En 20 día(s), 15 hora(s) y 18 minuto(s): El Repositorio Institucional UNAL informa a la comunidad universitaria que, con motivo del periodo de vacaciones colectivas, el servicio de publicación estará suspendido: Periodo de cierre: Del 20 de diciembre al 18 de enero de 2026. Sobre los depósitos: Durante este tiempo, los usuarios podrán continuar realizando el depósito respectivo de sus trabajos en la plataforma. Reanudación: Una vez reiniciadas las actividades administrativas, los documentos serán revisados y publicados en orden de llegada.

Incentivos para la promoción de la electrificación sostenible en la zona no interconectada de Colombia

dc.contributor.advisorCarvajal Quintero, Sandra Ximena
dc.contributor.advisorArango Aramburo, Santiago
dc.contributor.authorRodriguez Zabala, Alejandra
dc.contributor.researchgroupEnvironmental Energy and Education Policy E3Pspa
dc.date.accessioned2022-07-19T20:12:44Z
dc.date.available2022-07-19T20:12:44Z
dc.date.issued2022
dc.descriptiongráficos, tablasspa
dc.description.abstractEl acceso a la energía eléctrica mejora las condiciones de vida de las personas, permite la prestación de otros servicios públicos y es estratégico para lograr acciones productivas de la población. En Colombia, la búsqueda de alternativas para mejorar la prestación de servicios a poblaciones vulnerables ubicadas en Zonas No Interconectadas se ha incrementado significativamente. La eficiencia energética y la adopción de fuentes de energía renovables no convencionales se han implementado como posibles impulsores de la electrificación sostenible. En esta tesis se analiza el problema de la electrificación de las zonas aisladas, comenzando por una revisión de las barreras y oportunidades que presenta la electrificación sostenible con base en aspectos técnicos, económicos, ambientales, geográficos, políticos y sociales. Además, se hace un estudio técnico y económico para la localidad de Mitú, Vaupés, con el fin de encontrar las causas de las fallas en la prestación del servicio, esto se lleva a cabo por medio de simulaciones en los softwares técnicos de Homer Pro y Digsilent PowerFactory. A partir de las condiciones técnicas del sistema, se diseña un modelo en Dinámica de Sistemas, el cual permite analizar el impacto que tiene realizar las actividades de mantenimiento e inversión en las redes de distribución, el comportamiento de la capacidad de alojamiento y la disminución de la demanda insatisfecha en conjunto con variables económicas como el recaudo y el presupuesto disponible para la intervención de redes. En base a los resultados obtenidos en las simulaciones se proponen tres políticas de soluciones a los problemas encontrados en el escenario base. (Texto tomado de la fuente)spa
dc.description.abstractAccess to electricity improves people's living conditions, allows the provision of other public services and is strategic for achieving productive actions by the population. In Colombia, the search for alternatives to improve the provision of services to vulnerable populations located in Non-Interconnected Zones has increased significantly. Energy efficiency and the adoption of non-conventional renewable energy sources have been implemented as possible drivers of sustainable electrification. This thesis analyzes the problem of electrification of nearby areas, beginning with a review of the barriers and opportunities presented by sustainable electrification based on technical, economic, environmental, geographic, political and social aspects. In addition, a technical and economic study is carried out for the town of Mitú, Vaupés, in order to find the causes of failures in the provision of the service, this is carried out through simulations in the technical software of Homer Pro and Digsilent Power Factory. Based on the technical conditions of the system, a model in System Dynamics is designed, which allows analyzing the impact of carrying out maintenance and investment activities on the distribution networks, the behavior of the accommodation capacity and the decrease in the unsatisfied demand together with economic variables such as collection and the budget available for the intervention of networks. Based on the results obtained in the simulations, three solution policies are proposed for the problems found in the base scenario.eng
dc.description.curricularareaEléctrica, Electrónica, Automatización Y Telecomunicacionesspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería Eléctricaspa
dc.description.researchareaEficiencia Energéticaspa
dc.format.extentxvi, 120 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81716
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizalesspa
dc.publisher.departmentDepartamento de Ingeniería Eléctrica y Electrónicaspa
dc.publisher.facultyFacultad de Ingeniería y Arquitecturaspa
dc.publisher.placeManizales, Colombiaspa
dc.publisher.programManizales - Ingeniería y Arquitectura - Maestría en Ingeniería - Ingeniería Eléctricaspa
dc.relation.referencesS. Mandelli, J. Barbieri, R. Mereu, and E. Colombo, “Off-grid systems for rural electrification in developing countries : Definitions , classification and a comprehensive literature review,” vol. 58, pp. 1621–1646, 2016, doi: 10.1016/j.rser.2015.12.338.spa
dc.relation.referencesB. Domenech, M. Ranaboldo, L. Ferrer-Martí, R. Pastor, and D. Flynn, “Local and regional microgrid models to optimise the design of isolated electrification projects,” Renew. Energy, vol. 119, pp. 795–808, 2018, doi: 10.1016/j.renene.2017.10.060spa
dc.relation.referencesL. Lozano and E. B. Taboada, “Demystifying the authentic attributes of electricity-poor populations: The electrification landscape of rural off-grid island communities in the Philippines,” Energy Policy, vol. 145, no. August, p. 111715, 2020, doi: 10.1016/j.enpol.2020.111715.spa
dc.relation.referencesB. K. Sovacool and S. E. Ryan, “The geography of energy and education: Leaders, laggards, and lessons for achieving primary and secondary school electrification,” Renew. Sustain. Energy Rev., vol. 58, pp. 107–123, 2016, doi: 10.1016/j.rser.2015.12.219.spa
dc.relation.referencesN. G. Johnson and K. M. Bryden, “Energy supply and use in a rural West African village,” Energy, vol. 43, no. 1, pp. 283–292, 2012, doi: 10.1016/j.energy.2012.04.028.spa
dc.relation.referencesI. Arto, I. Capellán-pérez, R. Lago, G. Bueno, and R. Bermejo, “The energy requirements of a developed world,” Energy Sustain. Dev., vol. 33, pp. 1–13, 2016, doi: 10.1016/j.esd.2016.04.001.spa
dc.relation.referencesB. P. Bastakoti, “The electricity-livelihood nexus : some highlights from the Andhikhola Hydroelectric and Rural Electrification Centre ( AHREC ),” vol. 10, no. 3, pp. 26–35, 2006, doi: 10.1016/S0973-0826(08)60541-4.spa
dc.relation.referencesA. López-González, B. Domenech, and L. Ferrer-Martí, “The gendered politics of rural electrification: Education, indigenous communities, and impacts for the Venezuelan Guajira,” Energy Res. Soc. Sci., vol. 70, no. April, p. 101776, 2020, doi: 10.1016/j.erss.2020.101776.spa
dc.relation.referencesOrganizacion de las Naciones Unidas-ONU, “Agenda 2030: Objetivos de Desarrollo Sostenible,” Objetivos de Desarrollo, 2015. https://onu.org.gt/objetivos-de-desarrollo/.spa
dc.relation.referencesL. Holstenkamp, “What do we know about cooperative sustainable electrification in the global South ? A synthesis of the literature and refined social-ecological systems framework,” Renew. Sustain. Energy Rev., vol. 109, no. April, pp. 307–320, 2019, doi: 10.1016/j.rser.2019.04.047.spa
dc.relation.referencesP. Kemeny, P. G. Munro, N. Schiavone, G. Van Der Horst, and S. Willans, “Community Charging Stations in rural sub-Saharan Africa : Commercial success , positive externalities , and growing supply chains,” Energy Sustain. Dev., vol. 23, pp. 228–236, 2014, doi: 10.1016/j.esd.2014.09.005.spa
dc.relation.referencesA. Chauhan and R. P. Saini, “Techno-economic feasibility study on Integrated Renewable Energy System for an isolated community of India,” Renew. Sustain. Energy Rev., vol. 59, pp. 388–405, 2016, doi: 10.1016/j.rser.2015.12.290.spa
dc.relation.referencesA. G. Dagnachew, A. F. Hof, M. R. Roelfsema, and D. P. van Vuuren, “Actors and governance in the transition toward universal electricity access in Sub-Saharan Africa,” Energy Policy, vol. 143, no. December 2017, p. 111572, 2020, doi: 10.1016/j.enpol.2020.111572.spa
dc.relation.referencesA. Mohr and Y. Liu, “Sustainable bioenergy solutions to enable development in low- and middle-income countries beyond technology and energy access,” vol. 143, no. July, 2020, doi: 10.1016/j.biombioe.2020.105876.spa
dc.relation.referencesS. Wang, J. Xing, Z. Jiang, and J. Li, “Decentralized economic dispatch of an isolated distributed generator network,” Int. J. Electr. Power Energy Syst., vol. 105, no. June 2018, pp. 297–304, 2019, doi: 10.1016/j.ijepes.2018.08.035.spa
dc.relation.referencesF. Liévano Martínez and J. E. Londoño, “El Pensamiento Sitemico Como Herramienta Metodológica para la Resolución de Problemas,” Soluciones Postgrado EIA, vol. 8, pp. 43–65, 2012.spa
dc.relation.referencesCongreso de Colombia, Ley 143 de 1994. 1996.spa
dc.relation.referencesD. González-Montoya, C. A. Ramos-Paja, B. A. Potosí-Guerrero, E. E. Henao-Bravo, and A. J. Saavedra-Montes, “Análisis de factibilidad técnico-económico de microrredes que integran celdas de combustible en zonas no interconectadas de Colombia,” TecnoLógicas, vol. 21, no. 43, pp. 71–89, 2018, doi: 10.22430/22565337.1057.spa
dc.relation.referencesJ. D. Garzón-Hidalgo and A. J. Saavedra-Montes, “Una metodología de diseño de micro redes para zonas no interconectadas de Colombia,” TecnoLógicas, vol. 20, no. 39, pp. 39–53, 2017, doi: 10.22430/22565337.687.spa
dc.relation.referencesIPSE, “Informe telemetría mensual de diciembre 2019,” 2020.spa
dc.relation.referencesDANE, “Necesidades Básicas Insatisfechas (NBI), Censo Nacional de Población y Vivienda (CNPV),” 2018.spa
dc.relation.referencesJ. F. Franco García, “Diseño de Programas de Uso Racional y Eficiente de la Energía Eléctrica en Zonas No Interconectadas en Colombia,” 2020.spa
dc.relation.referencesS. Grisales, “Análisis de la viabilidad técnico – económica de la inclusión de energía renovable en una de las principales localidades de las ZNI,” pp. 1–126, 2017.spa
dc.relation.referencesA. Arango Manrique, “Evaluación Técnica y de Mercado de la Operación de una Microrred en Modo Aislado dentro de un Sistema Eléctrico de Potencia con Ambiente Desregulado,” 2017.spa
dc.relation.referencesUnidad de Planeación Minero Energética-UPME, Integración de las energías renovables no convencionales en Colombia. 2015.spa
dc.relation.referencesR. Rodríguez, G. Osma, and G. Ordóñez, “Retos de la planificación energética de micro-redes en regiones rurales remotas con cargas dispersas Energy planning challenges of microgrid in remote rural regions with scattered loads,” pp. 1–8, 2017.spa
dc.relation.referencesU. Deichmann, C. Meisner, S. Murray, and D. Wheeler, “The economics of renewable energy expansion in rural Sub-Saharan Africa,” Energy Policy, vol. 39, no. 1, pp. 215–227, 2011, doi: 10.1016/j.enpol.2010.09.034.spa
dc.relation.referencesD. López-García, A. Arango-Manrique, and S. X. Carvajal-Quintero, “Integration of distributed energy resources in isolated microgrids: the Colombian paradigm,” TecnoLógicas, vol. 21, no. 42, pp. 13–30, May 2018, doi: 10.22430/22565337.774.spa
dc.relation.referencesI. López, A. Arriaga, and M. Pardo, “The social dimension of sustainable development: The everlasting forgotten?,” Rev. Esp. Sociol., vol. 27, no. 1, pp. 25–41, 2018, doi: 10.22325/fes/res.2018.2.spa
dc.relation.referencesI. Gunnarsdottir, B. Davidsdottir, E. Worrell, and S. Sigurgeirsdottir, “Review of indicators for sustainable energy development,” Renew. Sustain. Energy Rev., vol. 133, no. July, p. 110294, 2020, doi: 10.1016/j.rser.2020.110294.spa
dc.relation.referencesB. Guðlaugsson, R. Fazeli, I. Gunnarsdóttir, B. Davidsdottir, and G. Stefansson, “Classification of stakeholders of sustainable energy development in Iceland: Utilizing a power-interest matrix and fuzzy logic theory,” Energy Sustain. Dev., vol. 57, pp. 168–188, 2020, doi: 10.1016/j.esd.2020.06.006.spa
dc.relation.referencesW. G. Santika, T. Urmee, Y. Simsek, P. A. Bahri, and M. Anisuzzaman, “An assessment of energy policy impacts on achieving Sustainable Development Goal 7 in Indonesia,” Energy Sustain. Dev., vol. 59, pp. 33–48, 2020, doi: 10.1016/j.esd.2020.08.011.spa
dc.relation.referencesO. Dada and C. Mbohwa, “Energy from waste : A possible way of meeting goal 7 of the sustainable development goals,” Mater. Today Proc., vol. 5, no. 4, pp. 10577–10584, 2018, doi: 10.1016/j.matpr.2017.12.390.spa
dc.relation.referencesUnited Nations, “Energía Asequible Y No Contaminante,” United Nations, 2016, [Online]. Available: http://www.un.org/sustainabledevelopment/es/wp-content/uploads/sites/3/2016/10/7_Spanish_Why_it_Matters.pdf.spa
dc.relation.referencesJ. Castor, K. Bacha, and F. F. Nerini, “SDGs in action : A novel framework for assessing energy projects against the sustainable development goals,” Energy Res. Soc. Sci., vol. 68, no. April, p. 101556, 2020, doi: 10.1016/j.erss.2020.101556.spa
dc.relation.referencesE. Adkins, K. Oppelstrup, and V. Modi, “Rural household energy consumption in the millennium villages in Sub-Saharan Africa,” Energy Sustain. Dev., vol. 16, no. 3, pp. 249–259, 2012, doi: 10.1016/j.esd.2012.04.003.spa
dc.relation.referencesD. Bahadur, B. Behera, A. Ali, and P. Marenya, “A ladder within a ladder : Understanding the factors in fl uencing a household ’ s domestic use of electricity in four African countries,” Energy Econ., vol. 66, pp. 167–181, 2017, doi: 10.1016/j.eneco.2017.05.020.spa
dc.relation.referencesR. Matsika, B. F. N. Erasmus, and W. C. Twine, “Double jeopardy : The dichotomy of fuelwood use in rural South Africa,” Energy Policy, vol. 52, pp. 716–725, 2013, doi: 10.1016/j.enpol.2012.10.030.spa
dc.relation.referencesH. Phong, D. Thi, and B. Van, “The energy consumption structure and African EMDEs ’ sustainable development,” Heliyon, vol. 6, no. April, p. e03822, 2020, doi: 10.1016/j.heliyon.2020.e03822.spa
dc.relation.referencesBanco Mundial, “Acceso a la electricidad (% de población),” 2021. https://datos.bancomundial.org/indicator/EG.ELC.ACCS.ZS.spa
dc.relation.referencesBanco Mundial, “Consumo de energía renovable (% del consumo total de energía final),” 2021. https://datos.bancomundial.org/indicator/EG.FEC.RNEW.ZS.spa
dc.relation.referencesBanco Mundial, “Producción de electricidad a partir de fuentes renovables, excluida la hidroeléctrica (% del total),” 2021. https://datos.bancomundial.org/indicator/EG.ELC.RNWX.ZS.spa
dc.relation.referencesUnited Nations, “PROGRESS TOWARDS GOAL 7,” 2020. https://un-energy.org/newsdg7/.spa
dc.relation.referencesG. Halkos and E. C. Gkampoura, “Where do we stand on the 17 Sustainable Development Goals? An overview on progress,” Econ. Anal. Policy, vol. 70, pp. 94–122, 2021, doi: 10.1016/j.eap.2021.02.001.spa
dc.relation.referencesInternational Energy Agency, “Covid-19 impact on electricity,” 2020, [Online]. Available: https://www.iea.org/reports/covid-19-impact-on-electricity.spa
dc.relation.referencesCOCIER, “COVID-19: Recuerdos y lecciones aprendidas por el sector eléctrico español un año después,” 2021. http://www.cocier.org/index.php/en/noticias-de-cocier/2397-covid-19-recuerdos-y-lecciones-aprendidas-por-el-sector-electrico-espanol-un-ano-despues.spa
dc.relation.referencesCOCIER, “El aire más limpio por el COVID-19 aumentó la energía solar,” 2020, [Online]. Available: https://www.cocier.org/index.php/es/noticias-de-cocier/covid-19/2134-el-aire-mas-limpio-por-el-covid-19-aumento-la-energia-solar.spa
dc.relation.referencesInternational Energy Agency, “the covid-19 crisis is reversing progress in access to energy in africa,” 2020. https://www.iea.org/articles/the-covid-19-crisis-is-reversing-progress-on-energy-access-in-africa.spa
dc.relation.referencesInternational Energy Agency, “Africa and Covid-19: Economic recovery and electricity access go hand in hand,” 2020. https://www.iea.org/commentaries/africa-and-covid-19-economic-recovery-and-electricity-access-go-hand-in-hand.spa
dc.relation.referencesD. Asante, Z. He, N. O. Adjei, and B. Asante, “Exploring the barriers to renewable energy adoption utilising MULTIMOORA- EDAS method,” Energy Policy, vol. 142, no. 2006, p. 111479, 2020, doi: 10.1016/j.enpol.2020.111479.spa
dc.relation.referencesY. A. Solangi, C. Longsheng, S. Ahsan, and A. Shah, “Assessing and overcoming the renewable energy barriers for sustainable development in Pakistan : An integrated AHP and fuzzy TOPSIS approach,” Renew. Energy, vol. 173, pp. 209–222, 2021, doi: 10.1016/j.renene.2021.03.141.spa
dc.relation.referencesP. Durance and M. Godet, “Scenario building: Uses and abuses,” Technol. Forecast. Soc. Change, vol. 77, no. 9, pp. 1488–1492, 2010, doi: 10.1016/j.techfore.2010.06.007.spa
dc.relation.referencesJ. Vergara Schmalbach, T. Fontalvo Herrera, and F. Maza Avila, “La planeación por escenarios: Revisión de conceptos y propuestas metodológicas,” Prospectiva, vol. 8, no. 2, pp. 21–29, 2010.spa
dc.relation.referencesR. Bradfield, G. Wright, G. Burt, G. Cairns, and K. Van Der Heijden, “The origins and evolution of scenario techniques in long range business planning,” Futures, vol. 37, no. 8, pp. 795–812, 2005, doi: 10.1016/j.futures.2005.01.003.spa
dc.relation.referencesM. Godet, “The Art of Scenarios and Strategic Planning: Tools and Pitfalls,” Technol. Forecast. Soc. Change, vol. 65, no. 1, pp. 3–22, 2000, doi: 10.1016/s0040-1625(99)00120-1.spa
dc.relation.referencesD. Carrizo and C. Moller, “Methodological structures of systematic literature review in software engineering: a systematic mapping study,” Scielo, 2018, [Online]. Available: https://scielo.conicyt.cl/scielo.php?script=sci_arttext&pid=S0718-33052018000500045#:~:text=Las revisiones sistemáticas de literatura (RSL) también referidas como revisiones,medicina y la sociología 10.spa
dc.relation.referencesY. Parag and M. Ainspan, “Sustainable microgrids: Economic, environmental and social costs and benefits of microgrid deployment,” Energy Sustain. Dev., vol. 52, pp. 72–81, 2019, doi: 10.1016/j.esd.2019.07.003.spa
dc.relation.referencesJ. M. Ngowi, L. Bångens, and E. O. Ahlgren, “Energy for Sustainable Development Bene fi ts and challenges to productive use of off-grid rural electri fi cation : The case of mini-hydropower in Bulongwa-Tanzania,” Energy Sustain. Dev., vol. 53, pp. 97–103, 2019, doi: 10.1016/j.esd.2019.10.001.spa
dc.relation.referencesL. Matraeva, P. Solodukha, S. Erokhin, and M. Babenko, “Improvement of Russian energy efficiency strategy within the framework of ‘green economy’ concept (based on the analysis of experience of foreign countries),” Energy Policy, vol. 125, no. November 2018, pp. 478–486, 2019, doi: 10.1016/j.enpol.2018.10.049.spa
dc.relation.referencesB. Blankenship, R. Kennedy, A. Mahajan, J. Chun, Y. Wong, and J. Urpelainen, “Increasing rural electrification through connection campaigns ✩,” Energy Policy, vol. 139, no. July 2019, p. 111291, 2020, doi: 10.1016/j.enpol.2020.111291.spa
dc.relation.referencesG. R. Timilsina, G. Hochman, and I. Fedets, “Understanding energy efficiency barriers in Ukraine: Insights from a survey of commercial and industrial firms,” Energy, vol. 106, pp. 203–211, 2016, doi: 10.1016/j.energy.2016.03.009.spa
dc.relation.referencesO. Bamisile et al., “An approach for sustainable energy planning towards 100 % electrification of Nigeria by 2030,” Energy, vol. 197, p. 117172, 2020, doi: 10.1016/j.energy.2020.117172.spa
dc.relation.referencesC. L. Trujillo et al., “Microrredes eléctricas,” Microrredes Eléctricas, vol. Primera Ed, p. 11, 2015.spa
dc.relation.referencesUnidad de Planeación Minero Energética-UPME, “Plan Energetico Nacional 2020-2050,” p. 83, 2019, [Online]. Available: https://www1.upme.gov.co/Paginas/Plan-Energetico-Nacional-2050.aspx.spa
dc.relation.referencesL. He, S. Zhang, Y. Chen, L. Ren, and J. Li, “Techno-economic potential of a renewable energy-based microgrid system for a sustainable large-scale residential community in Beijing, China,” Renew. Sustain. Energy Rev., vol. 93, no. May, pp. 631–641, 2018, doi: 10.1016/j.rser.2018.05.053.spa
dc.relation.referencesM. Stadler et al., “Value streams in microgrids: A literature review,” Appl. Energy, vol. 162, pp. 980–989, 2016, doi: 10.1016/j.apenergy.2015.10.081.spa
dc.relation.referencesJ. Najafi, A. Peiravi, A. Anvari-Moghaddam, and J. M. Guerrero, “An efficient interactive framework for improving resilience of power-water distribution systems with multiple privately-owned microgrids,” Int. J. Electr. Power Energy Syst., vol. 116, no. May 2018, 2020, doi: 10.1016/j.ijepes.2019.105550.spa
dc.relation.referencesT. M. Vega, “Infraestructura de medicion avanzada para microrredes electricas,” p. 104, 2018, [Online]. Available: https://www.semanticscholar.org/paper/Infraestructura-de-Medición-Avanzada-para-Vega/0fa3314d73abbcf587db8c210400eae447c1bbf0#paper-header.spa
dc.relation.referencesD. B. Rahut, B. Behera, A. Ali, and P. Marenya, “A ladder within a ladder: Understanding the factors influencing a household’s domestic use of electricity in four African countries,” Energy Econ., vol. 66, pp. 167–181, 2017, doi: 10.1016/j.eneco.2017.05.020.spa
dc.relation.referencesA. O. Adelaja, “Barriers to national renewable energy policy adoption: Insights from a case study of Nigeria,” Energy Strateg. Rev., vol. 30, p. 100519, 2020, doi: 10.1016/j.esr.2020.100519.spa
dc.relation.referencesA. Chauhan and R. P. Saini, “Renewable energy based off-grid rural electrification in Uttarakhand state of India: Technology options, modelling method, barriers and recommendations,” Renew. Sustain. Energy Rev., vol. 51, pp. 662–681, 2015, doi: 10.1016/j.rser.2015.06.043.spa
dc.relation.referencesA. Rout, B. Mainali, S. Singh, C. Singh, and G. S. Bhati, “Assessing the financial sustainability of rural grid electrification pathway : A case study of India,” Sustain. Prod. Consum., vol. 25, pp. 27–42, 2021, doi: 10.1016/j.spc.2020.08.001.spa
dc.relation.referencesF. Almeshqab and T. S. Ustun, “Lessons learned from rural electrification initiatives in developing countries: Insights for technical, social, financial and public policy aspects,” Renew. Sustain. Energy Rev., vol. 102, no. December 2017, pp. 35–53, 2019, doi: 10.1016/j.rser.2018.11.035.spa
dc.relation.referencesM. Derks and H. Romijn, “Sustainable performance challenges of rural microgrids: Analysis of incentives and policy framework in Indonesia,” Energy Sustain. Dev., vol. 53, pp. 57–70, 2019, doi: 10.1016/j.esd.2019.08.003.spa
dc.relation.referencesA. López-González, B. Domenech, and L. Ferrer-Martí, “Formative evaluation of sustainability in rural electrification programs from a management perspective: A case study from Venezuela,” Renew. Sustain. Energy Rev., vol. 95, no. October 2017, pp. 95–109, 2018, doi: 10.1016/j.rser.2018.07.024.spa
dc.relation.referencesE. Tsiaras, D. N. Papadopoulos, C. N. Antonopoulos, V. G. Papadakis, and F. A. Coutelieris, “Planning and assessment of an off-grid power supply system for small settlements,” Renew. Energy, vol. 149, pp. 1271–1281, 2020, doi: 10.1016/j.renene.2019.10.118.spa
dc.relation.referencesM. I. Imam, T. Jamasb, and M. Llorca, “Sector reforms and institutional corruption: Evidence from electricity industry in Sub-Saharan Africa,” Energy Policy, vol. 129, no. February, pp. 532–545, 2019, doi: 10.1016/j.enpol.2019.02.043.spa
dc.relation.referencesH. Ahlborg and L. Hammar, “Drivers and barriers to rural electrification in tanzania and mozambique - grid-extension, off-grid, and renewable energy technologies,” Renew. Energy, vol. 61, pp. 117–124, 2014, doi: 10.1016/j.renene.2012.09.057.spa
dc.relation.referencesC. M. Boliko and D. S. Ialnazov, “An assessment of rural electri fi cation projects in Kenya using a sustainability framework,” Energy Policy, vol. 133, no. August 2018, p. 110928, 2019, doi: 10.1016/j.enpol.2019.110928.spa
dc.relation.referencesB. K. Sovacool, S. Clarke, K. Johnson, M. Crafton, J. Eidsness, and D. Zoppo, “The energy-enterprise-gender nexus: Lessons from the Multifunctional Platform (MFP) in Mali,” Renew. Energy, vol. 50, pp. 115–125, 2013, doi: 10.1016/j.renene.2012.06.024.spa
dc.relation.referencesN. N. Opiyo, “How basic access to electricity stimulates temporally increasing load demands by households in rural developing communities,” Energy Sustain. Dev., vol. 59, pp. 97–106, 2020, doi: 10.1016/j.esd.2020.09.006.spa
dc.relation.referencesM. Shahbaz, A. R. Chaudhary, and I. Ozturk, “Does urbanization cause increasing energy demand in Pakistan? Empirical evidence from STIRPAT model,” Energy, vol. 122, pp. 83–93, 2017, doi: 10.1016/j.energy.2017.01.080.spa
dc.relation.referencesZ. Wang, Q. Sun, B. Wang, and B. Zhang, “Purchasing intentions of Chinese consumers on energy-efficient appliances: Is the energy efficiency label effective?,” J. Clean. Prod., vol. 238, p. 117896, 2019, doi: 10.1016/j.jclepro.2019.117896.spa
dc.relation.referencesT. Zohar, Y. Parag, and O. Ayalon, “Strategizing demand management from the middle out: Harnessing middle actors to reduce peak electricity consumption,” Energy Res. Soc. Sci., vol. 61, no. September 2019, p. 101360, 2020, doi: 10.1016/j.erss.2019.101360.spa
dc.relation.referencesY. Lv, W. Chen, and J. Cheng, “Effects of urbanization on energy efficiency in China : New evidence from short run and long run efficiency models ☆,” Energy Policy, vol. 147, no. August, p. 111858, 2020, doi: 10.1016/j.enpol.2020.111858.spa
dc.relation.referencesJ. P. Viteri, F. Henao, J. Cherni, and I. Dyner, “Optimizing the insertion of renewable energy in the off-grid regions of Colombia,” J. Clean. Prod., vol. 235, pp. 535–548, 2019, doi: 10.1016/j.jclepro.2019.06.327.spa
dc.relation.referencesR. Bahmani, H. Karimi, and S. Jadid, “Stochastic electricity market model in networked microgrids considering demand response programs and renewable energy sources,” Electr. Power Energy Syst., vol. 117, no. May 2019, p. 105606, 2020, doi: 10.1016/j.ijepes.2019.105606.spa
dc.relation.referencesD. E. Bedoya Bedoya, “Estudio del control de tensión en sistemas de distribución en Colombia con presencia de generación solar fotovoltaica,” 2019.spa
dc.relation.referencesE. Mulenga, M. H. J. Bollen, and N. Etherden, “Distribution networks measured background voltage variations, probability distributions characterization and Solar PV hosting capacity estimations,” Electr. Power Syst. Res., vol. 192, no. October 2020, p. 106979, 2021, doi: 10.1016/j.epsr.2020.106979.spa
dc.relation.referencesF. P. Sioshansi, “Smart Grid-Integrating Renewable, Distributed, & Efficient Energy,” 2012.spa
dc.relation.referencesJ. C. Piai Paiva, G. D. M. Jannuzzi, and C. A. de Melo, “Mapping electricity affordability in Brazil,” Util. Policy, vol. 59, no. May, p. 100926, 2019, doi: 10.1016/j.jup.2019.100926.spa
dc.relation.referencesS. Fankhauser and S. Tepic, “Can poor consumers pay for energy and water ? An affordability analysis for transition countries,” vol. 35, pp. 1038–1049, 2007, doi: 10.1016/j.enpol.2006.02.003.spa
dc.relation.referencesM. Soshinskaya, W. H. J. Crijns-Graus, J. M. Guerrero, and J. C. Vasquez, “Microgrids: Experiences, barriers and success factors,” Renew. Sustain. Energy Rev., vol. 40, pp. 659–672, 2014, doi: 10.1016/j.rser.2014.07.198.spa
dc.relation.referencesK. Sato and Y. Utsugi, “Study on the operation optimization of an isolated island microgrid with renewable energy layout planning,” Energy, vol. 161, pp. 1211–1225, 2018, doi: 10.1016/j.energy.2018.07.109.spa
dc.relation.referencesOrganización Mundial de la Salud, “La OMS concluye que el humo del diésel causa cáncer de pulmón,” 2012.spa
dc.relation.referencesB. R. ESPARZA NARVAEZ, “Identificación De Las Consecuencias De Las Emisiones Nox De Los Motores Diésel En El Ambiente Y Las Personas.,” 2019.spa
dc.relation.referencesA. Mazzone, “Decentralised energy systems and sustainable livelihoods , what are the links ? Evidence from two isolated villages of the Brazilian Amazon,” Energy Build., vol. 186, pp. 138–146, 2019, doi: 10.1016/j.enbuild.2019.01.027.spa
dc.relation.referencesA. López-gonzález, L. Ferrer-martí, and B. Domenech, “Sustainable rural electri fi cation planning in developing countries : A proposal for electri fi cation of isolated communities of Venezuela,” vol. 129, no. February, pp. 327–338, 2019, doi: 10.1016/j.enpol.2019.02.041.spa
dc.relation.referencesL. Karpinska and S. Śmiech, “Breaking the cycle of energy poverty. Will Poland make it?,” Energy Econ., vol. 94, p. 105063, 2021, doi: 10.1016/j.eneco.2020.105063.spa
dc.relation.referencesInternational Energy Agency, “Defining energy access: 2020 methodology,” 2020, [Online]. Available: https://www.iea.org/articles/defining-energy-access-2020-methodology.spa
dc.relation.referencesMinisterio de minas y energía, Integración de las Energías Renovables No Convencionales en Colombia. 2015.spa
dc.relation.referencesS. Henni, P. Staudt, B. Kandiah, and C. Weinhardt, “Infrastructural coupling of the electricity and gas distribution grid to reduce renewable energy curtailment,” Appl. Energy, vol. 288, no. January, p. 116597, 2021, doi: 10.1016/j.apenergy.2021.116597.spa
dc.relation.referencesM. T. Koecklin, G. Longoria, D. Z. Fitiwi, J. F. DeCarolis, and J. Curtis, “Public acceptance of renewable electricity generation and transmission network developments: Insights from Ireland,” Energy Policy, vol. 151, no. November 2020, p. 112185, 2021, doi: 10.1016/j.enpol.2021.112185.spa
dc.relation.referencesD. Olave-Rojas and E. Alvarez-Miranda, “Towards a complex investment evaluation framework for renewable energy systems: A 2-level heuristic approach,” Energy, p. 120530, 2021, doi: 10.1016/j.energy.2021.120530.spa
dc.relation.referencesU. Bariss, G. Bazbauers, A. Blumberga, and D. Blumberga, “System Dynamics Modeling of Households ’ Electricity Consumption and Cost-Income Ratio : a Case Study of Latvia,” vol. 20, pp. 36–50, 2017, doi: 10.1515/rtuect-2017-0009.spa
dc.relation.referencesP. Benenson and C. Systematic, “Household Appliance Replacement Program - Impact and Tradeoffs.”spa
dc.relation.referencesE. Mulenga, M. H. J. Bollen, and N. Etherden, “Distribution networks measured background voltage variations, probability distributions characterization and Solar PV hosting capacity estimations,” Electr. Power Syst. Res., vol. 192, no. October 2020, p. 106979, 2021, doi: 10.1016/j.epsr.2020.106979.spa
dc.relation.referencesE. Rodriguez-Ubinas et al., “Passive design strategies and performance of Net Energy Plus Houses,” Energy Build., vol. 83, pp. 10–22, Nov. 2014, doi: 10.1016/j.enbuild.2014.03.074.spa
dc.relation.referencesA. A. Muresan and S. Attia, “Energy efficiency in the Romanian residential building stock: A literature review,” Renew. Sustain. Energy Rev., vol. 74, no. December 2016, pp. 349–363, 2017, doi: 10.1016/j.rser.2017.02.022.spa
dc.relation.referencesS. Attia, “Roadmap for NZEB Implementation,” Net Zero Energy Build., pp. 343–369, 2018, doi: 10.1016/b978-0-12-812461-1.00012-5.spa
dc.relation.referencesIcontec Internacional, “NTC ISO 50001.” 2011.spa
dc.relation.referencesK. Heine, A. Thatte, and P. C. Tabares-Velasco, “A simulation approach to sizing batteries for integration with net-zero energy residential buildings,” Renew. Energy, vol. 139, pp. 176–185, Aug. 2019, doi: 10.1016/j.renene.2019.02.033.spa
dc.relation.referencesInternational Energy Agency, “Clean Energy Transitions in Emerging Economies,” 2021. https://www.iea.org/programmes/clean-energy-transitions-in-emerging-economies.spa
dc.relation.referencesT. Beaufils and P. O. Pineau, “Assessing the impact of residential load profile changes on electricity distribution utility revenues under alternative rate structures,” Util. Policy, vol. 61, no. August 2018, 2019, doi: 10.1016/j.jup.2019.100959.spa
dc.relation.referencesInternational Energy Agency, “Renewables 2020, Analysis and forecast to 2025,” Plast. Eng., vol. 74, no. 9, pp. 56–57, 2020, doi: 10.1002/peng.20026.spa
dc.relation.referencesCOCIER, “Con alianza entre privados y Gobierno, el sector eléctrico colombiano sería carbono neutral en 2050,” 2021. https://www.cocier.org/index.php/es/noticias-de-cocier/2398-con-alianza-entre-privados-y-gobierno-el-sector-electrico-colombiano-seria-carbono-neutral-en-2050.spa
dc.relation.referencesM. E. Menconi, S. dell’Anna, A. Scarlato, and D. Grohmann, “Energy sovereignty in Italian inner areas: Off-grid renewable solutions for isolated systems and rural buildings,” Renew. Energy, vol. 93, pp. 14–26, 2016, doi: 10.1016/j.renene.2016.02.034.spa
dc.relation.referencesR. Fachrizal, U. H. Ramadhani, J. Munkhammar, and J. Widén, “Combined PV-EV hosting capacity assessment for a residential LV distribution grid with smart EV charging and PV curtailment,” Sustain. Energy, Grids Networks, vol. 26, p. 100445, 2021, doi: 10.1016/j.segan.2021.100445.spa
dc.relation.referencesX. Luo, Y. Liu, J. Liu, and X. Liu, “Optimal design and cost allocation of a distributed energy resource (DER) system with district energy networks: A case study of an isolated island in the South China Sea,” Sustain. Cities Soc., vol. 51, no. July, p. 101726, 2019, doi: 10.1016/j.scs.2019.101726.spa
dc.relation.referencesInternational Energy Agency, “Digitalisation and Energy,” 2017, [Online]. Available: https://www.iea.org/reports/digitalisation-and-energy#a-new-era-in-energy.spa
dc.relation.referencesT. L. Duong, P. T. Nguyen, N. D. Vo, and M. P. Le, “A newly effective method to maximize power loss reduction in distribution networks with highly penetrated distributed generations,” Ain Shams Eng. J., no. xxxx, 2020, doi: 10.1016/j.asej.2020.11.003.spa
dc.relation.referencesK. Primc and R. Slabe-erker, “Energy for Sustainable Development Social policy or energy policy ? Time to reconsider energy poverty policies,” Energy Sustain. Dev., vol. 55, pp. 32–36, 2020, doi: 10.1016/j.esd.2020.01.001.spa
dc.relation.referencesS. Nižetić, N. Djilali, A. Papadopoulos, and J. J. P. C. Rodrigues, “Smart technologies for promotion of energy efficiency, utilization of sustainable resources and waste management,” J. Clean. Prod., vol. 231, pp. 565–591, 2019, doi: 10.1016/j.jclepro.2019.04.397.spa
dc.relation.referencesS. Yang and S. Park, “The effects of renewable energy financial incentive policy and democratic governance on renewable energy aid effectiveness,” Energy Policy, vol. 145, no. May, p.spa
dc.relation.referencesL. C. M. Blasques and J. T. Pinho, “Metering systems and demand-side management models applied to hybrid renewable energy systems in micro-grid configuration,” Energy Policy, vol. 45, pp. 721–729, Jun. 2012, doi: 10.1016/j.enpol.2012.03.028.spa
dc.relation.referencesT. Levin and V. M. Thomas, “Can developing countries leapfrog the centralized electrification paradigm?,” Energy Sustain. Dev., vol. 31, pp. 97–107, 2016, doi: 10.1016/j.esd.2015.12.005.spa
dc.relation.referencesM. Banaei and B. Rezaee, “Fuzzy scheduling of a non-isolated micro-grid with renewable resources,” Renew. Energy, vol. 123, pp. 67–78, 2018, doi: 10.1016/j.renene.2018.01.088.spa
dc.relation.referencesEl Congreso de Colombia, Ley 633 Del 2000. 2000.spa
dc.relation.referencesEl Congreso de Colombia, “Ley 1995,” 2019.spa
dc.relation.referencesCongreso de Colombia, “Ley 697 de 2001,” D. Of., vol. 44573, no. Octubre 3, pp. 1–4, 2001, [Online]. Available: https://www.habitatbogota.gov.co/transparencia/normatividad/normatividad/ley-697-2001.spa
dc.relation.referencesJ. D. Marín-Jiménez, S. X. Carvajal-Quintero, and J. M. Guerrero, “Island operation capability in the Colombian electrical market: a promising ancillary service of distributed energy resources,” TecnoLógias, vol. 21, no. 42, pp. 169–185, 2018.spa
dc.relation.referencesMinisterio de Minas y Energía (MINMINAS), “Resolución del 182138,” 2007.spa
dc.relation.referencesEl Congreso de Colombia, “Ley 1715,” 2014, doi: 10.1038/132817a0.spa
dc.relation.referencesMinisterio de Minas y Energía, “Resolución CREG 038.” p. 20, 2018, [Online]. Available: http://apolo.creg.gov.co/Publicac.nsf/1c09d18d2d5ffb5b05256eee00709c02/71e64d5b21da40e8052582830078b66e/$FILE/Creg038-2018.pdf.spa
dc.relation.referencesS. Arango-Aramburo et al., “Simulating mining policies in developing countries: The case of Colombia,” Socioecon. Plann. Sci., vol. 60, pp. 99–113, 2017, doi: 10.1016/j.seps.2017.04.002.spa
dc.relation.referencesJ. Arias-Gaviria, S. X. Carvajal-Quintero, and S. Arango-Aramburo, “Understanding dynamics and policy for renewable energy diffusion in Colombia,” Renew. Energy, vol. 139, pp. 1111–1119, 2019, doi: 10.1016/j.renene.2019.02.138.spa
dc.relation.referencesS. X. Carvajal, J. Serrano, and S. Arango, “Colombian ancillary services and international connections: Current weaknesses and policy challenges,” Energy Policy, vol. 52, pp. 770–778, 2013, doi: 10.1016/j.enpol.2012.10.041.spa
dc.relation.referencesF. M. González-Longatt, “Análisis de Sistemas de Potencia empleando DIgSILENT PowerFactory: Análisis en Estado Estacionario,” Semin. DIgSILENT PowerFactory Anal. en Estado Estac., 2013.spa
dc.relation.referencesG. Piraquive, M. Matamoros, E. Cespedes, and J. Rodríguez Chacón, “Actualización de la tasa de rendimiento del capital en Colombia bajo la metodología de Harberger,” Arch. Econ., vol. 487, p. 44, 2018, [Online]. Available: https://colaboracion.dnp.gov.co/CDT/Estudios Econmicos/487.pdf.spa
dc.relation.referencesBanco de la Republica-Colombia, “Inflación total y meta,” 2021. https://www.banrep.gov.co/es/estadisticas/inflacion-total-y-meta.spa
dc.relation.referencesIndustrial Motor Power Corporation, “2017 CUMMINS KTA50G3,” 2021. https://www.used-power-generators.com/inventory/?/listings/construction-equipment/for-sale/52686425/2017-cummins kta50g3?dlr=1&sfc=0&ssc=0&ftr=1&crmid=9933667&sbc=0&snai=0&fdc=COP.spa
dc.relation.referencesUSAENE LLC, “Determinación de Inversiones y Gastos de Administración, Operación y Mantenimiento para la actividad de Generación en Zonas No Interconectadas con Plantas Térmicas,” 2013. .spa
dc.relation.referencesDEPCO POWER SYSTEMS, “Good Used Cummins QST30-G1 750KW Diesel Generator Set,” 2021. https://www.depco.com/generator-sets/cummins-qst30-g1-750kw-stand-by-generator-set-item-14300/.spa
dc.relation.referencesIndustrial Motor Power Corporation, “CUMMINS QST30G4 GENERATOR SET,” 2021. https://www.impcorporation.com/es-es/inventory/details/14822/cummins-qst30g4-generator-set.spa
dc.relation.referencesL. Generator Power (Shanghai) Co., “1125kVA/900kw Open Type Electric Industrial Use Diesel Generators,” 2021. .spa
dc.relation.referencesComision de Regulación de Energía y Gas - CREG, “CREG 091 de 2007 - Formula tarifaria y costo unitario de prestación del servicio en ZNI.” p. 38, 2007, [Online]. Available: http://www.upme.gov.co/zni/portals/0/resoluciones/ResCreg0912007.pdf.spa
dc.relation.referencesComision de Regulación de Energía y Gas - CREG, “Determinación de inversiones y gastos de administración, operación y mantenimiento para la actividad de generación en zonas no interconectadas con plantas térmicas,” 2013.spa
dc.relation.referencesInstituto de Planificación y Promoción de Soluciones Energéticas para las Zonas No Interconectadas - IPSE, “Informe de telemetría-agosto de 2019.” 2019.spa
dc.relation.referencesSuperintendencia delegada para Energía y Gas, “Informe ejecutivo de gestión departamento del Vaupés gobernación del Vaupés,” pp. 1–5, 2011, [Online]. Available: https://www.superservicios.gov.co/sites/default/archivos/Energia y gas combustible/Energía/2018/Sep/2012ieg-departamentodelvaupes.pdf.spa
dc.relation.referencesComision de Regulación de Energía y Gas - CREG, “Consultoría para la determinación de las pérdidas de energía en los mercados de comercialización presentes en el sin y definición de criterios para la evaluación de planes de reducción y/o mantenimiento de pérdidas de energía,” no. 72, 2008.spa
dc.relation.referencesM. K. Kiptoo, M. E. Lotfy, O. B. Adewuyi, A. Conteh, A. M. Howlader, and T. Senjyu, “Integrated approach for optimal techno-economic planning for high renewable energy-based isolated microgrid considering cost of energy storage and demand response strategies,” Energy Convers. Manag., vol. 215, no. May, p. 112917, 2020, doi: 10.1016/j.enconman.2020.112917.spa
dc.relation.referencesC. M. Schmidt and G. Bensch, “Impact evaluation of productive use — An implementation guideline for electrification projects,” vol. 40, pp. 186–195, 2012, doi: 10.1016/j.enpol.2011.09.034.spa
dc.relation.referencesF. Riva, “Energy for Sustainable Development When complexity turns into local prosperity : A system dynamics approach to meeting the challenges of the rural electricity-development nexus,” Energy Sustain. Dev., vol. 59, pp. 226–242, 2020, doi: 10.1016/j.esd.2020.10.009.spa
dc.relation.referencesC. Kirubi, A. Jacobson, D. M. Kammen, and A. Mills, “Community-Based Electric Micro-Grids Can Contribute to Rural Development : Evidence from Kenya,” World Dev., vol. 37, no. 7, pp. 1208–1221, 2009, doi: 10.1016/j.worlddev.2008.11.005.spa
dc.relation.referencesF. Riva, H. Ahlborg, E. Hartvigsson, S. Pachauri, and E. Colombo, “Energy for Sustainable Development Electricity access and rural development : Review of complex socio-economic dynamics and causal diagrams for more appropriate energy modelling,” Energy Sustain. Dev., vol. 43, pp. 203–223, 2018, doi: 10.1016/j.esd.2018.02.003.spa
dc.relation.referencesA. K. Jain et al., “Dynamic hosting capacity analysis for distributed photovoltaic resources—Framework and case study,” Appl. Energy, vol. 280, no. September, 2020, doi: 10.1016/j.apenergy.2020.115633.spa
dc.relation.referencesS. M. Ismael, S. H. E. Abdel Aleem, A. Y. Abdelaziz, and A. F. Zobaa, “State-of-the-art of hosting capacity in modern power systems with distributed generation,” Renew. Energy, vol. 130, pp. 1002–1020, 2019, doi: 10.1016/j.renene.2018.07.008.spa
dc.relation.referencesS. Abdullah and A. Markandya, “Rural electrification programmes in Kenya : Policy conclusions from a valuation study,” Energy Sustain. Dev., vol. 16, no. 1, pp. 103–110, 2012, doi: 10.1016/j.esd.2011.10.007.spa
dc.relation.referencesNorth American Electric Reliability Corporation, “Accommodating High Levels of Variable Generation,” North Am. Electr. Reliab. Corp., no. April, p. 104, 2009.spa
dc.relation.referencesH. Louie, Off-Grid Electrcal Systems in Developing Countries. 2018.spa
dc.relation.referencesS. Heslop, I. Macgill, J. Fletcher, and S. Lewis, “Method for determining a PV generation limit on low voltage feeders for evenly distributed PV and Load,” Energy Procedia, vol. 57, pp. 207–216, 2014, doi: 10.1016/j.egypro.2014.10.025.spa
dc.relation.referencesIcontec Internacional, “NTC-ISO 55001,” 2014.spa
dc.relation.referencesS. E. Ahmadi, N. Rezaei, and H. Khayyam, “Energy management system of networked microgrids through optimal reliability-oriented day-ahead self-healing scheduling,” Sustain. Energy, Grids Networks, vol. 23, p. 100387, 2020, doi: 10.1016/j.segan.2020.100387.spa
dc.relation.referencesC. Liao and D. Fei, “Poverty reduction through photovoltaic-based development intervention in China : Potentials and constraints,” World Dev., vol. 122, pp. 1–10, 2019, doi: 10.1016/j.worlddev.2019.04.017.spa
dc.relation.referencesX. Luo, J. Liu, Y. Liu, and X. Liu, “Bi-level optimization of design, operation, and subsidies for standalone solar/diesel multi-generation energy systems,” Sustain. Cities Soc., vol. 48, no. May, p. 101592, 2019, doi: 10.1016/j.scs.2019.101592.spa
dc.relation.referencesJ. C. Oviedo-Cepeda, I. Serna-Suárez, G. Osma-Pinto, C. Duarte, J. Solano, and H. A. Gabbar, “Design of tariff schemes as demand response mechanisms for stand-alone microgrids planning,” Energy, vol. 211, 2020, doi: 10.1016/j.energy.2020.119028.spa
dc.relation.referencesV. António, F. José, and M. Santos, “Energy management system ISO 50001 : 2011 and energy management for sustainable development,” Energy Policy, vol. 133, no. July, p. 110868, 2019, doi: 10.1016/j.enpol.2019.07.004.spa
dc.relation.referencesY. Barlas, “Formal aspects of model validity and validation in system dynamics,” Syst. Dyn. Rev., pp. 183–210, 1996.spa
dc.relation.referencesJ. Sterman, “Business Dynamics, System Thinking and Modeling for a Complex World,” 2000.spa
dc.relation.referencesBanco Interamericano de Desarrollo and Departamento Nacional de Planeación, “Política Pública para Remover Obstáculos a Soluciones de Energía Renovable en ZNI,” 2017.spa
dc.relation.referencesJ. Franklin et al., “Sobre el uso adecuado del coeficiente de correlación de Pearson: definición, propiedades y suposiciones,” Arch. Venez. Farmacol. y Ter., vol. 37, no. 5, pp. 587–595, 2018.spa
dc.relation.referencesS. Arango, J. J. Prado, and I. Dyner, “Evaluación de políticas públicas para la reducción de la criminalidad en Medellín : una aproximación con dinámica de sistemas,” Ensayos sobre Política Económica, no. 60, pp. 80–109, 2009, doi: 10.32468/espe.6003.spa
dc.relation.referencesH. Theil, “Applied economic forecasting,” vol. 4, 1966.spa
dc.relation.referencesS. M. Hurtado and J. G. Aguado, “Predicción de demanda de energía en Colombia mediante un sistema de inferencia difuso neuronal,” pp. 15–24, 2005.spa
dc.relation.referencesAlcaldia de Mitú, “Información del Municipio,” 2021. https://www.mitu-vaupes.gov.co/MiMunicipio/Paginas/Informacion-del-Municipio.aspx.spa
dc.relation.referencesI. de P. y P. de S. E. para las zonas o I. IPSE, “Informe telemetría mensual de enero 2021,” 2021, [Online]. Available: http://190.216.196.84/cnm/info_mes.php.spa
dc.relation.referencesGENSA, “Caracterización de la demanda eléctrica en el municipio de Mitú–Vaupés zona no interconectada,” 2016.spa
dc.relation.referencesS. Martinez, “REDISEÑO DE LA RED DE DISTRIBUCIÓN DEL MUNICIPIO DE MITÚ – VAUPÉS – ZONA NO INTERCONECTADA,” 2017.spa
dc.relation.referencesGrupo EPM, “Gestión de pérdidas,” 2017. https://2017.sostenibilidadgrupoepm.com.co/gestion-social-y-ambiental/nuestra-gestion/temas-materiales/calidad-y-seguridad-de-los-productos-y-servicios/gestion-de-perdidas/.spa
dc.relation.referencesUPME, “Determinación del Consumo Basico de Subsistencia en los Sectores Residencial, Comercial y Hotelero en el Departamento Archipielado de San Andrés, Providencia y Santa Catalina,” pp. 1–34, 2010.spa
dc.relation.referencesSuperservicios, Diagnóstico Anual de la Prestación del Servicio de Energía Eléctrica en las Zonas no Interconectadas, no. September. 2017.spa
dc.relation.referencesSistema Unico de Información de Servicios Públicos Domiciliarios, “Consolidado de información comercial ZNI,” 2017. http://www.sui.gov.co/web/energia/reportes/comerciales/consolidado-de-informacion-comercial-zni.spa
dc.relation.referencesS. Martinez, “Rediseño de la red de distribución del municipio de Mitú – Vaupés – zona no interconectada,” 2017.spa
dc.relation.referencesGobernación Departamental del Vaupés, “Decreto Número 000332 de 2020,” 2019.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.proposalElectrificación sosteniblespa
dc.subject.proposalZona no interconectadaspa
dc.subject.proposalRedes aisladasspa
dc.subject.proposalDinámica de sistemasspa
dc.subject.proposalCapacidad de alojamientospa
dc.subject.proposalDemanda insatisfechaspa
dc.subject.proposalSustainable electrificationeng
dc.subject.proposalNot interconnected zoneeng
dc.subject.proposalIsolated networkseng
dc.subject.proposalSystems dynamicseng
dc.subject.proposalHosting capacityeng
dc.subject.proposalUnsatisfied demandeng
dc.subject.unescoEnergía eléctricaspa
dc.subject.unescoElectric powereng
dc.titleIncentivos para la promoción de la electrificación sostenible en la zona no interconectada de Colombiaspa
dc.title.translatedIncentives for the promotion of sustainable electrification in the not interconnected zone of Colombiaeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentImagespa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1053864053.2022.pdf
Tamaño:
2.48 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería Eléctrica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: