Cambios estructurales fisicoquímicos de la biomasa durante la pirólisis lenta.

dc.contributor.advisorOrdóñez Loza, Javier Alonso
dc.contributor.advisorChejne Janna, Farid
dc.contributor.authorOrrego Restrepo, Estefanía
dc.contributor.researchgroupTermodinámica Aplicada Y Energías Alternativas (TAYEA)spa
dc.date.accessioned2021-07-08T16:53:34Z
dc.date.available2021-07-08T16:53:34Z
dc.date.issued2021-07-07
dc.descriptionilustracionesspa
dc.description.abstractEsta investigación muestra una nueva metodología para evaluar la pirólisis lenta de la biomasa lignocelulósica usando a la celulosa como compuesto modelo. Para esto, se caracterizó la pirólisis de celulosa a través del método de Friedman [1], [2], y los modelos cinéticos de Broido-Shafizadeh [3], Diebold [4] y Ranzi et al. [5]. A partir del modelo de Ranzi et al. [5] se propuso un nuevo modelo cinético para la pirólisis de celulosa considerando los grupos funcionales representativos de los compuestos volátiles producidos durante la reacción. Los valores calculados para la energía de activación por este modelo cinético guardan estrecha relación con los valores calculados por el modelo de Ranzi et al. (Tomado de la fuente)spa
dc.description.abstractThis research shows a new methodology to evaluate the slow pyrolysis of lignocellulosic biomass using cellulose as a model compound. For this purpose, cellulose pyrolysis was characterized through the Friedman method [1], [2], and the Broido-Shafizadeh [3], Diebold [4] and Ranzi et al. [5]. Based on the model of Ranzi et al. [5] a new kinetic model for cellulose pyrolysis was proposed considering the representative functional groups of the volatile compounds produced during the reaction. The activation energy values calculated by this kinetic model are closely related to the values calculated by the Ranzi et al. Model. (Tomado de la fuente)eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería químicaspa
dc.description.researchareaProcesos Termoquímicosspa
dc.format.extent94 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79780
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de Procesos y Energíaspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellínspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Ingeniería Químicaspa
dc.relation.references[1] H. L. Friedman, “Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic,” J. Polym. Sci. Part C Polym. Symp., vol. 6, no. 1, pp. 183–195, 1964, doi: 10.1002/polc.5070060121.spa
dc.relation.references[2] M. J. Antal and H. L. Friedman, “Kinetics of Cellulose Pyrolysis in Nitrogen and Steam,” Combust. Sci. Technol., vol. 21, pp. 141–152, 1980.spa
dc.relation.references[3] A. G. W. Bradbury, Y. Sakai, and F. Shafizadeh, “A kinetic model for pyrolysis of cellulose,” J. Appl. Polym. Sci., vol. 23, pp. 3271–3280, 1979, doi: 10.1002/app.1979.070231112.spa
dc.relation.references[4] J. P. Diebold, “A unified, global model for the pyrolysis of cellulose,” Biomass and Bioenergy, vol. 7, no. 1–6, pp. 75–85, 1994, doi: 10.1016/0961-9534(94)00039-V.spa
dc.relation.references[5] E. Ranzi et al., “Chemical kinetics of biomass pyrolysis,” Energy and Fuels, vol. 22, no. 6, pp. 4292–4300, 2008, doi: 10.1021/ef800551t.spa
dc.relation.references[6] Ministerio de Minas y Energía de Colombia, “Colombia has great potential for producing biomass energy: Minister of Mines and Energy,” 2017. [Online]. Available: https://www.minminas.gov.co/web/ingles/noticias?idNoticia=23882538. [Accessed: 05-Mar-2019].spa
dc.relation.references[7] N. Altawell, The Selection Process of Biomass Materials for the Production of Bio-fuels and Co-firing. New York, United States of America: Institute of Electrical and Electronics Engineers Inc., 2014.spa
dc.relation.references[8] M. S. Mettler, D. G. Vlachos, and P. J. Dauenhauer, “Top ten fundamental challenges of biomass pyrolysis for biofuels,” Energy Environ. Sci., vol. 5, no. 7, pp. 7797–7809, 2012, doi: 10.1039/c2ee21679e.spa
dc.relation.references[9] F. Stankovikj, A. G. McDonald, G. L. Helms, and M. Garcia-Perez, “Quantification of Bio-Oil Functional Groups and Evidences of the Presence of Pyrolytic Humins,” Energy and Fuels, vol. 30, pp. 6505–6524, 2016, doi: 10.1021/acs.energyfuels.6b01242.spa
dc.relation.references[10] S. Hameed, A. Sharma, V. Pareek, H. Wu, and Y. Yu, “A review on biomass pyrolysis models: Kinetic, network and mechanistic models,” Biomass and Bioenergy, vol. 123, pp. 104–122, 2019, doi: 10.1016/j.biombioe.2019.02.008.spa
dc.relation.references[11] S. Wang, G. Dai, H. Yang, and Z. Luo, “Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review,” Prog. Energy Combust. Sci., vol. 62, pp. 33–86, 2017, doi: 10.1016/j.pecs.2017.05.004.spa
dc.relation.references[12] R. Parthasarathi, G. Bellesia, S. P. S. Chundawat, B. E. Dale, P. Langan, and S. Gnanakaran, “Insights into hydrogen bonding and stacking interactions in cellulose,” J. Phys. Chem. A, vol. 115, pp. 14191–14202, 2011, doi: 10.1021/jp203620x.spa
dc.relation.references[13] J. Zhang, Y. S. Choi, C. G. Yoo, T. H. Kim, R. C. Brown, and B. H. Shanks, “Cellulose-hemicellulose and cellulose-lignin interactions during fast pyrolysis,” ACS Sustain. Chem. Eng., vol. 3, pp. 293–301, 2015, doi: 10.1021/sc500664h.spa
dc.relation.references[14] Q. Liu, Z. Zhong, S. Wang, and Z. Luo, “Interactions of biomass components during pyrolysis: A TG-FTIR study,” J. Anal. Appl. Pyrolysis, vol. 90, no. 2, pp. 213–218, 2011, doi: 10.1016/j.jaap.2010.12.009.spa
dc.relation.references[15] J. Yu, N. Paterson, J. Blamey, and M. Millan, “Cellulose, xylan and lignin interactions during pyrolysis of lignocellulosic biomass,” Fuel, vol. 191, pp. 140–149, 2017, doi: 10.1016/j.fuel.2016.11.057.spa
dc.relation.references[16] M. Garcia-Perez, A. Chaala, H. Pakdel, D. Kretschmer, and C. Roy, “Characterization of bio-oils in chemical families,” Biomass and Bioenergy, vol. 31, pp. 222–242, 2007, doi: 10.1016/j.biombioe.2006.02.006.spa
dc.relation.references[17] F. Stankovikj and M. Garcia-perez, “TG-FTIR method for the characterization of bio-oils in chemical families,” Energy and Fuels, vol. 31, p. 1689−1701, 2017, doi: 10.1021/acs.energyfuels.6b03132.spa
dc.relation.references[18] S. Wang, R. U. Bin, L. I. N. Haizhou, S. U. N. Wuxing, Y. U. Chunjiang, and L. U. O. Zhongyang, “Pyrolysis mechanism of hemicellulose monosaccharides in different catalytic processes,” Chem. Res. Chin. Univ., vol. 30, no. 5, pp. 848–854, 2014, doi: 10.1007/s40242-014-4019-9.spa
dc.relation.references[19] D. K. Shen and S. Gu, “The mechanism for thermal decomposition of cellulose and its main products,” Bioresour. Technol., vol. 100, no. 24, pp. 6496–6504, 2009, doi: 10.1016/j.biortech.2009.06.095.spa
dc.relation.references[20] X. Gu, X. Ma, L. Li, C. Liu, K. Cheng, and Z. Li, “Pyrolysis of poplar wood sawdust by TG-FTIR and Py-GC/MS,” J. Anal. Appl. Pyrolysis, vol. 102, pp. 16–23, 2013, doi: 10.1016/j.jaap.2013.04.009.spa
dc.relation.references[21] Q. Liu, S. Wang, Y. Zheng, Z. Luo, and K. Cen, “Mechanism study of wood lignin pyrolysis by using TG-FTIR analysis,” J. Anal. Appl. Pyrolysis, vol. 82, pp. 170–177, 2008, doi: 10.1016/j.jaap.2008.03.007.spa
dc.relation.references[22] F. xiang Xu, X. Zhang, F. Zhang, L. qun Jiang, Z. li Zhao, and H. bin Li, “TG-FTIR for kinetic evaluation and evolved gas analysis of cellulose with different structures,” Fuel, vol. 268, pp. 1–8, 2020, doi: 10.1016/j.fuel.2020.117365.spa
dc.relation.references[23] V. K. Ponnusamy et al., “A review on lignin structure, pretreatments, fermentation reactions and biorefinery potential,” Bioresour. Technol., vol. 271, pp. 462–472, 2019, doi: 10.1016/j.biortech.2018.09.070.spa
dc.relation.references[24] P. E. Sánchez-Jiménez, L. A. Pérez-Maqueda, A. Perejón, J. Pascual-Cosp, M. Benítez-Guerrero, and J. M. Criado, “An improved model for the kinetic description of the thermal degradation of cellulose,” Cellulose, vol. 18, pp. 1487–1498, 2011, doi: 10.1007/s10570-011-9602-3.spa
dc.relation.references[25] S. Wu, D. Shen, J. Hu, H. Zhang, and R. Xiao, “Cellulose-hemicellulose interactions during fast pyrolysis with different temperatures and mixing methods,” Biomass and Bioenergy, vol. 95, pp. 55–63, 2016, doi: 10.1016/j.biombioe.2016.09.015.spa
dc.relation.references[26] L. Taiz and E. Zeiger, Plant Physiology, 3rd ed. Sunderland, England: Sinauer, 2002.spa
dc.relation.references[27] D. Shen, R. Xiao, S. Gu, and H. Zhang, “The Overview of Thermal Decomposition of Cellulose in Lignocellulosic Biomass,” in Cellulose - Biomass Conversion, Intech, 2013, pp. 193–226.spa
dc.relation.references[28] E. Terrell, L. D. Dellon, A. Dufour, E. Bartolomei, L. J. Broadbelt, and M. Garcia-Perez, “A Review on Lignin Liquefaction: Advanced Characterization of Structure and Microkinetic Modeling,” Ind. Eng. Chem. Res., vol. 59, no. 2, pp. 526–555, 2020, doi: 10.1021/acs.iecr.9b05744.spa
dc.relation.references[29] S. H. Ghaffar and M. Fan, “Structural analysis for lignin characteristics in biomass straw,” Biomass and Bioenergy, vol. 57, pp. 264–279, 2013, doi: 10.1016/j.biombioe.2013.07.015.spa
dc.relation.references[30] J. Ralph, C. Lapierre, and W. Boerjan, “Lignin structure and its engineering,” Curr. Opin. Biotechnol., vol. 56, pp. 240–249, 2019, doi: 10.1016/j.copbio.2019.02.019.spa
dc.relation.references[31] G. Costa and I. Plazanet, “Plant Cell Wall, a Challenge for Its Characterisation,” Adv. Biol. Chem., vol. 06, pp. 70–105, 2016, doi: 10.4236/abc.2016.63008.spa
dc.relation.references[32] P. Bajpai, “Structure of Lignocellulosic Biomass,” in Pretreatment of Lignocellulosic Biomass Feedstocks for Biofuel Production, SpringerBriefs in Green Chemistry for Sustainability, 2016, p. 5.spa
dc.relation.references[33] J. Montoya, “Kinetic Study and Phenomenological Modeling of a Biomass Particle During Fast Pyrolyss Process,” 2016.spa
dc.relation.references[34] G. P. Marrugo Escobar, “Efecto de los cambios estructurales de diferentes biomasas pirolizadas sobre las características del gas de síntesis, obtenido a partir de la gasificación de biochar,” Universidad Nacional de Colombia, 2015.spa
dc.relation.references[35] H. A. Ibrahim, “Introductory Chapter : Pyrolysis,” in Recent Advances in Pyrolysis, Hamah, Syria, 2020, pp. 1–12.spa
dc.relation.references[36] L. Loweska, P. Miskowiec, T. Lojewski, and L. M. Proniewicz, “Cellulose oxidative and hydrolytic degradation: In situ FTIR approach,” Polym. Degrad. Stab., vol. 88, pp. 512–520, 2005, doi: 10.1016/j.polymdegradstab.2004.12.012.spa
dc.relation.references[37] A. Broido and M. A. Nelson, “Char yield on pyrolysis of cellulose,” Combust. Flame, vol. 24, no. C, pp. 263–268, 1975, doi: 10.1016/0010-2180(75)90156-X.spa
dc.relation.references[38] C. Zhao, E. Jiang, and A. Chen, “Volatile production from pyrolysis of cellulose, hemicellulose and lignin,” J. Energy Inst., vol. 90, pp. 902–913, 2017, doi: 10.1016/j.joei.2016.08.004.spa
dc.relation.references[39] T. Hosoya, H. Kawamoto, and S. Saka, “Pyrolysis behaviors of wood and its constituent polymers at gasification temperature,” J. Anal. Appl. Pyrolysis, vol. 78, pp. 328–336, 2007, doi: 10.1016/j.jaap.2006.08.008.spa
dc.relation.references[40] M. Benítez-Guerrero, J. López-Beceiro, P. E. Sánchez-Jiménez, and J. Pascual-Cosp, “Comparison of thermal behavior of natural and hot-washed sisal fibers based on their main components: Cellulose, xylan and lignin. TG-FTIR analysis of volatile products,” Thermochim. Acta, vol. 581, pp. 70–86, 2014, doi: 10.1016/j.tca.2014.02.013.spa
dc.relation.references[41] B. C. Smith, Infrared spectral interpretation: a systematic approach, vol. 1. Boca Raton, Florida.: CRC Press LLC, 1999.spa
dc.relation.references[42] B. C. Smith, “A Process for Successful Infrared Spectral Interpretation,” Spectroscopy, vol. 31, no. 1, pp. 14–21, 2016.spa
dc.relation.references[43] B. C. Smith, Fundamentals of Fourier Transform Infrered Spectroscopy, 2nd ed. Boca Raton, Florida.: CRC Press LLC, 2011.spa
dc.relation.references[44] J. Coates, “Interpretation of infrared Spectra, A Practical Approach,” in Encyclopedia ofAnalytical Chemistry, R. A. Meyers, Ed. Chichester: John Wiley & Sons Ltd., 2000, pp. 10815–10837.spa
dc.relation.references[45] H. Yang, R. Yan, H. Chen, D. H. Lee, and C. Zheng, “Characteristics of hemicellulose, cellulose and lignin pyrolysis,” Fuel, vol. 86, pp. 1781–1788, 2007, doi: 10.1016/j.fuel.2006.12.013.spa
dc.relation.references[46] S. J. Parikh, B. J. Lafferty, and D. L. Sparks, “An ATR-FTIR spectroscopic approach for measuring rapid kinetics at the mineral/water interface,” J. Colloid Interface Sci., vol. 320, pp. 177–185, 2008, doi: 10.1016/j.jcis.2007.12.017.spa
dc.relation.references[47] T. Siengchum, M. Isenberg, and S. S. C. Chuang, “Fast pyrolysis of coconut biomass - An FTIR study,” Fuel, vol. 105, pp. 559–565, 2013, doi: 10.1016/j.fuel.2012.09.039.spa
dc.relation.references[48] D. K. Shen, S. Gu, and A. V. Bridgwater, “Study on the pyrolytic behaviour of xylan-based hemicellulose using TG-FTIR and Py-GC-FTIR,” J. Anal. Appl. Pyrolysis, vol. 87, no. 2, pp. 199–206, 2010, doi: 10.1016/j.jaap.2009.12.001.spa
dc.relation.references[49] F. Wülfert, W. T. Kok, and A. K. Smilde, “Influence of temperature on vibrational spectra and consequences for the predictive ability of multivariate models,” Anal. Chem., vol. 70, pp. 1761–1767, 1998, doi: 10.1021/ac9709920.spa
dc.relation.references[50] S. Vyazovkin and C. A. Wight, “Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data,” Thermochim. Acta, vol. 340–341, pp. 53–68, 1999, doi: 10.1016/S0040-6031(99)00253-1.spa
dc.relation.references[51] A. K. Galwey, “Solid state reaction kinetics, mechanisms and catalysis: a retrospective rational review,” React. Kinet. Mech. Catal., vol. 114, no. 1, pp. 1–29, 2014, doi: 10.1007/s11144-014-0770-7.spa
dc.relation.references[52] J. M. Criado, P. E. Sánchez-Jiménez, and L. A. Pérez-Maqueda, “Critical study of the isoconversional methods of kinetic analysis,” J. Therm. Anal. Calorim., vol. 92, no. 1, pp. 199–203, 2008, doi: 10.1007/s10973-007-8763-7.spa
dc.relation.references[53] Y. C. Lin, J. Cho, G. A. Tompsett, P. R. Westmoreland, and G. W. Huber, “Kinetics and mechanism of cellulose pyrolysis,” J. Phys. Chem. C, vol. 113, pp. 20097–20107, 2009, doi: 10.1021/jp906702p.spa
dc.relation.references[54] S. Wang, Q. Liu, Z. Luo, L. Wen, and K. Cen, “Mechanism study on cellulose pyrolysis using thermogravimetric analysis coupled with infrared spectroscopy,” Front. Energy Power Eng. China, vol. 1, no. 4, pp. 413–419, 2007, doi: 10.1007/s11708-007-0060-8.spa
dc.relation.references[55] P. Aggarwal, D. Dollimore, and K. Heon, “Comparative thermal analysis study of two biopolymers, starch and cellulose,” J. Therm. Anal., vol. 50, pp. 7–17, 1997, doi: 10.1007/bf01979545.spa
dc.relation.references[56] D. Chen, J. Zhou, and Q. Zhang, “Effects of heating rate on slow pyrolysis behavior, kinetic parameters and products properties of moso bamboo,” Bioresour. Technol., vol. 169, pp. 313–319, 2014, doi: 10.1016/j.biortech.2014.07.009.spa
dc.relation.references[57] C. Şerbǎnescu, “Kinetic analysis of cellulose pyrolysis: A short review,” Chem. Pap., vol. 68, no. 7, pp. 847–860, 2014, doi: 10.2478/s11696-013-0529-z.spa
dc.relation.references[58] G. Zhu, X. Zhu, Z. Xiao, and F. Yi, “Study of cellulose pyrolysis using an in situ visualization technique and thermogravimetric analyzer,” J. Anal. Appl. Pyrolysis, vol. 94, pp. 126–130, 2012, doi: 10.1016/j.jaap.2011.11.016.spa
dc.relation.references[59] R. Capart, L. Khezami, and A. K. Burnham, “Assessment of various kinetic models for the pyrolysis of a microgranular cellulose,” Thermochim. Acta, vol. 417, pp. 79–89, 2004, doi: 10.1016/j.tca.2004.01.029.spa
dc.relation.references[60] J. Lédé, “Cellulose pyrolysis kinetics: An historical review on the existence and role of intermediate active cellulose,” J. Anal. Appl. Pyrolysis, vol. 94, pp. 17–32, 2012, doi: 10.1016/j.jaap.2011.12.019.spa
dc.relation.references[61] P. K. Chatterjee and C. M. Conrad, “Kinetics of the Pyrolysis of Cotton Cellulose,” Text. Res. J., vol. 36, no. 6, pp. 487–494, 1966, doi: 10.1177/004051756603600601.spa
dc.relation.references[62] S. Matsuoka, H. Kawamoto, and S. Saka, “What is active cellulose in pyrolysis? An approach based on reactivity of cellulose reducing end,” J. Anal. Appl. Pyrolysis, vol. 106, pp. 138–146, 2014, doi: 10.1016/j.jaap.2014.01.011.spa
dc.relation.references[63] Specac, “High Temperature High Pressure Cell - User Manual,” 2016.spa
dc.relation.references[64] P. H. Eilers and H. F. Boelens, “Asymmetric Least Squares Smoothing,” Leiden Univ. Med. Cent. Rep., vol. 1, p. 5, 2005.spa
dc.relation.references[65] A. Kuzmiakova, A. M. Dillner, and S. Takahama, “An automated baseline correction protocol for infrared spectra of atmospheric aerosols collected on polytetrafluoroethylene (Teflon) filters,” Atmos. Meas. Tech., vol. 9, pp. 2615–2631, 2016, doi: 10.5194/amt-9-2615-2016.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/spa
dc.subject.ddc660 - Ingeniería químicaspa
dc.subject.ddc540 - Química y ciencias afinesspa
dc.subject.lembPirólisis
dc.subject.lembBiomasa
dc.subject.proposalIR spectroscopyeng
dc.subject.proposalBiomasa lignocelulósicaspa
dc.subject.proposalPirólisis lentaspa
dc.subject.proposalEspectroscopía IRspa
dc.subject.proposalCelulosaspa
dc.subject.proposalLignocellulosic biomassspa
dc.subject.proposalSlow pyrolysiseng
dc.subject.proposalCelluloseeng
dc.titleCambios estructurales fisicoquímicos de la biomasa durante la pirólisis lenta.spa
dc.title.translatedPhysicochemical structural changes of biomass during slow pyrolysis.eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audienceEspecializadaspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleP4. Poligeneración: Biomasa, enmarcado en el programa Colombia Científica: “Energética 2030: Estrategia de transformación del sector energético colombiano en el horizonte 2030”, código 58667 de Colcienciasspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1036944138.2021.pdf
Tamaño:
2.27 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: