Evaluación de herramientas bioinformáticas útiles en la tipificación de Klebsiella pneumoniae y Pseudomonas aeruginosa a partir de datos de secuenciación de genomas completos

dc.contributor.advisorBarreto Hernández, Emiliano
dc.contributor.authorCarabali Mosquera, Oscar Eduardo
dc.contributor.researchgroupBioinformáticaspa
dc.date.accessioned2023-07-26T12:54:22Z
dc.date.available2023-07-26T12:54:22Z
dc.date.issued2023-06-15
dc.descriptionilustraciones, diagramasspa
dc.description.abstractLa Secuencia del Genoma Completo se obtiene mediante las tecnologías de secuenciación, especialmente las de próxima generación (NGS). Gracias a su alto poder discriminatorio, simplicidad, precisión, velocidad y flexibilidad, la aplicación de la Secuenciación de Genoma Completo (WGS) se ha convertido en una herramienta que aporta el nivel más alto hasta el momento de discriminación de cepas bacterianas para la investigación de brotes, permitiendo identificar estructura y composición de genes, variantes genéticas y reordenamientos del genoma entre otros (Kwong et al., 2015). Por tal motivo, esta herramienta es de gran utilidad para la investigación epidemiológica ya que proporciona información más detallada y precisa para la toma oportuna de medidas de control derivado de la identificación, tipificación, dinámica de transmisión, procedencia de infección y posibles patrones de propagación de brotes con bacterias como Klebsiella pneumoniae y Pseudomonas aeruginosa causantes de Infecciones Asociadas a la Atención en Salud (IAAS), esto dado que estas bacterias poseen un alto grado de adaptabilidad fisiológica y elevados niveles de resistencia frente a numerosos agentes antimicrobianos, por lo que son patógenos con una elevada incidencia de morbilidad y mortalidad (Saharman et al., 2019)(Moradigaravand et al., 2017). Dentro del uso más frecuente de los datos de Secuenciación de Genoma Completo (WGS) se encuentra la tipificación molecular bacteriana. Por la cual, se han desarrollado varios métodos que se basan principalmente en análisis derivados de Ribosomal Multilocus Sequence Typing (rMLST), Core genome multilocus sequence typing (cgMLST), Whole genome multi locus sequence typing (wgMLST), core genome single nucleotide polymorphism (cgSNP), whole-genome single nucleotide polymorphism (wgSNP) y pangenome (Coll et al., 2020)(Anani et al., 2020). Estos métodos pueden variar en su resolución e idoneidad dependiendo de las especies. Sin embargo, debido al variado número de herramientas bioinformáticas útiles para tipificar y a la falta de consenso de evaluación comparativa de las herramientas los investigadores se pueden enfrentan con dificultades en la elección de herramientas indicada para sus actividades. Es por ello, que se hace necesario realizar una evaluación del desempeño de las herramientas útiles para tipificar, con el fin de informar al usuario sobre las mejores herramientas bioinformáticas disponibles actualmente que brinden información precisa y relevante. (Texto tomado de la fuente)spa
dc.description.abstractWhole Genome Sequence is obtained by sequencing technologies, especially nextgeneration sequencing (NGS). Due to its high discriminatory power, simplicity, precision, speed, and flexibility, the application of Whole Genome Sequencing (WGS) has become a tool that provides the highest level of discrimination of bacterial strains for outbreak investigation to date, allowing to identify both, structure and composition of genes, genetic variants, and rearrangements of the genome among others (Kwong et al., 2015). For this reason, this tool is highly useful for epidemiological research since it provides more detailed and precise information for the timely taking of control measures derived from the identification, classification, transmission dynamics, the origin of infection, and possible patterns of spread of outbreaks with bacteria such as Klebsiella pneumoniae and Pseudomonas aeruginosa that cause Health Care Associated Infections (IAAS), these bacteria have a high degree of physiological adaptability and high levels of resistance against numerous antimicrobial agents, which constitutes them as a pathological with a high incidence of morbidity and mortality (Saharman et al., 2019) (Moradigaravand et al., 2017). One of the most frequent uses of data from Whole Genome Sequencing (WGS) is bacterial molecular typing. Consecuently, several methods have been developed are uptoday mainly based on analyzes derived from Ribosomal Multilocus Sequence Typing (rMLST), Core genome Multilocus Sequence Typing (cgMLST), Whole genome multilocus sequence typing (wgMLST), core genome Single Nucleotide Polymorphism ( cgSNP), whole-genome single nucleotide polymorphism (wgSNP) and pangenome (Coll et al., 2020) (Anani et al., 2020). These methods vary in their resolution and suitability depending on the species. However, due to the varied number of helpful bioinformatics tools for typing, and the lack of consensus benchmarking tools, researchers may face difficulties in choosing the right tools for their activities. For this reason, it is necessary to perform an evaluation of the performance of the tools for typing, to inform the user about the best bioinformatics tools currently available that provide accurate and relevant information.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Bioinformáticaspa
dc.description.researchareaBioinformática funcional y estructuralspa
dc.format.extentxx, 77 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84272
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Bioinformáticaspa
dc.relation.referencesAlikhan, N. F., Zhou, Z., Sergeant, M. J., & Achtman, M. (2018). A genomic overview of the population structure of Salmonella. In PLoS Genetics (Vol. 14, Issue 4, p. e1007261). Public Library of Science. https://doi.org/10.1371/journal.pgen.1007261spa
dc.relation.referencesAllard, M. W. (2016). The future of whole-genome sequencing for public health and the clinic. In Journal of Clinical Microbiology (Vol. 54, Issue 8, pp. 1946–1948). American Society for Microbiology. https://doi.org/10.1128/JCM.01082-16spa
dc.relation.referencesAltmann, A., Weber, P., Bader, D., Preuß, M., Binder, E. B., & Müller-Myhsok, B. (2012). A beginners guide to SNP calling from high-Throughput DNA-sequencing data. In Human Genetics (Vol. 131, Issue 10, pp. 1541–1554). Springer. https://doi.org/10.1007/s00439-012-1213-zspa
dc.relation.referencesAnani, H., Zgheib, R., Hasni, I., Raoult, D., & Fournier, P. E. (2020). Interest of bacterial pangenome analyses in clinical microbiology. Microbial Pathogenesis, 149. https://doi.org/10.1016/j.micpath.2020.104275spa
dc.relation.referencesBasset, P., & Blanc, D. S. (2014). Fast and simple epidemiological typing of Pseudomonas aeruginosa using the double-locus sequence typing (DLST) method. European Journal of Clinical Microbiology and Infectious Diseases, 33(6), 927–932. https://doi.org/10.1007/s10096-013-2028-0spa
dc.relation.referencesBathke, J., & Lühken, G. (2021). OVarFlow: a resource optimized GATK 4 based Open source Variant calling workFlow. BMC Bioinformatics, 22(1). https://doi.org/10.1186/S12859-021-04317-Yspa
dc.relation.referencesBayliss, S. C., Thorpe, H. A., Coyle, N. M., Sheppard, S. K., & Feil, E. J. (2019). PIRATE: A fast and scalable pangenomics toolbox for clustering diverged orthologues in bacteria. GigaScience, 8(10), 1–9. https://doi.org/10.1093/GIGASCIENCE/GIZ119spa
dc.relation.referencesBenson, D. A., Cavanaugh, M., Clark, K., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., & Sayers, E. W. (2017). GenBank. Nucleic Acids Research, 45(D1), D37–D42. https://doi.org/10.1093/nar/gkw1070spa
dc.relation.referencesBenson, D. A., Cavanaugh, M., Clark, K., Karsch-Mizrachi, I., Ostell, J., Pruitt, K. D., & Sayers, E. W. (2018). GenBank. Nucleic Acids Research, 46(D1), D41–D47. https://doi.org/10.1093/nar/gkx1094spa
dc.relation.referencesBlanc, D. S., Magalhães, B., Koenig, I., Senn, L., & Grandbastien, B. (2020). Comparison of Whole Genome (wg-) and Core Genome (cg-) MLST (BioNumericsTM) Versus SNP Variant Calling for Epidemiological Investigation of Pseudomonas aeruginosa. Frontiers in Microbiology, 11, 1729. https://doi.org/10.3389/fmicb.2020.01729spa
dc.relation.referencesBogaerts, B., Winand, R., Fu, Q., Van Braekel, J., Ceyssens, P.-J., Mattheus, W., Bertrand, S., De Keersmaecker, S. C. J., Roosens, N. H. C., & Vanneste, K. (2019). Validation of a Bioinformatics Workflow for Routine Analysis of Whole-Genome Sequencing Data and Related Challenges for Pathogen Typing in a European National Reference Center: Neisseria meningitidis as a Proof-of-Concept. Frontiers in Microbiology, 10(MAR), 362. https://doi.org/10.3389/fmicb.2019.00362spa
dc.relation.referencesBotes, J., Williamson, G., Sinickas, V., & Gürtler, V. (2003). Genomic typing of Pseudomonas aeruginosa isolates by comparison of Riboprinting and PFGE: correlation of experimental results with those predicted from the complete genome sequence of isolate PAO1. Journal of Microbiological Methods, 55(1), 231–240. https://doi.org/10.1016/s0167-7012(03)00156-8spa
dc.relation.referencesBou, G., Fernández-Olmos, A., García, C., Sáez-Nieto, J. A., & Valdezate, S. (2011). Métodos de identificación bacteriana en el laboratorio de microbiología. Enfermedades Infecciosas y Microbiología Clínica, 29(8), 601–608. https://doi.org/10.1016/J.EIMC.2011.03.012spa
dc.relation.referencesBrilhante, M., Gobeli Brawand, S., Endimiani, A., Rohrbach, H., Kittl, S., Willi, B., Schuller, S., & Perreten, V. (2021). Two high-risk clones of carbapenemase-producing Klebsiella pneumoniae that cause infections in pets and are present in the environment of a veterinary referral hospital. Journal of Antimicrobial Chemotherapy, 76(5), 1140–1149. https://doi.org/10.1093/JAC/DKAB028spa
dc.relation.referencesBuchka, S., Hapfelmeier, A., Gardner, P. P., Wilson, R., & Boulesteix, A. L. (2021). On the optimistic performance evaluation of newly introduced bioinformatic methods. Genome Biology, 22(1). https://doi.org/10.1186/S13059-021-02365-4spa
dc.relation.referencesBush, S. J. (2021). Generalizable characteristics of false-positive bacterial variant calls. Microbial Genomics, 7(8). https://doi.org/10.1099/MGEN.0.000615spa
dc.relation.referencesBush, S. J., Foster, D., Eyre, D. W., Clark, E. L., de Maio, N., Shaw, L. P., Stoesser, N., Peto, T. E. A., Crook, D. W., & Walker, A. S. (2020). Genomic diversity affects the accuracy of bacterial single-nucleotide polymorphism–calling pipelines. GigaScience, 9(2), 1–21. https://doi.org/10.1093/GIGASCIENCE/GIAA007spa
dc.relation.referencesCarattoli, A., Zankari, E., Garciá-Fernández, A., Larsen, M. V., Lund, O., Villa, L., Aarestrup, F. M., & Hasman, H. (2014). In Silico detection and typing of plasmids using plasmidfinder and plasmid multilocus sequence typing. Antimicrobial Agents and Chemotherapy, 58(7), 3895–3903. https://doi.org/10.1128/AAC.02412-14spa
dc.relation.referencesChang, C. H., Chang, Y. C., Underwood, A., Chiou, C. S., & Kao, C. Y. (2007). VNTRDB: A bacterial variable number tandem repeat locus database. Nucleic Acids Research, 35(SUPPL. 1). https://doi.org/10.1093/nar/gkl872spa
dc.relation.referencesChen, Y., Gonzalez-Escalona, N., Hammack, T. S., Allard, M. W., Strain, E. A., & Brown, E. W. (2016). Core genome multilocus sequence typing for identification of globally distributed clonal groups and differentiation of outbreak strains of Listeria monocytogenes. Applied and Environmental Microbiology, 82(20), 6258–6272. https://doi.org/10.1128/AEM.01532-16spa
dc.relation.referencesClarke, T. H., Brinkac, L. M., Inman, J. M., Sutton, G., & Fouts, D. E. (2018). PanACEA: A bioinformatics tool for the exploration and visualization of bacterial pan-chromosomes. BMC Bioinformatics, 19(1), 246. https://doi.org/10.1186/s12859-018-2250-yspa
dc.relation.referencesColl, F., Gouliouris, T., Bruchmann, S., Phelan, J., Raven, K. E., Clark, T. G., Parkhill, J., & Peacock, S. J. (2022). PowerBacGWAS: a computational pipeline to perform power calculations for bacterial genome-wide association studies. Communications Biology, 5(1). https://doi.org/10.1038/S42003-022-03194-2spa
dc.relation.referencesColl, F., Raven, K. E., Knight, G. M., Blane, B., Harrison, E. M., Leek, D., Enoch, D. A., Brown, N. M., Parkhill, J., & Peacock, S. J. (2020). Definition of a genetic relatedness cutoff to exclude recent transmission of meticillin-resistant Staphylococcus aureus: a genomic epidemiology analysis. The Lancet Microbe, 1(8), e328–e335. https://doi.org/10.1016/S2666-5247(20)30149-Xspa
dc.relation.referencesDalsass, M., Bodini, M., Lambert, C., Mortier, M. C., Romanelli, M., Medini, D., Muzzi, A., & Brozzi, A. (2019). STRAIN: An R package for multi-locus sequence typing from whole genome sequencing data. BMC Bioinformatics, 20(Suppl 9). https://doi.org/10.1186/s12859-019-2887-1spa
dc.relation.referencesDas, D., Baruah, R., Sarma Roy, A., Singh, A. K., Deka Boruah, H. P., Kalita, J., & Bora, T. C. (2015). Complete genome sequence analysis of Pseudomonas aeruginosa N002 reveals its genetic adaptation for crude oil degradation. Genomics, 105(3), 182–190. https://doi.org/10.1016/j.ygeno.2014.12.006spa
dc.relation.referencesDe Rosa, F. G., Corcione, S., Pagani, N., & Di Perri, G. (2015). From ESKAPE to ESCAPE, From KPC to CCC. Clinical Infectious Diseases, 60(8), 1289–1290. https://doi.org/10.1093/CID/CIU1170spa
dc.relation.referencesDeneke, C., Uelze, L., Brendebach, H., Tausch, S. H., & Malorny, B. (2021). Decentralized Investigation of Bacterial Outbreaks Based on Hashed cgMLST. Frontiers in Microbiology, 12, 874. https://doi.org/10.3389/fmicb.2021.649517spa
dc.relation.referencesEscalona, M., Rocha, S., & Posada, D. (2016). A comparison of tools for the simulation of genomic next-generation sequencing data. In Nature Reviews Genetics (Vol. 17, Issue 8, pp. 459–469). Nature Publishing Group. https://doi.org/10.1038/nrg.2016.57spa
dc.relation.referencesEttorchi -Tardy, A., Levif, M., & Michel, P. (2012). Benchmarking: A method for continuous quality improvement in health. Healthcare Policy, 7(4). https://doi.org/10.12927/hcpol.2012.22872spa
dc.relation.referencesFeijao, P., Yao, H. T., Fornika, D., Gardy, J., Hsiao, W., Chauve, C., & Chindelevitch, L. (2018). MentaLiST - A fast MLST caller for large MLST schemes. Microbial Genomics, 4(2), e000146. https://doi.org/10.1099/mgen.0.000146spa
dc.relation.referencesFouts, D. E., Brinkac, L., Beck, E., Inman, J., & Sutton, G. (2012). PanOCT: automated clustering of orthologs using conserved gene neighborhood for pan-genomic analysis of bacterial strains and closely related species. Nucleic Acids Research, 40(22). https://doi.org/10.1093/NAR/GKS757spa
dc.relation.referencesFrancisco, A. P., Bugalho, M., Ramirez, M., & Carriço, J. A. (2009). Global optimal eBURST analysis of multilocus typing data using a graphic matroid approach. BMC Bioinformatics, 10(1), 1–15. https://doi.org/10.1186/1471-2105-10-152/FIGURES/5spa
dc.relation.referencesFrancisco, A. P., Vaz, C., Monteiro, P. T., Melo-Cristino, J., Ramirez, M., & Carriço, J. A. (2012). PHYLOViZ: phylogenetic inference and data visualization for sequence based typing methods. BMC Bioinformatics, 13(1), 87. https://doi.org/10.1186/1471-2105-13-87spa
dc.relation.referencesFriedman, S., Gauthier, L., Farjoun, Y., & Banks, E. (2020). Lean and deep models for more accurate filtering of SNP and INDEL variant calls. Bioinformatics (Oxford, England), 36(7), 2060–2067. https://doi.org/10.1093/BIOINFORMATICS/BTZ901spa
dc.relation.referencesGardner, S. N., & Hall, B. G. (2013). When whole-genome alignments just won’t work: KSNP v2 software for alignment-free SNP discovery and phylogenetics of hundreds of microbial genomes. PLoS ONE, 8(12). https://doi.org/10.1371/journal.pone.0081760spa
dc.relation.referencesGardner, S. N., Slezak, T., & Hall, B. G. (2015). kSNP3.0: SNP detection and phylogenetic analysis of genomes without genome alignment or reference genome. Bioinformatics (Oxford, England), 31(17), 2877–2878. https://doi.org/10.1093/BIOINFORMATICS/BTV271spa
dc.relation.referencesGuigon, G., Cheval, J., Cahuzac, R., & Brisse, S. (2008). MLVA-NET--a standardised web database for bacterial genotyping and surveillance. Euro Surveillance : Bulletin Européen Sur Les Maladies Transmissibles = European Communicable Disease Bulletin, 13(19), 18863. https://doi.org/10.2807/ese.13.19.18863-enspa
dc.relation.referencesGuimarães, L. C., Florczak-Wyspianska, J., Jesus, L. B. de, Viana, M. V. C., Silva, A., Ramos, R. T. J., Soares, S. de C., & Soares, S. de C. (2015). Inside the Pan-genome - Methods and Software Overview. Current Genomics, 16(4), 245. https://doi.org/10.2174/1389202916666150423002311spa
dc.relation.referencesGupta, A., Jordan, I. K., & Rishishwar, L. (2017). stringMLST: a fast k-mer based tool for multilocus sequence typing. Bioinformatics, 33(1), 119–121. https://doi.org/10.1093/BIOINFORMATICS/BTW586spa
dc.relation.referencesGupta, A. K. (1996). Classification. Springer Geology, 69–87. https://doi.org/10.1007/978-81-322-2083-1_3spa
dc.relation.referencesHall, B. G. (2014). SNP-associations and phenotype predictions from hundreds of microbial genomes without genome alignments. PLoS ONE, 9(2), 90490. https://doi.org/10.1371/journal.pone.0090490spa
dc.relation.referencesHallgren, M. B., Overballe-Petersen, S., Lund, O., Hasman, H., & Clausen, P. T. L. C. (2021). MINTyper: an outbreak-detection method for accurate and rapid SNP typing of clonal clusters with noisy long reads. Biology Methods and Protocols, 6(1). https://doi.org/10.1093/BIOMETHODS/BPAB008spa
dc.relation.referencesHenry, V. J., Bandrowski, A. E., Pepin, A. S., Gonzalez, B. J., & Desfeux, A. (2014). OMICtools: an informative directory for multi-omic data analysis. Database: The Journal of Biological Databases and Curation, 2014. https://doi.org/10.1093/DATABASE/BAU069spa
dc.relation.referencesINS. (2018). INFORME DE RESULTADOS DE LA VIGILANCIA POR LABORATORIO DE RESISTENCIA ANTIMICROBIANA EN INFECCIONES ASOCIADAS A LA ATENCIÓN EN SALUD.spa
dc.relation.referencesJolley, K. A., Bliss, C. M., Bennett, J. S., Bratcher, H. B., Brehony, C., Colles, F. M., Wimalarathna, H., Harrison, O. B., Sheppard, S. K., Cody, A. J., & Maiden, M. C. J. (2012). Ribosomal multilocus sequence typing: Universal characterization of bacteria from domain to strain. Microbiology, 158(4), 1005–1015. https://doi.org/10.1099/mic.0.055459-0spa
dc.relation.referencesJolley, K. A., Chan, M. S., & Maiden, M. C. J. (2004). mlstdbNet - Distributed multi-locus sequence typing (MLST) databases. BMC Bioinformatics, 5(1), 86. https://doi.org/10.1186/1471-2105-5-86spa
dc.relation.referencesJolley, K. A., & Maiden, M. C. J. (2014). Using MLST to study bacterial variation: Prospects in the genomic era. Future Microbiology, 9(5), 623–630. https://doi.org/10.2217/fmb.14.24spa
dc.relation.referencesJonas, D., Spitzmüller, B., Daschner, F. D., Verhoef, J., & Brisse, S. (2004). Discrimination of Klebsiella pneumoniae and Klebsiella oxytoca phylogenetic groups and other Klebsiella species by use of amplified fragment length polymorphism. Research in Microbiology, 155(1), 17–23.spa
dc.relation.referencesKimura, B. (2018). Will the emergence of core genome MLST end the role of in silico MLST? In Food Microbiology (Vol. 75, pp. 28–36). Academic Press. https://doi.org/10.1016/j.fm.2017.09.003spa
dc.relation.referencesKingry, L. C., Rowe, L. A., Respicio-Kingry, L. B., Beard, C. B., Schriefer, M. E., & Petersen, J. M. (2016). Whole genome multilocus sequence typing as an epidemiologic tool for Yersinia pestis. Diagnostic Microbiology and Infectious Disease, 84(4), 275–280. https://doi.org/10.1016/j.diagmicrobio.2015.12.003spa
dc.relation.referencesKozyreva, V. K., Truong, C. L., Greninger, A. L., Crandall, J., Mukhopadhyay, R., & Chaturvedi, V. (2017). Validation and implementation of clinical laboratory improvements act-compliant whole-genome sequencing in the public health microbiology laboratory. Journal of Clinical Microbiology, 55(8), 2502–2520. https://doi.org/10.1128/JCM.00361-17spa
dc.relation.referencesKumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Molecular Biology and Evolution, 35(6), 1547. https://doi.org/10.1093/MOLBEV/MSY096spa
dc.relation.referencesKwong, J. C., Mccallum, N., Sintchenko, V., & Howden, B. P. (2015). Whole genome sequencing in clinical and public health microbiology. Pathology, 47(3), 199–210. https://doi.org/10.1097/PAT.0000000000000235spa
dc.relation.referencesLabbé, G., Kruczkiewicz, P., Robertson, J., Mabon, P., Schonfeld, J., Kein, D., Rankin, M. A., Gopez, M., Hole, D., Son, D., Knox, N., Laing, C. R., Bessonov, K., Taboada, E. N., Yoshida, C., Ziebell, K., Nichani, A., Johnson, R. P., Van Domselaar, G., & Nash, J. H. E. (2021). Rapid and accurate SNP genotyping of clonal bacterial pathogens with BioHansel. Microbial Genomics, 7(9), 651. https://doi.org/10.1099/MGEN.0.000651spa
dc.relation.referencesLarsen, M. V., Cosentino, S., Lukjancenko, O., Saputra, D., Rasmussen, S., Hasman, H., Sicheritz-Pontén, T., Aarestrup, F. M., Ussery, D. W., & Lund, O. (2014). Benchmarking of methods for genomic taxonomy. Journal of Clinical Microbiology, 52(5), 1529–1539. https://doi.org/10.1128/JCM.02981-13spa
dc.relation.referencesLetunic, I., & Bork, P. (2019). Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Research, 47(W1), W256. https://doi.org/10.1093/NAR/GKZ239spa
dc.relation.referencesLi, F., Wang, Y., Li, C., Marquez-Lago, T. T., Leier, A., Rawlings, N. D., Haffari, G., Revote, J., Akutsu, T., Chou, K. C., Purcell, A. W., Pike, R. N., Webb, G. I., Ian Smith, A., Lithgow, T., Daly, R. J., Whisstock, J. C., & Song, J. (2019). Twenty years of bioinformatics research for protease-specific substrate and cleavage site prediction: a comprehensive revisit and benchmarking of existing methods. Briefings in Bioinformatics, 20(6), 2150. https://doi.org/10.1093/BIB/BBY077spa
dc.relation.referencesLi, H. (2011). A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics, 27(21), 2987–2993. https://doi.org/10.1093/bioinformatics/btr509spa
dc.relation.referencesLi, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., & Durbin, R. (2009). The Sequence Alignment/Map format and SAMtools. Bioinformatics (Oxford, England), 25(16), 2078–2079spa
dc.relation.referencesLi, W., Raoult, D., & Fournier, P. E. (2009). Bacterial strain typing in the genomic era. In FEMS Microbiology Reviews (Vol. 33, Issue 5, pp. 892–916). Oxford Academic. https://doi.org/10.1111/j.1574-6976.2009.00182.xspa
dc.relation.referencesLindgreen, S., Adair, K. L., & Gardner, P. P. (2016). An evaluation of the accuracy and speed of metagenome analysis tools. Scientific Reports, 6. https://doi.org/10.1038/SREP19233spa
dc.relation.referencesLiu, J., Li, L., Peters, B. M., Li, B., Chen, D., Xu, Z., & Shirtliff, M. E. (2018). Complete genomic analysis of multidrug-resistance Pseudomonas aeruginosa Guangzhou-Pae617, the host of megaplasmid pBM413. Microbial Pathogenesis, 117, 265–269. https://doi.org/10.1016/j.micpath.2018.02.049spa
dc.relation.referencesLiu, Y. Y., Chiou, C. S., & Chen, C. C. (2016). PGAdb-builder: A web service tool for creating pan-genome allele database for molecular fine typing. Scientific Reports, 6. https://doi.org/10.1038/srep36213spa
dc.relation.referencesLiu, Y. Y., Lin, J. W., & Chen, C. C. (2019). Cano-wgMLST_BacCompare: A bacterial genome analysis platform for epidemiological investigation and comparative genomic analysis. In Frontiers in Microbiology (Vol. 10, Issue JULY). Frontiers Media S.A. https://doi.org/10.3389/fmicb.2019.01687spa
dc.relation.referencesLuis, J. (2012). Hipótesis, Método & Diseño de Investigación. In Daena: International Journal of Good Conscience (Vol. 7, Issue 2).spa
dc.relation.referencesLüth, S., Deneke, C., Kleta, S., & Dahouk, S. Al. (2021). Translatability of wgs typing results can simplify data exchange for surveillance and control of listeria monocytogenes. Microbial Genomics, 7(1), 1–12.spa
dc.relation.referencesMagalhães, B., Valot, B., Abdelbary, M. M. H., Prod’hom, G., Greub, G., Senn, L., & Blanc, D. S. (2020). Combining Standard Molecular Typing and Whole Genome Sequencing to Investigate Pseudomonas aeruginosa Epidemiology in Intensive Care Units. Frontiers in Public Health, 8. https://doi.org/10.3389/fpubh.2020.00003spa
dc.relation.referencesMaiden, M. C. J., Rensburg, M. J. J. van, Bray, J. E., Earle, S. G., Ford, S. A., Jolley, K. A., & McCarthy, N. D. (2013). MLST revisited: the gene-by-gene approach to bacterial genomics. Nature Reviews. Microbiology, 11(10), 728. https://doi.org/10.1038/NRMICRO3093spa
dc.relation.referencesMaiden, M. C. J., Van Rensburg, M. J. J., Bray, J. E., Earle, S. G., Ford, S. A., Jolley, K. A., & McCarthy, N. D. (2013). MLST revisited: The gene-by-gene approach to bacterial genomics. In Nature Reviews Microbiology (Vol. 11, Issue 10, pp. 728–736). https://doi.org/10.1038/nrmicro3093spa
dc.relation.referencesMamede, R., Vila-Cerqueira, P., Silva, M., Carriço, J. A., & Ramirez, M. (2021). Chewie Nomenclature Server (chewie-NS): a deployable nomenclature server for easy sharing of core and whole genome MLST schemas. Nucleic Acids Research, 49(D1), D660–D666. https://doi.org/10.1093/NAR/GKAA889spa
dc.relation.referencesMangul, S., Martin, L. S., Hill, B. L., Lam, A. K. M., Distler, M. G., Zelikovsky, A., Eskin, E., & Flint, J. (2019). Systematic benchmarking of omics computational tools. In Nature Communications (Vol. 10, Issue 1, pp. 1–11). Nature Publishing Group. https://doi.org/10.1038/s41467-019-09406-4spa
dc.relation.referencesMarcos-Zambrano, L. J., Escribano, P., Bouza, E., & Guinea, J. (2014). Use of molecular typing tools for the study of hospital outbreaks of candidemia. Revista Iberoamericana de Micologia, 31(2), 97–103. https://doi.org/10.1016/j.riam.2013.06.003spa
dc.relation.referencesMartin, J., Phan, H. T. T., Findlay, J., Stoesser, N., Pankhurst, L., Navickaite, I., De Maio, N., Eyre, D. W., Toogood, G., Orsi, N. M., Kirby, A., Young, N., Turton, J. F., Hill, R. L. R., Hopkins, K. L., Woodford, N., Peto, T. E. A., Walker, A. S., Crook, D. W., & Wilcox, M. H. (2017). Covert dissemination of carbapenemase-producing Klebsiella pneumoniae (KPC) in a successfully controlled outbreak: long- and short-read whole-genome sequencing demonstrate multiple genetic modes of transmission. The Journal of Antimicrobial Chemotherapy, 72(11), 3025–3034. https://doi.org/10.1093/jac/dkx264spa
dc.relation.referencesMartínez-Carranza, E., García-Reyes, S., González-Valdez, A., & Soberón-Chávez, G. (2020). Tracking the genome of four Pseudomonas aeruginosa isolates that have a defective Las quorum-sensing system, but are still virulent. Access Microbiology, 2(7). https://doi.org/10.1099/acmi.0.000132spa
dc.relation.referencesMerchán, M. A., Caicedo, M. I. T., & Torres, A. K. D. (2017). Técnicas de Biología Molecular en el desarrollo de la investigación. Revisión de la literatura. Revista Habanera de Ciencias Medicas, 16(5), 796–807spa
dc.relation.referencesMichael Dunne, W., Pouseele, H., Monecke, S., Ehricht, R., & van Belkum, A. (2018). Epidemiology of transmissible diseases: Array hybridization and next generation sequencing as universal nucleic acid-mediated typing tools. Infection, Genetics and Evolution, 63, 332–345. https://doi.org/10.1016/j.meegid.2017.09.019spa
dc.relation.referencesMirande, C., Bizine, I., Giannetti, A., Picot, N., & van Belkum, A. (2018). Epidemiological aspects of healthcare-associated infections and microbial genomics. European Journal of Clinical Microbiology and Infectious Diseases, 37(5), 823–831. https://doi.org/10.1007/S10096-017-3170-X/TABLES/4spa
dc.relation.referencesMiro, E., Rossen, J. W. A., Chlebowicz, M. A., Harmsen, D., Brisse, S., Passet, V., Navarro, F., Friedrich, A. W., & García-Cobos, S. (2020). Core/Whole Genome Multilocus Sequence Typing and Core Genome SNP-Based Typing of OXA-48-Producing Klebsiella pneumoniae Clinical Isolates From Spain. Frontiers in Microbiology, 10. https://doi.org/10.3389/fmicb.2019.02961spa
dc.relation.referencesMisra, B. B., Langefeld, C., Olivier, M., & Cox, L. A. (2019). Integrated omics: Tools, advances and future approaches. In Journal of Molecular Endocrinology (Vol. 62, Issue 1, pp. R21–R45). BioScientifica Ltd. https://doi.org/10.1530/JME-18-0055spa
dc.relation.referencesMoradigaravand, D., Martin, V., Peacock, S. J., & Parkhill, J. (2017). Evolution and epidemiology of multidrug-resistant Klebsiella pneumoniae in the United Kingdom and Ireland. MBio, 8(1). https://doi.org/10.1128/mBio.01976-16spa
dc.relation.referencesNadon, C. A., Trees, E., Ng, L. K., Møller Nielsen, E., Reimer, A., Maxwell, N., Kubota, K. A., & Gerner-Smidt, P. (2013). Development and application of MLVA methods as a tool for inter-laboratory surveillance. Eurosurveillance, 18(35), 20565. https://doi.org/10.2807/1560-7917.ES2013.18.35.20565spa
dc.relation.referencesNeoh, H. min, Tan, X. E., Sapri, H. F., & Tan, T. L. (2019). Pulsed-field gel electrophoresis (PFGE): A review of the “gold standard” for bacteria typing and current alternatives. In Infection, Genetics and Evolution (Vol. 74). Elsevier B.V. https://doi.org/10.1016/j.meegid.2019.103935spa
dc.relation.referencesNeoh, H. min, Tan, X. E., Sapri, H. F., & Tan, T. L. (2019). Pulsed-field gel electrophoresis (PFGE): A review of the “gold standard” for bacteria typing and current alternatives. In Infection, Genetics and Evolution (Vol. 74). Elsevier B.V. https://doi.org/10.1016/j.meegid.2019.103935spa
dc.relation.referencesNguyen, K. T., Bonasera, R., Benson, G., Hernandez-Morales, A. C., Gill, J. J., & Liu, M. (2019). Complete Genome Sequence of Klebsiella pneumoniae Myophage May. Microbiology Resource Announcements, 8(19). https://doi.org/10.1128/MRA.00252-19spa
dc.relation.referencesNoller, A. C., McEllistrem, M. C., Pacheco, A. G. F., Boxrud, D. J., & Harrison, L. H. (2003). Multilocus Variable-Number Tandem Repeat Analysis Distinguishes Outbreak and Sporadic Escherichia coli O157:H7 Isolates. Journal of Clinical Microbiology, 41(12), 5389–5397. https://doi.org/10.1128/JCM.41.12.5389-5397.2003spa
dc.relation.referencesPage, A. J., Cummins, C. A., Hunt, M., Wong, V. K., Reuter, S., Holden, M. T. G., Fookes, M., Falush, D., Keane, J. A., & Parkhill, J. (2015). Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics, 31(22), 3691–3693. https://doi.org/10.1093/bioinformatics/btv421spa
dc.relation.referencesPapić, B., Diricks, M., & Kušar, D. (2021). Analysis of the Global Population Structure of Paenibacillus larvae and Outbreak Investigation of American Foulbrood Using a Stable wgMLST Scheme. Frontiers in Veterinary Science, 8, 582677. https://doi.org/10.3389/fvets.2021.582677spa
dc.relation.referencesPayne, M., Kaur, S., Wang, Q., Hennessy, D., Luo, L., Octavia, S., Tanaka, M. M., Sintchenko, V., & Lan, R. (2020). Multilevel genome typing: genomics-guided scalable resolution typing of microbial pathogens. Euro Surveillance : Bulletin Europeen Sur Les Maladies Transmissibles = European Communicable Disease Bulletin, 25(20). https://doi.org/10.2807/1560-7917.ES.2020.25.20.1900519spa
dc.relation.referencesPeix, A., Ramírez-Bahena, M. H., & Velázquez, E. (2009). Historical evolution and current status of the taxonomy of genus Pseudomonas. Infection, Genetics and Evolution : Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases, 9(6), 1132–1147. https://doi.org/10.1016/J.MEEGID.2009.08.001spa
dc.relation.referencesPeix, A., Ramírez-Bahena, M. H., & Velázquez, E. (2018). The current status on the taxonomy of Pseudomonas revisited: An update. Infection, Genetics and Evolution, 57, 106–116. https://doi.org/10.1016/j.meegid.2017.10.026spa
dc.relation.referencesPerrin, A., & Rocha, E. P. C. (2021). PanACoTA: a modular tool for massive microbial comparative genomics. NAR Genomics and Bioinformatics, 3(1), lqaa106. https://doi.org/10.1093/nargab/lqaa106spa
dc.relation.referencesPlatt, S., Pichon, B., George, R., & Green, J. (2006). RESEARCH NOTE A bioinformatics pipeline for high-throughput microbial multilocus sequence typing (MLST) analyses. https://doi.org/10.1111/j.1469-0691.2006.01541.xspa
dc.relation.referencesRiley, L. W. (2018). Laboratory Methods in Molecular Epidemiology: Bacterial Infections. Microbiology Spectrum, 6(6). https://doi.org/10.1128/MICROBIOLSPEC.AME-0004-2018spa
dc.relation.referencesRobinson, M. D., & Vitek, O. (2019). Benchmarking comes of age. Genome Biology, 20(1). https://doi.org/10.1186/S13059-019-1846-5spa
dc.relation.referencesRouli, L., Merhej, V., Fournier, P. E., & Raoult, D. (2015). The bacterial pangenome as a new tool for analysing pathogenic bacteria. New Microbes and New Infections, 7, 72–85. https://doi.org/10.1016/j.nmni.2015.06.005spa
dc.relation.referencesRoyer, G., Fourreau, F., Boulanger, B., Mercier-Darty, M., Ducellier, D., Cizeau, F., Potron, A., Podglajen, I., Mongardon, N., & Decousser, J. W. (2020). outbreak. Journal of Hospital Infection, 104(1), 33–39. https://doi.org/10.1016/j.jhin.2019.07.014spa
dc.relation.referencesRuppé, E., Olearo, F., Pires, D., Baud, D., Renzi, G., Cherkaoui, A., Goldenberger, D., Huttner, A., François, P., Harbarth, S., & Schrenzel, J. (2017). Clonal or not clonal? Investigating hospital outbreaks of KPC-producing Klebsiella pneumoniae with whole-genome sequencing. Clinical Microbiology and Infection, 23(7), 470–475. https://doi.org/10.1016/j.cmi.2017.01.015spa
dc.relation.referencesSaharman, Y. R., Pelegrin, A. C., Karuniawati, A., Sedono, R., Aditianingsih, D., Goessens, W. H. F., Klaassen, C. H. W., van Belkum, A., Mirande, C., Verbrugh, H. A., & Severin, J. A. (2019). Epidemiology and characterisation of carbapenem-non-susceptible Pseudomonas aeruginosa in a large intensive care unit in Jakarta, Indonesia. International Journal of Antimicrobial Agents, 54(5), 655–660. https://doi.org/10.1016/j.ijantimicag.2019.08.003spa
dc.relation.referencesSahl, J. W., Lemmer, D., Travis, J., Schupp, J. M., Gillece, J. D., Aziz, M., Driebe, E. M., Drees, K. P., Hicks, N. D., Williamson, C. H. D., Hepp, C. M., Smith, D. E., Roe, C., Engelthaler, D. M., Wagner, D. M., & Keim, P. (2016). NASP: an accurate, rapid method for the identification of SNPs in WGS datasets that supports flexible input and output formats. Microbial Genomics, 2(8), e000074. https://doi.org/10.1099/mgen.0.000074spa
dc.relation.referencesSalipante, S. J., SenGupta, D. J., Cummings, L. A., Land, T. A., Hoogestraat, D. R., & Cookson, B. T. (2015). Application of whole-genome sequencing for bacterial strain typing in molecular epidemiology. Journal of Clinical Microbiology, 53(4), 1072–1079. https://doi.org/10.1128/JCM.03385-14spa
dc.relation.referencesSczyrba, A., Hofmann, P., Belmann, P., Koslicki, D., Janssen, S., Dröge, J., Gregor, I., Majda, S., Fiedler, J., Dahms, E., Bremges, A., Fritz, A., Garrido-Oter, R., Jørgensen, T. S., Shapiro, N., Blood, P. D., Gurevich, A., Bai, Y., Turaev, D., … McHardy, A. C. (2017). Critical Assessment of Metagenome Interpretation - A benchmark of metagenomics software. Nature Methods, 14(11), 1063–1071. https://doi.org/10.1038/nmeth.4458spa
dc.relation.referencesSeth-Smith, H. M. B., Bonfiglio, F., Cuénod, A., Reist, J., Egli, A., & Wüthrich, D. (2019). Evaluation of Rapid Library Preparation Protocols for Whole Genome Sequencing Based Outbreak Investigation. Frontiers in Public Health, 7(AUG), 241. https://doi.org/10.3389/fpubh.2019.00241spa
dc.relation.referencesSingh, M., Malik, M. A., Singh, D. K., Doimari, S., Bhavna, & Sharma, R. (2020). Multilocus variable number tandem repeat analysis (MLVA)-typing of Brucella abortus isolates of India reveals limited genetic diversity. Tropical Animal Health and Production, 52(3), 1187–1194. https://doi.org/10.1007/s11250-019-02110-xspa
dc.relation.referencesSitto, F., & Battistuzzi, F. U. (2020). Estimating Pangenomes with Roary. Molecular Biology and Evolution, 37(3), 933–939. https://doi.org/10.1093/MOLBEV/MSZ284spa
dc.relation.referencesTadee, P., Tadee, P., Hitchings, M. D., Pascoe, B., Sheppard, S. K., & Patchanee, P. (2018). High Resolution Whole Genome Multilocus Sequence Typing (wgMLST) Schemes for Salmonella enterica Weltevreden Epidemiologic Investigations. Biotechnol. Lett, 46(2), 162–170. https://doi.org/10.4014/mbl.1802.02008spa
dc.relation.referencesTenover, F. C., Arbeit, R. D., Goering, R. V., Mickelsen, P. A., Murray, B. E., Persing, D. H., & Swaminathan, B. (1995). Interpreting chromosomal DNA restriction patterns produced by pulsed- field gel electrophoresis: Criteria for bacterial strain typing. In Journal of Clinical Microbiology (Vol. 33, Issue 9, pp. 2233–2239). American Society for Microbiology. https://doi.org/10.1128/jcm.33.9.2233-2239.1995spa
dc.relation.referencesTimme, R. E., Rand, H., Shumway, M., Trees, E. K., Simmons, M., Agarwala, R., Davis, S., Tillman, G. E., Defibaugh-Chavez, S., Carleton, H. A., Klimke, W. A., & Katz, L. S. (2017). Benchmark datasets for phylogenomic pipeline validation, applications for foodborne pathogen surveillance. PeerJ, 2017(10). https://doi.org/10.7717/peerj.3893spa
dc.relation.referencesTissot, F., Blanc, D. S., Basset, P., Zanetti, G., Berger, M. M., Que, Y. A., Eggimann, P., & Senn, L. (2016). New genotyping method discovers sustained nosocomial Pseudomonas aeruginosa outbreak in an intensive care burn unit. Journal of Hospital Infection, 94(1), 2–7. https://doi.org/10.1016/j.jhin.2016.05.011spa
dc.relation.referencesTreangen, T. J., Ondov, B. D., Koren, S., & Phillippy, A. M. (2014). The harvest suite for rapid core-genome alignment and visualization of thousands of intraspecific microbial genomes. Genome Biology, 15(11), 1–15. https://doi.org/10.1186/S13059-014-0524-X/TABLES/4spa
dc.relation.referencesTsai, M. H., Liu, Y. Y., & Soo, V. W. (2017). PathoBacTyper: A web server for pathogenic bacteria identification and molecular genotyping. Frontiers in Microbiology, 8(AUG), 1474. https://doi.org/10.3389/fmicb.2017.01474spa
dc.relation.referencesUelze, L., Grützke, J., Borowiak, M., Hammerl, J. A., Juraschek, K., Deneke, C., Tausch, S. H., & Malorny, B. (2020). Typing methods based on whole genome sequencing data. One Health Outlook, 2(1), 1–19. https://doi.org/10.1186/s42522-020-0010-1spa
dc.relation.referencesvan Beek, J., Räisänen, K., Broas, M., Kauranen, J., Kähkölä, A., Laine, J., Mustonen, E., Nurkkala, T., Puhto, T., Sinkkonen, J., Torvinen, S., Vornanen, T., Vuento, R., Jalava, J., & Lyytikäinen, O. (2019). Tracing local and regional clusters of carbapenemase-producing Klebsiella pneumoniae ST512 with whole genome sequencing, Finland, 2013 to 2018. Eurosurveillance, 24(38). https://doi.org/10.2807/1560-7917.ES.2019.24.38.1800522spa
dc.relation.referencesVan Belkum, A., Struelens, M., De Visser, A., Verbrugh, H., & Tibayrenc, M. (2001). Role of Genomic Typing in Taxonomy, Evolutionary Genetics, and Microbial Epidemiology. Clinical Microbiology Reviews, 14(3), 547. https://doi.org/10.1128/CMR.14.3.547-560.2001spa
dc.relation.referencesvan Dorp, L., Wang, Q., Shaw, L. P., Acman, M., Brynildsrud, O. B., Eldholm, V., Wang, R., Gao, H., Yin, Y., Chen, H., Ding, C., Farrer, R. A., Didelot, X., Balloux, F., & Wang, H. (2019). Rapid phenotypic evolution in multidrug-resistant Klebsiella pneumoniae hospital outbreak strains. Microbial Genomics, 5(4), 1–11. https://doi.org/10.1099/mgen.0.000263spa
dc.relation.referencesVaz, C., Francisco, A. P., Silva, M., Jolley, K. A., Bray, J. E., Pouseele, H., Rothganger, J., Ramirez, M., & Carriço, J. A. (2014). TypOn: the microbial typing ontology. Journal of Biomedical Semantics, 5(1), 43. https://doi.org/10.1186/2041-1480-5-43spa
dc.relation.referencesVernikos, G. S. (2020). A Review of Pangenome Tools and Recent Studies. The Pangenome: Diversity, Dynamics and Evolution of Genomes, 89–112. https://doi.org/10.1007/978-3-030-38281-0_4spa
dc.relation.referencesWang, G., Zhao, G., Chao, X., Xie, L., & Wang, H. (2020). The Characteristic of Virulence, Biofilm and Antibiotic Resistance of Klebsiella pneumoniae. International Journal of Environmental Research and Public Health, 17(17), 1–17. https://doi.org/10.3390/IJERPH17176278spa
dc.relation.referencesWeber, L. M., Saelens, W., Cannoodt, R., Soneson, C., Hapfelmeier, A., Gardner, P. P., Boulesteix, A. L., Saeys, Y., & Robinson, M. D. (2019). Essential guidelines for computational method benchmarking. In Genome Biology (Vol. 20, Issue 1, pp. 1–12). BioMed Central Ltd. https://doi.org/10.1186/s13059-019-1738-8spa
dc.relation.referencesWingett, S. W., & Andrews, S. (2018). FastQ Screen: A tool for multi-genome mapping and quality control. F1000Research, 7, 1338spa
dc.relation.referencesYoshimura, D., Kajitani, R., Gotoh, Y., Katahira, K., Okuno, M., Ogura, Y., Hayashi, T., & Itoh, T. (2019). Evaluation of SNP calling methods for closely related bacterial isolates and a novel high-accuracy pipeline: BactSNP. Microbial Genomics, 5(5). https://doi.org/10.1099/mgen.0.000261spa
dc.relation.referencesYouenou, B., Brothier, E., & Nazaret, S. (2014). Diversity among strains of Pseudomonas aeruginosa from manure and soil, evaluated by multiple locus variable number tandem repeat analysis and antibiotic resistance profiles. Research in Microbiology, 165(1), 2–13. https://doi.org/10.1016/j.resmic.2013.10.004spa
dc.relation.referencesZheng, S. (2017). Bogaerts Contexts and details matter. In Genome Biology (Vol. 18, Issue 1, p. 129). BioMed Central Ltd. https://doi.org/10.1186/s13059-017-1258-3spa
dc.relation.referencesZhi, X. Y., Zhao, W., Li, W. J., & Zhao, G. P. (2011). Prokaryotic systematics in the genomics era. Antonie van Leeuwenhoek 2011 101:1, 101(1), 21–34. https://doi.org/10.1007/S10482-011-9667-Xspa
dc.relation.referencesZhou, G. H., Gotou, M., Kajiyama, T., & Kambara, H. (2005). Multiplex SNP typing by bioluminometric assay coupled with terminator incorporation (BATI). Nucleic Acids Research, 33(15), 1–11. https://doi.org/10.1093/nar/gni132spa
dc.relation.referencesZhou, K., Lokate, M., Deurenberg, R. H., Tepper, M., Arends, J. P., Raangs, E. G. C., Lo-Ten-Foe, J., Grundmann, H., Rossen, J. W. A., & Friedrich, A. W. (2016). Whole genome sequencing for the molecular characterization of carbapenem-resistant Klebsiella pneumoniae strains isolated at the Italian ASST Fatebenefratelli Sacco Hospital, 2012-2014Use of whole-genome sequencing to trace, control and characterize the r. Scientific Reports, 6, 20840. https://doi.org/10.1038/srep20840spa
dc.relation.referencesZhou, Z., Alikhan, N. F., Sergeant, M. J., Luhmann, N., Vaz, C., Francisco, A. P., Carriço, J. A., & Achtman, M. (2018). GrapeTree: visualization of core genomic relationships among 100,000 bacterial pathogens. Genome Research, 28(9), 1395–1404. https://doi.org/10.1101/GR.232397.117spa
dc.relation.referencesInouye, M., Dashnow, H., Raven, L. A., Schultz, M. B., Pope, B. J., Tomita, T., Zobel, J., & Holt, K. E. (2014). SRST2: Rapid genomic surveillance for public health and hospital microbiology labs. Genome Medicine, 6(11), 90. https://doi.org/10.1186/s13073-014-0090-6spa
dc.relation.referencesPérez-Losada, M., Arenas, M., & Castro-Nallar, E. (2018). Microbial sequence typing in the genomic era. Infection, Genetics and Evolution, 63, 346–359. https://doi.org/10.1016/j.meegid.2017.09.022spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.agrovocKlebsiella pneumoniae
dc.subject.agrovocTaxaspa
dc.subject.agrovocPseudomonas aeruginosa
dc.subject.agrovocSecuencia de ADNspa
dc.subject.agrovocDNA sequenceseng
dc.subject.ddc570 - Biología::576 - Genética y evoluciónspa
dc.subject.proposalSecuenciación completa del genomaspa
dc.subject.proposalKlebsiella pneumoniaespa
dc.subject.proposalPseudomonas aeruginosaspa
dc.subject.proposalTipificación molecular bacterianaspa
dc.subject.proposalHerramientas Bioinformáticasspa
dc.subject.proposalBenchmarkingspa
dc.subject.proposalWhole genome sequencingspa
dc.subject.proposalKlebsiella pneumoniaeeng
dc.subject.proposalPseudomonas aeruginosaeng
dc.subject.proposalBacterial molecular typingeng
dc.subject.proposalBioinformatics toolseng
dc.subject.proposalBenchmarkingeng
dc.titleEvaluación de herramientas bioinformáticas útiles en la tipificación de Klebsiella pneumoniae y Pseudomonas aeruginosa a partir de datos de secuenciación de genomas completosspa
dc.title.translatedEvaluation of Bioinformatic tools useful in the typing of Klebsiella pneumoniae and Pseudomonas aeruginosa from whole genome sequencing dataeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
16843909.2023.pdf
Tamaño:
1.94 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Bioinformática

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: