologies (GUCON), 2021, pp. 1–6.spa
dc.relation.references[85]B. Krishna, T. S. Bheemraj, and V. Karthikeyan, “Optimized active power management in solar pv-fed transformerless grid-connected system for rural electrified microgrid,” Journal of Circuits, Systems and Computers, vol. 30, no. 03, p. 2150039, 2021. [Online]. Available: https://doi.org/10.1142/S0218126621500390spa
dc.relation.references[86]J. You, J. Xia, and H. Jia, “Analysis and control of DAB based DC-AC multiport converter with small DC link capacitor,” in IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society. IEEE, oct 2017, pp. 823–828. [Online]. Available: http://ieeexplore.ieee.org/document/8216142/spa
dc.relation.references[87]S. Kurm and V. Agarwal, “Dual active bridge based reduced stage multiport dc/ac con- verter for pv-battery systems,” IEEE Transactions on Industry Applications, vol. 58, no. 2, pp. 2341–2351, 2022.spa
dc.relation.references[88]S. S. Shah and S. Bhattacharya, “Control of active component of current in dual active bridge converter,” in 2018 IEEE Applied Power Electronics Conference and Exposition (APEC). IEEE, mar 2018, pp. 323–330. [Online]. Available: http://ieeexplore.ieee.org/document/8341030/spa
dc.relation.references[89]B. L. Baolong Liu, Y. Z. Yabing Zha, T. Z. Tao Zhang, and S. C. Shiming Chen, “Fuzzy logic control of dual active bridge in solid state transformer applications,” in 2016 Tsinghua University-IET Electrical Engineering Academic Forum. Institution of Engineering and Technology, 2016, pp. 2 (4 .)–2 (4 .). [Online]. Available: https://digital-library.theiet.org/content/conferences/10.1049/cp.2016.1183spa
dc.relation.references[90]N. Vazquez and M. Liserre, “Peak Current Control and Feed-Forward Com- pensation of a DAB Converter,” IEEE Transactions on Industrial Elec- tronics, vol. 67, no. 10, pp. 8381–8391, oct 2020. [Online]. Available: https://ieeexplore.ieee.org/document/8887534/spa
dc.relation.references[91]J. Arredondo, M. Quispe, and M. Valencia, “Particle swarm optimization mppt al- gorithm in a dual active bridge series-resonant dc-dc converter for partial shading conditions,” in 2021 IEEE 5th Colombian Conference on Automatic Control (CCAC), 2021, pp. 274–279.spa
dc.relation.references[92]Y. Wang, B. Wang, C. C. Chu, H. Pota, and R. Gadh, “Energy management for a commercial building microgrid with stationary and mobile battery storage,” Energy and Buildings, vol. 116, pp. 141–150, 2016. [Online]. Available: http://dx.doi.org/10.1016/j.enbuild.2015.12.055spa
dc.relation.references[93]Z. Zeng, R. Zhao, and H. Yang, “Micro-sources design of an intelligent building integrated with micro-grid,” Energy and Buildings, vol. 57, pp. 261–267, 2013. [Online]. Available: http://dx.doi.org/10.1016/j.enbuild.2012.11.018spa
dc.relation.references[94]M. S. Mahmoud and F. M. AL-Sunni, “Networked Control of Microgrid System of Systems,” in Control and Optimization of Distributed Generation Systems. Springer, 2010, pp. 251–308.spa
dc.relation.references[95]N. Eghtedarpour and E. Farjah, “Control strategy for distributed inte- gration of photovoltaic and energy storage systems in DC micro-grids,” Renewable Energy, vol. 45, pp. 96–110, sep 2012. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0960148112001565spa
dc.relation.references[96]P. K. Gayen, P. Roy Chowdhury, and P. K. Dhara, “An improved dynamic performance of bidirectional SEPIC-Zeta converter based battery energy storage system using adaptive sliding mode control technique,” Electric Power Systems Research, vol. 160, pp. 348–361, 2018. [Online]. Available: https://doi.org/10.1016/j.epsr.2018.03.016spa
dc.relation.references[97]A. Choudar, D. Boukhetala, S. Barkat, and J.-M. Brucker, “A local energy mana- gement of a hybrid PV-storage based distributed generation for microgrids,” Energy Conversion and Management, vol. 90, pp. 21–33, 2015.spa
dc.relation.references[98]M. S. Rahman, M. J. Hossain, and J. Lu, “Coordinated control of three-phase AC and DC type EV-ESSs for efficient hybrid microgrid operations,” Energy Conversion and Management, vol. 122, pp. 488–503, 2016. [Online]. Available: http://dx.doi.org/10.1016/j.enconman.2016.05.070spa
dc.relation.references[99]C. A. Ramos-Paja, J. D. Bastidas-Rodr´ıguez, D. Gonz´alez, S. Acevedo, and J. Pel´aez- Restrepo, “Design and Control of a Buck-Boost Charger-Discharger for DC-Bus Re- gulation in Microgrids,” Energies, vol. 10, no. 11, pp. 1–26, 2017.spa
dc.relation.references[100]S. Serna-Garcés, D. Gonzalez Montoya, and C. Ramos-Paja, “Sliding-mode control of a charger/discharger dc/dc converter for dc-bus regulation in renewable power systems,” Energies, vol. 9, no. 4, p. 245, Mar 2016. [Online]. Available: http://dx.doi.org/10.3390/en9040245spa
dc.relation.references[101]J. Renau, L. Domenech, V. Garc´ıa, A. Real, N. Mont´es, and F. S´anchez, “Proposal of a nearly zero energy building electrical power generator with an optimal temporary generation-consumption correlation,” Energy and Buildings, vol. 83, pp. 140–148, 2014. [Online]. Available: http://dx.doi.org/10.1016/j.enbuild.2014.03.083spa
dc.relation.references[102]Y.-C. Chang and C.-M. Liaw, “Establishment of a Switched-Reluctance Generator- Based Common DCMicrogrid System,” IEEE Transactions on Power Electronics, vol. 26, no. 9, pp. 2512–2527, 2011.spa
dc.relation.references[103]W. Jing, C. H. Lai, W. S. Wong, and M. D. Wong, “Dynamic power allocation of battery-supercapacitor hybrid energy storage for standalone PV microgrid applica- tions,” Sustainable Energy Technologies and Assessments, vol. 22, pp. 55–64, 2017. [Online]. Available: http://linkinghub.elsevier.com/retrieve/pii/S2213138816301849spa
dc.relation.references[104]X. Chang, Y. Li, W. Zhang, N. Wang, and W. Xue, “Active Disturbance Rejection Control for a Flywheel Energy Storage System,” IEEE Transactions on Power Elec- tronics, vol. 62, no. 2, pp. 991–1001, 2015.spa
dc.relation.references[105]B. Mebarki, B. Draoui, L. Rahmani, and B. Allaoua, “Electric automobile Ni-MH battery investigation in diverse situations,” Energy Procedia, vol. 36, pp. 130–141, 2013. [Online]. Available: http://dx.doi.org/10.1016/j.egypro.2013.07.016spa
dc.relation.references[106]O. Veneri, C. Capasso, and D. Iannuzzi, “Experimental evaluation of DC charging architecture for fully-electrified low-power two-wheeler,” Applied Energy, vol. 162, pp. 1428–1438, 2016.spa
dc.relation.references[107]H. El Fadil and F. Giri, “Sliding Mode Control of Fuel Cell and Supercapacitor Hybrid Energy Storage System,” in Power Electronics and Applications (EPE’15 ECCE-Europe) 2015 17th European Conference on. IFAC, 2015, pp. 1–8. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S1474667016320493spa
dc.relation.references[108]R. Georgious, J. Garc´ıa, P. Garc´ıa, and M. Summer, “Analysis of Hybrid Energy Storage Systems with DC Link Fault Ride-Through Capability,” in 2016 IEEE Energy Conversion Congress and Exposition (ECCE), 2016, pp. 1–8.spa
dc.relation.references[109]N. Eghtedarpour and E. Farjah, “Control strategy for distributed integration of pho- tovoltaic and energy storage systems in DC micro-grids,” Renewable Energy, vol. 45, pp. 96–110, 2012.spa
dc.relation.references[110]H. Wu, S. Ding, K. Sun, L. Zhang, Y. Li, and Y. Xing, “ Bidirectional Soft-Switching Series-Resonant Converter with Simple PWM Control and Load-Independent Voltage-Gain Characteristics For Energy Storage System in DC Microgrids,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 5, no. 3, pp. 1–1, 2017. [Online]. Available: http://ieeexplore.ieee.org/document/7812591/spa
dc.relation.references[111]R. Sarrias, L. M. Fern´andez, C. A. Garc´ıa, and F. Jurado, “Coordinate operation of power sources in a doubly-fed induction generator wind turbine / battery hybrid power system,” Journal of Power Sources, vol. 205, pp. 354–366, 2012. [Online]. Available: http://dx.doi.org/10.1016/j.jpowsour.2012.01.005spa
dc.relation.references[112]M. Sechilariu, B. Wang, and F. Locment, “Building-integrated microgrid: Advanced local energy management for forthcoming smart power grid commu- nication,” Energy and Buildings, vol. 59, pp. 236–243, 2013. [Online]. Available: http://dx.doi.org/10.1016/j.enbuild.2012.12.039spa
dc.relation.references[113]T. Vigneysh and N. Kumarappan, “Autonomous operation and control of photovol- taic/solid oxide fuel cell/battery energy storage based microgrid using fuzzy logic con- troller,” International Journal of Hydrogen Energy, vol. 41, no. 3, pp. 1877–1891, 2016.spa
dc.relation.references[114]C. Capasso and O. Veneri, “Experimental study of a DC charging station for full electric and plug in hybrid vehicles,” Applied Energy, vol. 152, pp. 131–142, 2015.spa
dc.relation.references[115]A. Kloenne and T. Sigle, “Bidirectional ZETA/SEPIC Converter as Battery Char- ging System with High Transfer Ratio,” in 2017 19th European Conference on Power Electronics and Applications (EPE’17 ECCE Europe), 2017, pp. 1–7.spa
dc.relation.references[116]C. Dimna Denny and M. Shahin, “Analysis of bidirectional SEPIC/Zeta converter with coupled inductor,” in 2015 International Conference on Technological Advancements in Power and Energy (TAP Energy), 2015, pp. 103–108.spa
dc.relation.references[117]S. Sivakumar, M. J. Sathik, P. S. Manoj, and G. Sundararajan, “An assessment on performance of DC-DC converters for renewable energy applications,” Renewable and Sustainable Energy Reviews, vol. 58, pp. 1475–1485, 2016. [Online]. Available: http://dx.doi.org/10.1016/j.rser.2015.12.057spa
dc.relation.references[118]M. E. Sah´ın, H. ´I. Okumu, and H. Kahvec´ı, “Sliding mode control of PV powered DC / DC Buck-Boost converter with digital signal processor,” in 2015 17th European Conference on Power Electronics and Applications (EPE’15 ECCE-Europe), 2015, pp. 1–8.spa
dc.relation.references[119]S. A. Gorji, H. G. Sahebi, M. Ektesabi, and A. B. Rad, “Topologies and Control Schemes of Bidirectional DC–DC Power Converters: An Over- view,” IEEE Access, vol. 7, pp. 117 997–118 019, 2019. [Online]. Available: https://ieeexplore.ieee.org/document/8811451/spa
dc.relation.references[120]T. Dragicevic, J. M. Guerrero, J. C. Vasquez, and D. Skrlec, “Supervisory control of an adaptive-droop regulated DC microgrid with battery management capability,” IEEE Transactions on Power Electronics, vol. 29, no. 2, 2014.spa
dc.relation.references[121]H. Fakham, D. Lu, and B. Francois, “Power Control Design of a Battery Charger in a Hybrid Active PV Generator for Load-Following Applications,” IEEE Transactions on Industrial Electronics, vol. 58, no. 1, pp. 85–94, 2011. [Online]. Available: http://ieeexplore.ieee.org/document/5530376/spa
dc.relation.references[122]A. K. Singh and M. K. Pathak, “Single-stage ZETA-SEPIC-based multifunctional integrated converter for plug-in electric vehicles,” IET Electrical Systems in Transportation, vol. 8, no. 2, pp. 101–111, jun 2018. [Online]. Available: https://onlinelibrary.wiley.com/doi/10.1049/iet-est.2017.0063spa
dc.relation.references[123]E. Sunarno, I. Sudiharto, S. D. Nugraha, F. D. Murdianto, Suryono, and O. A. Qudsi, “Design and implementation bidirectional SEPIC/ZETA conver- ter using Fuzzy Logic Controller in DC microgrid application,” Journal of Physics: Conference Series, vol. 1367, p. 12058, nov 2019. [Online]. Available: https://iopscience.iop.org/article/10.1088/1742-6596/1367/1/012058spa
dc.relation.references[124]A. J. Morelo, S. C. Trujillo, and F. E. Hoyos, “Simulation, bifurcation, and stability analysis of a SEPIC converter controlled with ZAD,” International Journal of Electrical and Computer Engineering, vol. 10, no. 1, pp. 728–737, 2020.spa
dc.relation.references[125]M. Venmathi and R. Ramaprabha, “Investigation on Fuzzy Logic Ba- sed Centralized Control in Four-Port SEPIC/ZETA Bidirectional Conver- ter for Photovoltaic Applications,” Advances in Electrical and Compu- ter Engineering, vol. 16, no. 1, pp. 53–60, 2016. [Online]. Available: http://www.aece.ro/abstractplus.php?year=2016&number=1&article=8spa
dc.relation.references[126]F. Altaf, B. Egardt, and L. Johannesson Mardh, “Load Management of Modular Battery Using Model Predictive Control: Thermal and State-of-Charge Balancing,” IEEE Transactions on Control Systems Technology, vol. 25, no. 1, pp. 47–62, 2017. [Online]. Available: http://ieeexplore.ieee.org/document/7458184/spa
dc.relation.references[127]A. Goudarzian and A. Khosravi, “Application of DC/DC Cúk converter as a soft starter for battery chargers based on double-loop control strategy,” International Journal of Circuit Theory and Applications, vol. 47, no. 5, pp. 753–781, 2019.spa
dc.relation.references[128]A. Goudarzian, A. Khosravi, and H. A. Raeisi, “A new approach in design of sliding- mode voltage-controller for a SEPIC,” International Journal of Dynamics and Control, jan 2021. [Online]. Available: http://link.springer.com/10.1007/s40435-020-00741-9spa
dc.relation.references[129]J. Saeed, M. Niakinezhad, N. Fernando, and L. Wang, “Model Predictive Control of an Electric Vehicle Motor Drive Integrated Battery Charger,” in 2019 IEEE 13th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG).IEEE, 2019, pp. 1–6. [Online]. Available: https://ieeexplore.ieee.org/document/8862423/spa
dc.relation.references[130]H. Zhong, J. Li, and Y.-X. Wang, “A Bus-Based Battery Equalization via Modified Isolated Cuk Converter Governed by Adaptive Control,” in 2019 Chinese Automation Congress (CAC). IEEE, nov 2019, pp. 2824–2828. [Online]. Available: https://ieeexplore.ieee.org/document/8996984/spa
dc.relation.references[131]J. L. Mathieu and J. A. Taylor, “Controlling nonlinear batteries for power systems: Trading off performance and battery life,” in 2016 Power Systems Computation Conference (PSCC). IEEE, jun 2016, pp. 1–7. [Online]. Available: http://ieeexplore.ieee.org/document/7540856/spa
dc.relation.references[132]Guan-Chyun Hsieh, Liang-Rui Chen, and Kuo-Shun Huang, “Fuzzy-controlled active state-of-charge controller for fasting the charging behavior of Li-ion battery,” in IECON’99. Conference Proceedings. 25th Annual Conference of the IEEE Industrial Electronics Society (Cat. No.99CH37029), vol. 1. IEEE, 2001, pp. 400–405. [Online]. Available: http://ieeexplore.ieee.org/document/822231/spa
dc.relation.references[133]N. Sujitha and S. Krithiga, “RES based EV battery charging system: A review,” Renewable and Sustainable Energy Reviews, vol. 75, pp. 978–988, aug 2017. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1364032116308206spa
dc.relation.references[134]H. Qin and J. W. Kimball, “Generalized average modeling of dual active bridge DC-DC converter,” IEEE Transactions on Power Electronics, vol. 27, no. 4, pp. 2078–2084, 2012.spa
dc.relation.references[135]B. Zhao, Q. Song, W. Liu, G. Liu, and Y. Zhao, “Universal High-Frequency-Link Cha- racterization and Practical Fundamental-Optimal Strategy for Dual-Active-Bridge DC- DC Converter under PWM Plus Phase-Shift Control,” IEEE Transactions on Power Electronics, vol. 30, no. 12, pp. 6488–6494, dec 2015.spa
dc.relation.references[136]R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, 2nd ed. New York: Kluwer Academic Publishers, 2001.spa
dc.relation.references[137]C. Ferreira and J. L. Lopez, “Asymptotic expansions of the hurwitz–lerch zeta function,” Journal of Mathematical Analysis and Applications, vol. 298, no. 1, pp. 210–224, 2004.spa
dc.relation.references[138]G. Petrone, C. A. Ramos-Paja, and G. Spagnuolo, Photovoltaic Sources Modeling, 1st ed., I. PRESS, Ed. Pondicherry, India: Wiley, 2017, vol. 1, no. 1.spa
dc.relation.references[139]N. Femia, G. Petrone, G. Spagnuolo, and M. Vitelli, “Optimization of perturb and observe maximum power point tracking method,” IEEE Transactions on Power Electronics, vol. 20, no. 4, pp. 963–973, 2005.spa
dc.relation.references[140]J. Ahmed and Z. Salam, “An improved perturb and observe (P&O) maximum powerpoint tracking (MPPT) algorithm for higher efficiency,” Applied Energy, vol. 150, pp. 97–108, jul 2015. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0306261915004456#b0055spa
dc.relation.references[141]E. Mamarelis, G. Petrone, and G. Spagnuolo, “A two-steps al- gorithm improving the P&O steady state MPPT efficiency,” Ap- plied Energy, vol. 113, pp. 414–421, jan 2014. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0306261913005886spa
dc.relation.references[142]M. Valentini, A. Raducu, D. Sera, and R. Teodorescu, “PV inverter test setup for european efficiency, static and dynamic MPPT efficiency evaluation,” in 11th Inter- national Conference on Optimization of Electrical and Electronic Equipment, OPTIM 2008. Brasov, Romania: IEEE, 2008, pp. 433–438.spa
dc.relation.references[143]D. Sera, T. Kerekes, R. Teodorescu, and F. Blaabjerg, “Impro- ved MPPT Algorithms for Rapidly Changing Environmental Conditions,” in 12th International Power Electronics and Motion Control Conferen- ce. Portoroz, Slovenia: IEEE, 2006, pp. 1614–1619. [Online]. Available: https://ieeexplore.ieee.org/document/4778635?arnumber=4778635spa
dc.relation.references[144]BP Solar, “BP585 Solar Modules,” dec 2003. [Online]. Available: http://calculationsolar.com/pdfs/Calculationsolar module BP 585F468.pdfspa
dc.relation.references[145]J. Accarino, G. Petrone, C. A. Ramos-Paja, and G. Spagnuolo, “Symbolic algebra for the calculation of the series and parallel resistances in PV module model,” 4th Inter- national Conference on Clean Electrical Power: Renewable Energy Resources Impact, ICCEP 2013, pp. 62–66, 2013.spa
dc.relation.references[146]I. D. de Souza, P. M. de Almeida, P. G. Barbosa, C. A. Duque, and P. F. Ribeiro, “Digital single voltage loop control of a VSI with LC output filter,” Sustainable Energy, Grids and Networks, vol. 16, pp. 145–155, dec 2018. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2352467718300092#b15spa
dc.relation.references[147]Y. Ting, S. de Haan, and J. A. Ferreira, “Elimination of switching losses in the single active bridge over a wide voltage and load range at constant frequency,” in 2013 15th European Conference on Power Electronics and Applications (EPE). IEEE, sep 2013, pp. 1–10. [Online]. Available: http://ieeexplore.ieee.org/document/6634627/spa
dc.relation.references[148]F. Liu, X. Sun, J. Feng, J. Wu, and X. Li, “The improved dual active bridge converter with a modified phase shift and variable frequency control,” in 2018 IEEE Applied Power Electronics Conference and Exposition (APEC). IEEE, mar 2018, pp. 814–819. [Online]. Available: http://ieeexplore.ieee.org/document/8341106/spa
dc.relation.references[149]J. Li, Z. Chen, Z. Shen, P. Mattavelli, J. Liu, and D. Boroyevich, “An adaptive dead-time control scheme for high-switching-frequency dual-active-bridge converter,” in 2012 Twenty-Seventh Annual IEEE Applied Power Electronics Conference and Exposition (APEC). IEEE, feb 2012, pp. 1355–1361. [Online]. Available: http://ieeexplore.ieee.org/document/6165996/spa
dc.relation.references[150]X. Han, Y. Tan, and H. Ma, “The switching frequency optimization of dual phase shift control for dual active bridge DC-DC converter,” in IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society. IEEE, oct 2017, pp. 1610–1615. [Online]. Available: http://ieeexplore.ieee.org/document/8216273/spa
dc.relation.references[151]A. Aganza-Torres, V. C´ardenas, and M. Pacas, “Generalized average model for a high-frequency link grid-connected DC/AC converter,” International Journal of Electrical Power & Energy Systems, vol. 107, pp. 344–351, may 2019. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0142061518308548spa
dc.relation.references[152]S. A. Evangelou and M. Rehman-Shaikh, “Hybrid electric vehicle fuel minimization by DC-DC converter dual-phase-shift control,” Control En- gineering Practice, vol. 64, pp. 44–60, jul 2017. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S096706611730093Xspa
dc.relation.references[153]M. Monika, M. Rane, S. Wagh, A. Stankovi´c, and N. Singh, “Development of dynamic phasor based higher index model for performance enhancement of dual active bridge,” Electric Power Systems Research, vol. 168, pp. 305–312, mar 2019. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0378779618303419spa
dc.relation.references[154]J. Li, D. Wang, W. Wang, and J. Jiang, “Minimize Current Stress of Dual- Active-Bridge DC-DC Converters for Electric Vehicles Based on Lagrange Multipliers Method,” Energy Procedia, vol. 105, pp. 2733–2738, may 2017. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1876610217310238spa
dc.relation.references[155]D.-D. Nguyen, D.-H. Nguyen, M. C. Ta, and G. Fujita, “Sensorless Feedforward Cu- rrent Control of Dual-Active-Bridge DC/DC Converter for Micro-Grid Applications,” IFAC-PapersOnLine, vol. 51, no. 28, pp. 333–338, jan 2018. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2405896318334438spa
dc.relation.references[156]Daniel W.Hart, Power Electronics. Mc Graw Hill, 2011.spa
dc.relation.references[157]V. Michal, “Dynamic duty-cycle limitation of the boost dc/dc converter allowing maxi- mal output power operations,” in 2016 International Conference on Applied Electronics (AE). IEEE, 2016, pp. 177–182.spa
dc.relation.references[158]M. Z. Malik, H. Chen, M. S. Nazir, I. A. Khan, A. N. Abdalla, A. Ali, and W. Chen, “A new efficient step-up boost converter with cld cell for electric vehicle and new energy systems,” Energies, vol. 13, no. 7, p. 1791, 2020.spa
dc.relation.references[159]A. M. S. S. Andrade, L. Schuch, and M. L. da Silva Martins, “Analysis and design of high-efficiency hybrid high step-up dc–dc converter for distributed pv generation systems,” IEEE Transactions on Industrial Electronics, vol. 66, no. 5, pp. 3860–3868, 2018.spa
dc.relation.references[160]M. S. Bhaskar, R. Alammari, M. Meraj, S. Padmanaban, and A. Iqbal, “A new triple- switch-triple-mode high step-up converter with wide range of duty cycle for dc mi- crogrid applications,” IEEE Transactions on Industry Applications, vol. 55, no. 6, pp. 7425–7441, 2019.spa
dc.relation.references[161]O. Aldosari, L. A. Garcia Rodriguez, J. C. Balda, and S. K. Mazumder, “Design trade-offs for medium- and high-frequency transformers for isolated power converters in distribution system applications,” in 2018 9th IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG), 2018, pp. 1–7.spa
dc.relation.references[162]Y. Du, S. Baek, S. Bhattacharya, and A. Q. Huang, “High-voltage high-frequency transformer design for a 7.2kv to 120v/240v 20kva solid state transformer,” IECON 2010 - 36th Annual Conference on IEEE Industrial Electronics Society, pp. 493–498, 2010.spa
dc.relation.references[163]C. Liu, L. Qi, X. Cui, and X. Wei, “Experimental extraction of parasitic capacitances for high-frequency transformers,” IEEE Transactions on Power Electronics, vol. 32, no. 6, pp. 4157–4167, 2017.spa
dc.relation.references[164]G. Spagnuolo, G. Petrone, B. Lehman, C. Ramos-Paja, Y. Zhao, and M. Orozco Gutie- rrez, “Control of photovoltaic arrays: Dynamical reconfiguration for fighting mismat- ched conditions and meeting load requests,” IEEE Industrial Electronics Magazine, vol. 9, no. 1, pp. 62–76, March 2015.spa
dc.relation.references[165]J. Bastidas-Rodriguez, E. Franco, G. Petrone, C. Ramos-Paja, and G. Spagnuolo, “Maximum power point tracking architectures for photovoltaic systems in mismatching conditions: a review,” IET Power Electronics, vol. 7, no. 6, pp. 1396–1413, 2014.spa
dc.relation.references[166]E. Romero-Cadaval, G. Spagnuolo, L. Garcia Franquelo, C. Ramos-Paja, T. Suntio, and W. Xiao, “Grid-connected photovoltaic generation plants: Components and ope- ration,” IEEE Industrial Electronics Magazine, vol. 7, no. 3, pp. 6–20, Sept 2013.spa
dc.relation.references[167]S. S. Kumar, C. Bibin, K. Akash, K. Aravindan, M. Kishore, and G. Magesh, “Solar powered water pumping systems for irrigation: a comprehensive review on develop- ments and prospects towards a green energy approach,” Materials Today: Proceedings, vol. 33, pp. 303–307, 2020.spa
dc.relation.references[168]M. Aliyu, G. Hassan, S. A. Said, M. U. Siddiqui, A. T. Alawami, and I. M. Elamin, “A review of solar-powered water pumping systems,” Renewable and Sustainable Energy Reviews, vol. 87, pp. 61–76, 2018.spa
dc.relation.references[169]A. Trejos, D. Gonzalez, and C. A. Ramos-Paja, “Modeling of step-up grid-connected photovoltaic systems for control purposes,” Energies, vol. 5, no. 6, pp. 1900–1926, 2012.spa
dc.relation.references[170]T. L. Nguyen, G. Griepentrog et al., “Modeling and control of dual active bridge conver- ter with two control loops and output filter,” in IECON 2017-43rd Annual Conference of the IEEE Industrial Electronics Society. IEEE, 2017, pp. 4683–4689.spa
dc.relation.references[171]S. Zou, S. Zheng, and M. Chinthavali, “Design, analyses and validation of sliding mode control for a dab dc-dc converter,” in 2019 IEEE Transportation Electrification Conference and Expo (ITEC). IEEE, 2019, pp. 1–6.spa
dc.relation.references[172]L. V. Bellinaso, H. H. Figueira, M. F. Basquera, R. P. Vieira, H. A. Gru¨ndling, and L. Michels, “Cascade control with adaptive voltage controller applied to photovoltaic boost converters,” IEEE Transactions on Industry Applications, vol. 55, no. 2, pp. 1903–1912, 2018.spa
dc.relation.references[173]R. Giral, C. A. Ramos-Paja, D. Gonzalez, J. Calvente, A`. Cid-Pastor, and L. Martinez-Salamero, “Minimizing the effects of shadowing in a pv module by means of active voltage sharing,” in 2010 IEEE International Conference on Industrial Technology. IEEE, 2010, pp. 943–948.spa
dc.relation.references[174]H. Song and H. Hofmann, “Robust, accurate systems-based power electronic circuit models in simulink,” in 2018 IEEE 19th Workshop on Control and Modeling for Power Electronics (COMPEL). IEEE, 2018, pp. 1–8.spa
dc.relation.references[175]R. Tanaka, M. Toyota, and T. Koga, “Linear active disturbance rejection controller design based on disturbance response specification for a 1st order plant,” in 2020 59th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE). IEEE, 2020, pp. 1250–1256.spa
dc.relation.references[176]Y. Furukawa and F. Kurokawa, “Design consideration of high performance digital control dc-dc converter based on frequency characteristics,” in 2015 IEEE International Conference on Industrial Technology (ICIT). IEEE, 2015, pp. 2080–2084.spa
dc.relation.references[177]V. Ignatenko, A. Yudintsev, and D. Lyapunov, “Application of state-space method for control system analysis,” in 2019 International Siberian Conference on Control and Communications (SIBCON). IEEE, 2019, pp. 1–5.spa
dc.relation.references[178]I. H. Baciu, I. Ciocan, and S. Lungu, “Modeling transfer function for buck power con- verter,” in 2007 30th International Spring Seminar on Electronics Technology (ISSE). IEEE, 2007, pp. 541–544.spa
dc.relation.references[179]J. Hu, P. Joebges, and R. W. De Doncker, “Maximum power point tracking control of a high power dc-dc converter for PV integration in MVDC distribution grids,” in 2017 IEEE Applied Power Electronics Conference and Exposition (APEC). Institute for Power Generation and Storage Systems, E. on Energy Research Center, RWTH Aachen University, Aachen, Germany: IEEE, mar 2017, pp.1259–1266. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2- s2.0-85019986027&doi=10.1109/FAPEC.2017.7930857spa
dc.relation.references[180]S. Ozturk, P. Pospos, V. Utalay, A. Koc, M. Ermis, and I. C adırcı, “Operating principles and practical design aspects of all SiC DC/AC/DC converter for MPPT in grid-connected PV supplies,” Solar Energy, vol. 176, pp. 380–394, 2018. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0038092X18310284spa
dc.relation.references[181]M. I. Marei, H. El-Helw, and M. Al-Hasheem, “A grid-connected PV interface system based on the DAB-converter,” in 2015 IEEE 15th International Conference on Environment and Electrical Engineering (EEEIC). IEEE, jun 2015, pp. 161–165. [Online]. Available: http://ieeexplore.ieee.org/document/7165534/spa
dc.relation.references[182]J. Hu, Z. An, S. Cui, N. R. Averous, and R. W. De Doncker, “Impedance modeling and stability analysis of dual-active bridge converter interfacing dc grids,” in 2018 IEEE Energy Conversion Congress and Exposition (ECCE). IEEE, 2018, pp. 4907–4914.spa
dc.relation.references[183]T. Duman, S. Marti, M. A. Moonem, A. A. R. A. Kader, and H. Krishnaswami, “A Modular Multilevel Converter with Power Mismatch Control for Grid-Connected Photovoltaic Systems,” Energies, vol. 10, no. 5, p. 698, may 2017. [Online]. Available: http://dx.doi.org/10.3390/en10050698 http://www.mdpi.com/1996-1073/10/5/698spa
dc.relation.references[184]D. A. Herrera-Jaramillo, E. E. Henao-Bravo, and D. G. Montoya, Design Of A Mathe- matical Model For Control Purposes Of A Dc/Dc Dab Converter In Conjunction With An Mppt Algorithm To Raise The Voltage Delivered By A Solar Panel To The Load, 2021.spa
dc.relation.references[185]F. Wang, F. C. Lee, X. Yue, and F. Zhuo, “Quantified evaluation and criteria analysis for dmppt pv system,” in 2015 17th European Conference on Power Electronics and Applications (EPE’15 ECCE-Europe). IEEE, 2015, pp. 1–6.spa
dc.relation.references[186]M. Forcan and Z. Durisic, “The analysis of pv string efficiency under mismatch conditions,” in 2016 4th International Symposium on Environmental Friendly Energies and Applications (EFEA). IEEE, 2016, pp. 1–6.spa
dc.relation.references[187]H. Qin and J. W. Kimball, “Closed-loop control of DC-DC dual active bridge conver- ters driving single-phase inverters,” in 2012 IEEE Energy Conversion Congress and Exposition (ECCE), 2012, pp. 173–179.spa
dc.relation.references[188]I. Syed and W. Xiao, “Modeling and control of DAB applied in a PV based DC microgrid,” in 2012 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES). IEEE, dec 2012, pp. 1–6. [Online]. Available: http://ieeexplore.ieee.org/document/6484489/spa
dc.relation.references[189]Y.-C. Jeung and D.-C. Lee, “Sliding mode control of bi-directional dual active bridge DC/DC converters for battery energy storage systems,” in 2017 IEEE Applied Power Electronics Conference and Exposition (APEC), ser. Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC, vol. 0. Department of Electrical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, Korea, Republic of: IEEE, mar 2017, pp. 3385–3390. [Online]. Available: http://dx.doi.org/10.1109/APEC.2017.7931182 http://ieeexplore.ieee.org/document/7931182/spa
dc.relation.references[190]D. D. Nguyen, G. Fujita, Q. Bui-Dang, and M. C. Ta, “Reduced-Order Observer-Based Control System for Dual-Active-Bridge DC/DC Converter,” IEEE Transactions on Industry Applications, vol. 54, no. 4, pp. 3426–3439, 2018.spa
dc.relation.references[191]M. Cupelli, S. K. Gurumurthy, and A. Monti, “Modelling and control of single phase DAB based MVDC shipboard power system,” in IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society. IEEE, oct 2017, pp. 6813–6819. [Online]. Available: http://ieeexplore.ieee.org/document/8217190/spa
dc.relation.references[192]F. An, W. Song, B. Yu, and K. Yang, “Model Predictive Control With Power Self-Balancing of the Output Parallel DAB DC–DC Converters in Power Electronic Traction Transformer,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 6, no. 4, pp. 1806–1818, dec 2018. [Online]. Available: https://ieeexplore.ieee.org/document/8331829/spa
dc.relation.references[193]L. Chen, S. Shao, Q. Xiao, L. Tarisciotti, T. Dragicevic, and P. Wheeler, “Model- predictive-control for dual-active-bridge converters supplying pulsed power loads in naval dc microgrids,” IEEE Transactions on Power Electronics, 2019.spa
dc.relation.references[194]T. Soejima, Y. Ishizuka, K. Domoto, and T. Hirose, “Adaptive Control Technique for High Power Efficiency Dual Active Bridge DC-DC Converter with Wide Load Range,” in 2018 IEEE Energy Conversion Congress and Exposition (ECCE). IEEE, sep 2018, pp. 2829–2834. [Online]. Available: https://ieeexplore.ieee.org/document/8557374/spa
dc.relation.references[195]O. M. Hebala, A. A. Aboushady, K. H. Ahmed, and I. Abdelsalam, “Generic closed- loop controller for power regulation in dual active bridge dc–dc converter with current stress minimization,” IEEE Transactions on Industrial Electronics, vol. 66, no. 6, pp. 4468–4478, 2018.spa
dc.relation.references[196]M. Rodriguez, V. M. Lopez, F. J. Azcondo, J. Sebastian, and D. Maksimovic, “Average inductor current sensor for digitally controlled switched-mode power supplies,” IEEE transactions on power electronics, vol. 27, no. 8, pp. 3795–3806, 2012.spa
dc.relation.references[197]C. A. B. Karim and M. A. Zamee, “Design and analysis of pole-placement contro- ller for dynamic stability improvement of vsc-hvdc based power system,” in 2014 9th International Forum on Strategic Technology (IFOST). IEEE, 2014, pp. 272–275.spa
dc.relation.references[198]J. K. Cavers, K. Mehrotra, and G. K. Woodward, “Advantages of second-order car- tesian feedback linearizers for radio amplifiers,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 66, no. 11, pp. 4134–4146, 2019.spa
dc.relation.references[199]R. W. Erickson and D. Maksimovic, Fundamentals of power electronics. Springer Science & Business Media, 2007.spa
dc.relation.references[200]K. Ogata, Modern Control Engineering, ser. Instrumentation and controls series. Prentice Hall, 2010. [Online]. Available: https://books.google.com.co/books?id=Wu5GpNAelzkCspa
dc.relation.references[201]N. Femia, G. Petrone, G. Spagnuolo, and M. Vitelli, “A technique for improving p&o mppt performances of double-stage grid-connected photovoltaic systems,” IEEE Transactions on Industrial Electronics, vol. 56, no. 11, pp. 4473–4482, 2009.spa
dc.relation.references[202]Powersim Inc, “PSIM: Unbeatable Power Electronics Software - Powersim, Inc,” 2021. [Online]. Available: https://powersimtech.com/spa
dc.relation.references[203]E. I. Batzelis, G. Anagnostou, C. Chakraborty, and B. C. Pal, “Computation of the Lambert W Function in Photovoltaic Modeling,” in ELECTRIMACS 2019. Lecture Notes in Electrical Engineering, vol. 615. Salerno, Italy: Springer, 2020, pp. 583–595.spa
dc.relation.references[204]R. H. M. Abdelkarim, “Cascaded Voltage Step-up Canonical Elements for Power Processing in PV Applications,” Ph.D. dissertation, Universitat Rovira i Virgili, 2014. [Online]. Available: http://www.tdx.cat/handle/10803/284039spa
dc.relation.references[205]N. Abouchabana, M. Haddadi, A. Rabhi, A. D. Grasso, and G. M. Tina, “Power Efficiency Improvement of a Boost Converter Using a Coupled Inductor with a Fuzzy Logic Controller: Application to a Photovoltaic System,” Applied Sciences, vol. 11, no. 3, p. 980, jan 2021.spa
dc.relation.references[206]M. A. Green, Y. Hishikawa, E. D. Dunlop, D. H. Levi, J. Hohl-Ebinger, and A. W. Ho-Baillie, “Solar cell efficiency tables (version 52),” Progress in Photovoltaics: Research and Applications, vol. 26, no. 7, pp. 427–436, jul 2018. [Online]. Available: http://doi.wiley.com/10.1002/pip.3040spa
dc.relation.references[207]N. Torabi, A. Behjat, Y. Zhou, P. Docampo, R. J. Stoddard, H. W. Hillhouse, and T. Ameri, “Progress and challenges in perovskite pho- tovoltaics from single- to multi-junction cells,” Materials Today Energy, vol. 12, pp. 70–94, jun 2019. [Online]. Available: https://www-sciencedirect- com.ezproxy.unal.edu.co/science/article/pii/S2468606918302247spa
dc.relation.references[208]H. Sira-Ramirez, “Sliding Motions in Bilinear Switched Networks,” IEEE Transactions on Circuits and Systems, vol. 34, no. 8, pp. 919–933, 1987.spa
dc.relation.references[209]E. Babaei and M. E. Seyed Mahmoodieh, “Systematical method of desig- ning the elements of the Cuk converter,” International Journal of Electrical Power and Energy Systems, vol. 55, pp. 351–361, 2014. [Online]. Available: http://dx.doi.org/10.1016/j.ijepes.2013.09.024spa
dc.relation.references[210]S. M. Sharkh, M. A. Abusara, G. I. Orfanoudakis, and B. Hussain, Power Electronic Converters for Microgrids. JohnWiley & Sons Singapore Pte. Ltd., 2014.spa
dc.relation.references[211]D. G. Montoya, C. A. Ramos-Paja, and R. Giral, “Improved Design of Sliding-Mode Controllers Based on the Requirements of MPPT Techniques,” IEEE Transactions on Power Electronics, vol. 31, no. 1, pp. 235–247, 2016.spa
dc.relation.references[212]STMicroelectronics, “TS555 Low-power dual CMOS timer,” pp. 1–19, 2015. [Online]. Available: https://www.st.com/resource/en/datasheet/ts555.pdfspa
dc.relation.references[213]S. T. Lee and H. A. F. Almurib, “Control techniques for power converters in photo- voltaic hybrid energy storage system,” in 3rd IET International Conference on Clean Energy and Technology (CEAT), Nov 2014, pp. 1–6.spa
dc.relation.references[214]S. Somkun, C. Sirisamphanwong, and S. Sukchai, “A dsp-based interleaved boost dc–dc converter for fuel cell applications,” International Journal of Hydrogen Energy, vol. 40, no. 19, pp. 6391–6404, 2015spa
dc.relation.references[215]Q. Lin, J. Wang, R. Xiong, W. Shen, and H. He, “Towards a smarter battery management system: A critical review on optimal charging methods of lithium ion batteries,” Energy, vol. 183, pp. 220–234, 2019. [Online]. Available: https://doi.org/10.1016/j.energy.2019.06.128spa
dc.relation.references[216]K. Liu, C. Zou, K. Li, and T. Wik, “Charging pattern optimization for lithium-ion batteries with an electrothermal-aging model,” IEEE Transactions on Industrial In- formatics, vol. 14, no. 12, pp. 5463–5474, 2018.spa
dc.relation.references[217]M. Shafiee-Rad, M. S. Sadabadi, Q. Shafiee, and M. R. Jahed-Motlagh, “Robust decentralized voltage control for uncertain DC microgrids,” International Journal of Electrical Power and Energy Systems, vol. 125, p. 106468, feb 2021.spa
dc.relation.references[218]S. Serna-Garces, D. Lez Montoya, and C. Ramos-Paja, “Control of a charger/discharger DC/DC converter with improved disturbance rejection for bus regulation,” Energies, vol. 11, no. 3, 2018.spa
dc.relation.references[219]S. I. Serna-Garc´es, D. G. Montoya, and C. A. Ramos-Paja, “Sliding-mode control of a charger/discharger DC/DC converter for DC-bus regulation in renewable power systems,” Energies, vol. 9, no. 4, 2016.spa
dc.relation.references[220]J. D. Bastidas-Rodr´ıguez, D. Gonz´alez, S. Acevedo, and J. Pel´aez-Restrepo, “Design and Control of a Buck–Boost Charger-Discharger for DC-Bus Regulation in Microgrids,” Energies, vol. 10, no. 11, p. 1847, nov 2017. [Online]. Available: http://www.mdpi.com/1996-1073/10/11/1847spa
dc.relation.references[221]H. Ram´ırez-Murillo, C. Restrepo, T. Konjedic, J. Calvente, A. Romero, C. R. Baier, and R. Giral, “An Efficiency Comparison of Fuel-Cell Hybrid Systems Based on the Versatile Buck-Boost Converter,” IEEE Transactions on Power Electronics, vol. 33, no. 2, pp. 1237–1246, 2018.spa
dc.relation.references[222]M. E. S. Mahmoodieh and A. Deihimi, “Battery-integrated multi-input step-up con- verter for sustainable hybrid energy supply,” IET Power Electronics, vol. 12, no. 4, pp. 777–789, 2019.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc530 - Física::537 - Electricidad y electrónicaspa
dc.subject.proposalDual active bridge convertereng
dc.subject.proposalZeta/Sepic convertereng
dc.subject.proposalPhotovoltaic systemseng
dc.subject.proposalMicrogridseng
dc.subject.proposalCharger/dischargereng
dc.subject.proposalBatterieseng
dc.subject.proposalEnergy storage deviceseng
dc.subject.proposalHigh-gain voltageeng
dc.subject.proposalHigh-efficiency operationeng
dc.subject.proposalDC bus voltage regulationeng
dc.subject.proposalMPPTeng
dc.subject.proposalConvertidor de doble puente activospa
dc.subject.proposalConvertidor Zeta/Sepicspa
dc.subject.proposalSistemas fotovoltaicosspa
dc.subject.proposalMicrorredesspa
dc.subject.proposalCargador/descargadorspa
dc.subject.proposalBateríasspa
dc.subject.proposalDispositivos de almacenamiento de energíaspa
dc.subject.proposalAlta ganancia de voltajespa
dc.subject.proposalOperación con alta eficienciaspa
dc.subject.proposalRegulación de la tensión del bus de CCspa
dc.subject.unescoEnergía renovablespa
dc.subject.unescoConversión de energíaspa
dc.subject.unescoIngeniería automáticaspa
dc.titlePower conversion systems for increasing the efficiency in DC microgrids based on renewable sourceseng
dc.title.translatedSistema de conversión de energía para incrementar la eficiencia en microrredes CC basadas en fuentes renovablesspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentImagespa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitlePrograma de investigación “Estrategias para el desarrollo de sistemas energéticos sostenibles, confiables, eficientes y accesibles para el futuro de Colombia”, (Código Minciencias 1150-852-70378, Código Hermes 46771).spa
oaire.awardtitleProyecto de investigación Dimensionamiento, planeación y control de sistemas eléctricos basados en fuentes renovables no convencionales, sistemas de almacenamiento y pilas de combustible para incrementar el acceso y la seguridad energética de poblaciones colombianas”, (Código Minciencias 70386)spa
oaire.fundernameMinisterio de Ciencia, Tecnología e Innovación - Mincienciasspa
oaire.fundernameUniversidad Nacional de Colombiaspa
oaire.fundernameInstitución Universitaria ITMspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
16077298.2023.pdf
Tamaño:
21.42 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería - Automática

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: