Estabilidad de pequeña señal en sistemas de energía eléctrica con alta penetración de generación renovable
| dc.contributor.advisor | Correa Gutiérrez, Rosa Elvira | spa |
| dc.contributor.advisor | Candelo Becerra, John Edwin | spa |
| dc.contributor.author | Zapata Ceballos, Maria Camila | spa |
| dc.contributor.corporatename | Universidad Nacional de Colombia - Sede Medellín | spa |
| dc.contributor.researchgroup | GRUPO DE INVESTIGACIÓN EN TECNOLOGÍAS APLICADAS - GITA | spa |
| dc.date.accessioned | 2020-10-29T21:30:24Z | spa |
| dc.date.available | 2020-10-29T21:30:24Z | spa |
| dc.date.issued | 2020 | spa |
| dc.description.abstract | One of the main uncertainties facing the incorporation of non-conventional renewable energies is the identification of both positive and negative impacts these can have on an electrical power system. Furthermore, dynamics of electrical power systems can be very different according to the elements that compose it, the impacts in the electric system can vary one from another which makes it necessary to analyze each case individually without a generalized conclusion. In this work, some methodologies of small signal stability analysis, such as modal analysis and modal identification, have been considered in two studied cases at DIgSILENT Power Factory. In the first theoretical study case, local and inter-area oscillation modes can be found. In the second study case, the analysis of the impacts of non-conventional renewable energy generation at different percentage penetration is carried out, obtaining as a result a limit of renewable energy generation incorporated in the system preventing instability or serious problems developing. For the analysis, a modal energy indicator is proposed with which it is identified that, as there is a higher percentage of incorporation of non-conventional renewable energy, the indicator decreases, alerting the proximity of the electrical power system to an area of instability. This indicator could be adapted to use it in real time and to be able to detect when an electrical power system is close to an unstable condition. | spa |
| dc.description.abstract | Una de las principales incertidumbres que se tiene frente a la incorporación de energías renovables no convencionales es la identificación del impacto tanto positivo como negativo que se pueden tener en un sistema eléctrico de potencia. Además, debido a que las dinámicas de los sistemas de energía eléctrica pueden ser muy distintas dependiendo de los elementos que lo compongan, los impactos difieren de un sistema a otro, lo cual hace necesario analizar cada caso por separado sin sacar conclusiones generalizadas. En este trabajo, se consideran algunas metodologías para el análisis de estabilidad de pequeña señal, como lo es el análisis y la identificación modal, y se aplican en dos casos de estudio implementados en DIgSILENT Power Factory. En el primer caso de estudio teórico se pueden encontrar modos de oscilación local e inter-área. En el segundo caso de estudio se hace el análisis de los impactos de la generación renovable no convencional ante diferentes porcentajes de incorporación de esta, obteniendo como resultado un límite de incorporación de generación renovable en el sistema antes de que se presenten problemas de inestabilidad. Para el análisis se propone un indicador de energía modal con el cual se identifica que, a medida que se tiene un mayor porcentaje de incorporación de energía renovable no convencional, el indicador disminuye, alertando la proximidad del sistema de energía eléctrica a una zona de inestabilidad. Este indicador podría ser adaptado para utilizarlo en tiempo real y poder detectar cuándo un sistema de energía eléctrica está cercano de una condición de inestabilidad. | spa |
| dc.description.additional | Línea de Investigación: Análisis, Operación y Control en Sistemas de Energía Eléctrica | spa |
| dc.description.degreelevel | Maestría | spa |
| dc.format.extent | 103 | spa |
| dc.format.mimetype | application/pdf | spa |
| dc.identifier.citation | Zapata Ceballos, Maria Camila (2020) Estabilidad de pequeña señal en sistemas de energía eléctrica con alta penetración de generación renovable. Tesis de Maestría, Universidad Nacional de Colombia - Sede Medellín. | spa |
| dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/78568 | |
| dc.language.iso | spa | spa |
| dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | spa |
| dc.publisher.department | Departamento de Ingeniería Eléctrica y Automática | spa |
| dc.publisher.program | Medellín - Minas - Maestría en Ingeniería - Ingeniería Eléctrica | spa |
| dc.relation.references | Abella, M. A. (2005). Sistemas Fotovoltaicos. CIEMAT. | spa |
| dc.relation.references | Ackermann, T. (2005). Wind Power in Power Systems. In T. Ackermann (Ed.), Wind Power in Power Systems. https://doi.org/10.1002/0470012684 | spa |
| dc.relation.references | Aguirre, Á. (2009). Energía Eólica. Retrieved February 23, 2020, from GSTRIATUM website: https://gstriatum.com/2009/01/28/energia-eolica/ | spa |
| dc.relation.references | Alonso Lorenzo, J. A. (2015). Cálculo Instalación Fotovotaica Aislada. Retrieved February 23, 2020, from SUNFIELDS website: https://www.sfe-solar.com/baterias-solares/manual-calculo/ | spa |
| dc.relation.references | Anderson, P. M., & Fouad, A. A. (1977). Power System Control and Stability (I. S. University & Press, Eds.). | spa |
| dc.relation.references | Athay, T., Podmore, R., & Virmani, S. (1979). A practical method for the direct analysis of transient stability. IEEE Transactions on Power Apparatus and Systems, PAS-98(2), 573–584. https://doi.org/10.1109/TPAS.1979.319407 | spa |
| dc.relation.references | Badii, M. H., Guillen, A., & Abreu, J. L. (2016). Energías Renovables y Conservación de Energía (Renewable Energies and Energy Conservation). In Daena: International Journal of Good Conscience (Vol. 11). | spa |
| dc.relation.references | Behnke Bew, M., Ellis, E. A., Kazachkov, Y., Mccoy, T., Muljadi, E., Price, W., … Sanchez-Gasca, J. (2007). Development and Validation of WECC Variable Speed Wind Turbine Dynamic Models for Grid Integration Studies. Retrieved from http://www.osti.gov/bridgeonlineordering:http://www.ntis.gov/ordering.htm | spa |
| dc.relation.references | Betounes, D. (2001). Linearization and Transformation. In Differential Equations: Theory and Applications (pp. 231–274). https://doi.org/10.1007/978-1-4757-4971-7_6 | spa |
| dc.relation.references | Biteznik, C. E. (2015). Modelado lineal de Sistemas de Potencia. Aplicación al Análisis de Estabilidad de Pequeña Señal Tesis. Universidad Nacional de La Plata como. | spa |
| dc.relation.references | Byerly, R. T., & Kimbark, E. W. (1974). Stability of Large Electric Power Systems. IEEE Press. | spa |
| dc.relation.references | Calderón-Guizar, J. G. (2008). Análisis modal de oscilaciones electromecánicas en sistemas eléctricos de potencia. Ingeniería, Investigación y Tecnología, 9(4), 313–317. https://doi.org/10.22201/fi.25940732e.2008.09n4.023 | spa |
| dc.relation.references | Castillo Meraz, R., Martínez Montejano, R. C., Delgado Aranda, F., & Campos Cantón, I. (2013). Sistema Híbrido Fotovoltaico-Eólcio para la Generación de Energía Eléctrica. TLATEMOANI, (13), 24. Retrieved from http://www.eumed.net/rev/tlatemoani/index.htm | spa |
| dc.relation.references | Congreso de Colombia. Ley 1715 de 2014. , Pub. L. No. 1715 (2014). | spa |
| dc.relation.references | Crary, S. B. (1945). Power System Stability, Vol. I: Steady-State Stability (Wiley, Ed.). Nueva York. | spa |
| dc.relation.references | Crary, S. B. (1947). Power System Stability, Vol II: Transient Stability. In Wiley (Ed.), Wiley. Retrieved from https://biblio.co.nz/book/power-system-stability-vol-2-transient/d/448214138 | spa |
| dc.relation.references | Cuvas Castillo, C. (2006). Implementación de un medidor fasorial. Instituto Politécnico Nacional. | spa |
| dc.relation.references | De La Peña, J. A., & Rada, J. (2016). On the energy of symmetric matrices and Coulson’s integral formula. Revista Colombiana de Matematicas, 50(2), 175–188. https://doi.org/10.15446/recolma.v50n2.62209 | spa |
| dc.relation.references | DIgSILENT GmbH. (2018). 39 Bus New England System. V15,2, 1–18. Retrieved from https://www.scribd.com/document/341527272/39-Bus-New-England-System | spa |
| dc.relation.references | Donoso, L. F. (2011). Energía Eólica en Chile. Retrieved February 24, 2020, from Chile más Energía website: http://chilemasenergia.blogspot.com/2011/11/energia-eolica-en-chile.html | spa |
| dc.relation.references | Eftekharnejad, S., Vittal, V., Heydt, G. T., Keel, B., & Loehr, J. (2013). Small signal stability assessment of power systems with increased penetration of photovoltaic generation: A case study. IEEE Transactions on Sustainable Energy, 4(4), 960–967. https://doi.org/10.1109/TSTE.2013.2259602 | spa |
| dc.relation.references | EPRI. (2014). WECC Second Generation Wind Turbine Models. | spa |
| dc.relation.references | Hernández-Morales, M. G., Espíndola-Heredia, R., Del Valle, G., Pinto, F., Díaz, J., & Hernández, B. (2014). En Busca de los Modos Normales de Oscilación. XI Encuentro Participación de La Mujer En La Ciencia, 1–7. | spa |
| dc.relation.references | Hingorani, N. G. (1991). FACTS. Flexible AC transmission system. IEE Conference Publication, (345), 1–7. | spa |
| dc.relation.references | IEA. (2019). Renewables 2019 - Analysis and Forecasts to 2024. Market Report Series, 204. Retrieved from https://www.iea.org/reports/renewables-2019/power#abstract | spa |
| dc.relation.references | IRENA. (2020). Renewable Capacity Highlights. Retrieved from www.irena.org/publications. | spa |
| dc.relation.references | Kimbark, E. W. (1948). Power System Stability, Vol. I: Elements of Stability Calculations (Wiley, Ed.). Nueva York. | spa |
| dc.relation.references | Kimbark, E. W. (1956). Power System Stability, Vol. III: Synchronous Machines (Wiley, Ed.). Nueva York. | spa |
| dc.relation.references | Klein, M., Roggers, G. J., & Kundur, P. (1991). A Fundamental Study of Inter-area Oscillations in Power Systems. Transactions on Power Systems, 6(3), 914–920. https://doi.org/10.1109/59.119229 | spa |
| dc.relation.references | Kundur, P. (1993). Power System Stability And Control by Prabha Kundur. Electric Power Research Institute. | spa |
| dc.relation.references | Kundur, P., Paserba, J., Ajjarapu, V., Andersson, G., Bose, A., Van Cutsem, T., … Taylor, C. (2004). Definition and Classification of Power System Stability IEEE/CIGRE Joint Task Force on Stability Terms and Definitions. IEEE Transactions on Power Systems, 19(3), 1387–1401. https://doi.org/10.1109/TPWRS.2004.825981 | spa |
| dc.relation.references | Lammert, G., David, L., Ospina, P., Pourbeik, P., Fetzer, D., & Braun, M. (2016). Implementation and Validation of WECC Generic Photovoltaic System Models in DIgSILENT PowerFactory. https://doi.org/10.1109/PESGM.2016.7741608 | spa |
| dc.relation.references | Lammert, G., Ospina, L. D. P., Pourbeik, P., Fetzer, D., & Braun, M. (2016). Implementation and validation of WECC generic photovoltaic system models in DIgSILENT PowerFactory. IEEE Power and Energy Society General Meeting, 2016-Novem, 3–7. https://doi.org/10.1109/PESGM.2016.7741608 | spa |
| dc.relation.references | Lazard. (2017). Levelized Cost of Energy Analysis. In Lazard (Vol. 11). | spa |
| dc.relation.references | Lee, D. J., & Wang, L. (2008). Small-signal stability analysis of an autonomous hybrid renewable energy power generation/energy storage system part I: Time-domain simulations. IEEE Transactions on Energy Conversion, 23(1), 311–320. https://doi.org/10.1109/TEC.2007.914309 | spa |
| dc.relation.references | Li, X., Shi, Y., & Gutman, I. (2012). Graph Energy (Springer, Ed.). https://doi.org/10.1007/978-1-4614-4220-2 | spa |
| dc.relation.references | López Ríos, J., & Messina, A. (2013). Determinación y Localización de Zonas de Mayor Energía en Sistemas Metodologías TCAD Modal para diseñar diodos de Potencia epitaxiales Eléctricos de recuperación rápida de silicio usando una estructura con contacto tipo mosaico P / N. | spa |
| dc.relation.references | Maharajan, D., Navees, B., & Kanakaraj, P. (2019). Stability Assessment of Renewable Energy Integrated Power System. International Journal of Recent Technology and Engineering (IJRTE), 8(2S11), 3301–3307. https://doi.org/10.35940/ijrte.B1557.0982S1119 | spa |
| dc.relation.references | Mansouri, N., Lashab, A., Sera, D., Guerrero, J. M., & Cherif, A. (2019). Large photovoltaic power plants integration: A review of challenges and solutions. Energies, 12(19). https://doi.org/10.3390/en12193798 | spa |
| dc.relation.references | Mondal, D., Chakrabarti, A., & Sengupta, A. (2014a). Concepts of Small-Signal Stability. In Power System Small Signal Stability Analysis and Control (pp. 1–14). https://doi.org/10.1016/B978-0-12-800572-9.00001-9 | spa |
| dc.relation.references | Mondal, D., Chakrabarti, A., & Sengupta, A. (2014b). Small-Signal Stability Analysis in Multimachine System. Power System Small Signal Stability Analysis and Control, (i), 119–160. https://doi.org/10.1016/b978-0-12-800572-9.00005-6 | spa |
| dc.relation.references | Mondal, D., Chakrabarti, A., & Sengupta, A. (2014c). Small-Signal Stability Analysis in SMIB Power System. In Power System Small Signal Stability Analysis and Control (pp. 85–118). https://doi.org/10.1016/b978-0-12-800572-9.00004-4 | spa |
| dc.relation.references | Morel, J., Obara, S., & Morizane, Y. (2015). Stability enhancement of a power system containing high-penetration intermittent renewable generation. Journal of Sustainable Development of Energy, Water and Environment Systems, 3(2), 151–162. https://doi.org/10.13044/j.sdewes.2015.03.0012 | spa |
| dc.relation.references | Mortazavian, S., Shabestary, M. M., & Mohamed, Y. A.-R. I. (2017). Analysis and Dynamic Performance Improvement of Grid-Connected Voltage–Source Converters Under Unbalanced Network Conditions. IEEE Transactions on Power Electronics, 32(10), 8134–8149. https://doi.org/10.1109/TPEL.2016.2633994 | spa |
| dc.relation.references | NERC. (2017). Reliability Guideline: Distributed Energy Resource Modeling. | spa |
| dc.relation.references | NERC. (2018). Reliability Guideline Power Plant Model Verification for Inverter-Based Resources. | spa |
| dc.relation.references | Padiyar, K. R. (2008). Power System Dynamics: Stability and Control (2nd ed.). Anshan. | spa |
| dc.relation.references | Papadopoulos, P. N., & Milanovic, J. V. (2016). Probabilistic Framework for Transient Stability Assessment of Power Systems with High Penetration of Renewable Generation. IEEE Transactions on Power Systems, 8950(c), 1–1. https://doi.org/10.1109/TPWRS.2016.2630799 | spa |
| dc.relation.references | PowerFactory. (2018). User Manual 2018. | spa |
| dc.relation.references | Remon, D., Cañizares, C. A., & Rodriguez, P. (2017). Impact of 100-MW-scale PV plants with synchronous power controllers on power system stability in northern Chile. IET Generation, Transmission & Distribution, 11(11), 2958–2964. https://doi.org/10.1049/iet-gtd.2017.0203 | spa |
| dc.relation.references | Remon, D., Cantarellas, A. M., Mauricio, J. M., & Rodriguez, P. (2017). Power system stability analysis under increasing penetration of photovoltaic power plants with synchronous power controllers. IET Renewable Power Generation, 11(6), 733–741. https://doi.org/10.1049/iet-rpg.2016.0904 | spa |
| dc.relation.references | Restrepo, J., Viola, J., & Quizhpi, F. (2015). Banco de Emulación de Perfiles de Viento para Aplicaciones en Energía Eólica. Revista Técnica “Energía,” 11(1), 77–84. https://doi.org/10.37116/revistaenergia.v11.n1.2015.74 | spa |
| dc.relation.references | Richardson, M. H. (1997). Is It a Mode Shape, or an Operating Deflection Shape. Sound & Vibration Magazine, (30th Anniversary). | spa |
| dc.relation.references | Rueda Aguilar, M. (2013). Análisis de oscilación de baja frecuencia en el sistema eléctrico colombiano mediante el uso de medidas sincronizadas de fasores. Universidad Nacional de Colombia, Sede Bogotá. | spa |
| dc.relation.references | Ruiz Vargas, E. Y. (2003). Estudio de Estabilidad de Pequeña Señal del Sistema Eléctrico Colombiano. Universidad de los Andes. | spa |
| dc.relation.references | Sánchez Ramirez, J. A., & Cano Isaza, C. A. (2000). Estudio de modos de oscilación electromecánicos en sistemas de potencia. Universidad Nacional de Colombia, Sede Medellín. | spa |
| dc.relation.references | Sauer, P. W., & Pai, M. A. (1998). Power system dynamics and stability. | spa |
| dc.relation.references | Setiadi, H., Krismanto, A. U., Mithulananthan, N., & Hossain, M. J. (2018). Modal interaction of power systems with high penetration of renewable energy and BES systems. International Journal of Electrical Power and Energy Systems, 97, 385–395. https://doi.org/10.1016/j.ijepes.2017.11.021 | spa |
| dc.relation.references | Shah, R., Mithulananthan, N., Bansal, R. C., & Ramachandaramurthy, V. K. (2015). A review of key power system stability challenges for large-scale PV integration. Renewable and Sustainable Energy Reviews, 41, 1423–1436. https://doi.org/10.1016/j.rser.2014.09.027 | spa |
| dc.relation.references | Singh, M., & Santoso, S. (2008). Dynamic Models for Wind Turbines and Wind Power Plants. Retrieved from http://www.osti.gov/bridge | spa |
| dc.relation.references | Slootweg, J. G., & Kling, W. L. (2003). The impact of large scale wind power generation on power system oscillations. Electric Power Systems Research, 67(1), 9–20. https://doi.org/10.1016/S0378-7796(03)00089-0 | spa |
| dc.relation.references | Sudarshan, D., & Nadarajah, M. (2012). Assessment and Enhancement of Small Signal Stability of a Renewable-Energy-Based Eletricity Distribution System. IEEE Transactions on Sustainable Energy, 3(3), 407–415. https://doi.org/10.1109/TSTE.2012.2187079 | spa |
| dc.relation.references | UPME. (2013). IV Congreso Nacional del Clima y Adaptación. Retrieved November 2, 2017, from http://www.upme.gov.co/Presentaciones/2013/Upme_Adaptacion_CC_Diciembre _ 2013_IDEAM.pdf | spa |
| dc.relation.references | UPME. (2018). Informe mensual de variables de generación y del mercado eléctrico colombiano – Agosto de 2018. Retrieved from www.upme.gov.co | spa |
| dc.relation.references | Venikov, V. A. (1964). Transient Phenomenon in Electric Power Systems (Pergamon, Ed.). Nueva York. | spa |
| dc.relation.references | Watkins, D. S. (1982). Understanding the QR Algorithm. Society for Industrial and Applied Mathematics, 24(4), 427–440. | spa |
| dc.relation.references | WECC Renewable Energy Modeling Task Force September. (2012). Generic Solar Photovoltaic System Dynamic Simulation Model Specification. | spa |
| dc.relation.references | You, S., Kou, G., Liu, Y., Zhang, X., Cui, Y., Till, M. J., … Liu, Y. (2017). Impact of High PV Penetration on the Inter-Area Oscillations in the U.S. Eastern Interconnection. IEEE Access. https://doi.org/10.1109/ACCESS.2017.2682260 | spa |
| dc.rights | Derechos reservados - Universidad Nacional de Colombia | spa |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
| dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
| dc.rights.spa | Acceso abierto | spa |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
| dc.subject.ddc | 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería | spa |
| dc.subject.proposal | Modal analysis | eng |
| dc.subject.proposal | Análisis modal | spa |
| dc.subject.proposal | Energías renovables | spa |
| dc.subject.proposal | Renewable energy | eng |
| dc.subject.proposal | Power systems | eng |
| dc.subject.proposal | Energía solar | spa |
| dc.subject.proposal | Renewable energy | eng |
| dc.subject.proposal | Estabilidad de pequeña señal | spa |
| dc.subject.proposal | Sistemas de energía eléctrica | spa |
| dc.subject.proposal | Wind energy | eng |
| dc.subject.proposal | Solar energy | eng |
| dc.subject.proposal | Small signal stability | eng |
| dc.title | Estabilidad de pequeña señal en sistemas de energía eléctrica con alta penetración de generación renovable | spa |
| dc.title.alternative | Small signal stability in electric power system with higt penetration of penetration of renewable generation | spa |
| dc.type | Trabajo de grado - Maestría | spa |
| dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
| dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
| dc.type.content | Text | spa |
| dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
| dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
| oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1017207270.2020.pdf
- Tamaño:
- 1.94 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Ingeniería Eléctrica
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 3.8 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:

