Respuesta fisiológica inducida por bioestimulantes en plantas de plátano (Musa AAB) sometidas a estrés bióticos (Ralstonia solanacearum) en condiciones de vivero

dc.contributor.advisorGonzalez Almario, Adrianaspa
dc.contributor.advisorRodríguez Yzquierdo, Gustavo Adolfospa
dc.contributor.authorMateus Cagua, Diana Mayerlyspa
dc.date.accessioned2021-02-11T13:05:19Zspa
dc.date.available2021-02-11T13:05:19Zspa
dc.date.issued2020-11spa
dc.descriptionilustraciones, gráficas, tablasspa
dc.description.abstractRalstonia solanacearum raza 2 (Rs) es uno de los factores bióticos más limitantes del cultivo de plátano. Este patógeno obstruye los haces vasculares afectando el transporte de agua y nutrientes en la planta hasta ocasionar su muerte. No existe un manejo actual para esta enfermedad, sin embargo, los bioestimulanes, productos usados para mejorar procesos fisiológicos de la planta y que en algunos casos pueden actuar como inductores de resistencia, podrían ser una alternativa. El objetivo de este trabajo fue determinar la influencia de cuatro bioestimulantes con los ingredientes activos: Bacillus subtilis (Bs), B. amyloliquefaciens (Ba), acido salicílico (As) y dióxido de silicio (Si), sobre parámetros fisiológicos de plantas de plátano cv. Hartón en etapa de vivero y su potencial para reducir el daño ocasionado por Rs. Se evaluó el estado hidrico de la planta, intercambio de gases, fluorescencia de la corofila, acumulación de masa seca, longitud de raíces, grado y progreso de la enfermedad, crecimiento bacteriano en tejido, contenido de malondialdehído (MDA), prolina, azucares y clorofila. Se encontró que plantas no inoculadas con Rs tratadas con Bs y Si mejoraron su actividad fotosintética y crecimiento signficativamente en comparación con plantas no tratadas. En plantas inoculadas con Rs, los tratamientos As y Si lograron retrasar el daño ocasionado por el patógeno y su efecto sobre variables fisiológicas por estimular, posiblemente, respuestas de defensa en las mismas. La menor concentración de MDA, el menor contenido de prolina (metabolito usado por Rs) y la longitud de raíces laterales en estas plantas sugieren este hecho. Los resultados señalan la importancia de integrar la aplicación de bioestimulantes al manejo de plátano en etapa de vivero, no solo para mejorar procesos fisiológicos, sino para proveer una alternativa potencial para el manejo preventivo de Moko. Es necesario continuar con trabajos de investigación en condiciones de infección natural que vinculen estrategias de manejo integrado y consideren los aspectos del sistema productivo relacionados con el proceso de infección. (Texto tomado de la fuente).spa
dc.description.abstractRalstonia solanacearum Race 2 (Rs) is a major limiting biotic factor in plantain crops. This pathogen blocks the vascular bundles and obstructs the transportation of water and nutrients, causing wilt and subsequent plant death. Although, there is no management for this disease, biostimulants, which are products used to improve physiological plant processes, might serve as resistance inducers and be used as a control alternative. The aim of this work was to determine the influence of four biostimulants (containing Bacillus subtilis (Bs), B. amyloliquefaciens (Ba), salicylic acid (As) and silicon dioxide (Si)) on cv. Hartón plantain plants and to determine their potential to reduce the damage caused by Rs on physiological and biochemical parameters. Hydric status, gas exchange, chlorophyll fluorescence, dry mass accumulation, root length, disease severity and progression, bacterial growth in seudostem, malondialdehyde (MDA), proline, sugars and chlorophyll content were evaluated in inoculated and not-inoculated plants. Not-inoculated plants with Rs treated with Bs and Si showed a significant higher photosynthetic activity and growth compared to untreated plants. For inoculated plants treated with As and Si a stimulation in the defense response led to a delay in the damage caused by pathogen and its effect on physiological variables. The lower concentration of MDA, lower content of proline (metabolite used by Rs) and length of lateral roots in these latter plants suggest this observation. These results expose the importance of integrating biostimulants in disease management of plantain crops during the nursery stage, to improve not only physiological processes, but to provide a potential alternative for a preventive management of Rs. It is necessary to continue the research on natural infection conditions under an integrated management strategy involving the production system and infection process.eng
dc.description.curricularareaCiencias Agronómicasspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias Agrariasspa
dc.description.notesIncluye anexosspa
dc.description.researchareaFisiología de cultivosspa
dc.format.extentxxiii, 108 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79189
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentEscuela de posgradosspa
dc.publisher.facultyFacultad de Ciencias Agrariasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias Agrarias - Maestría en Ciencias Agrariasspa
dc.relation.referencesAbeer, H., Abdallah, E. F., Alqarawi, A. A., Al-Huqail, A. A., Alshalawi, S. R. M., Wirth, S., & Dilfuza, E. (2015). Impact of plant growth promoting Bacillus subtilis on growth and physiological parameters of Bassia indica (Indian bassia) grown udder salt stress. Pak J Bot, 47(5), 1735-1741.spa
dc.relation.referencesAgarie, S., H. Uchida, W. Qgata, F. Kubota, and P.B. Kaufman. 1998. Effects of silicon on transpiration and leaf conductance in rice plants (Oryza sativa L). Japanese Journal of Crop Science. 1:89-95. Doi: 10.1626/pps.1.89spa
dc.relation.referencesAgronet, red de información y comunicación del sector agropecuario. Consultado en abril 2020. Disponible en: www.agronet.gov.cospa
dc.relation.referencesAhmad, Z., J. Wu, L. Chen, and W. Dong. 2017. Isolated Bacillus subtilis strain 330-2 and its antagonistic genes identified by the removing PCR. Scientific reports. 7(1):1777. Doi: 10.1038/s41598-017-01940-9spa
dc.relation.referencesAlbuquerque, G. M., Santos, L. A., Felix, K. C., Rollemberg, C. L., Silva, A. M., Souza, E. B., ... & Mariano, R. L. (2014). Moko disease-causing strains of Ralstonia solanacearum from Brazil extend known diversity in paraphyletic phylotype II. Phytopathology. 104(11): 1175-1182.spa
dc.relation.referencesAlmoneafy, A. A., Kakar, K. U., Nawaz, Z., Li, B., Chun-lan, Y., & Xie, G. L. (2014). Tomato plant growth promotion and antibacterial related-mechanisms of four rhizobacterial Bacillus strains against Ralstonia solanacearum. Symbiosis, 63(2), 59-70. doi: 10.1007/s13199-014-0288-9spa
dc.relation.referencesÁlvarez, E., Pantoja, A., Gañán, L., & Ceballos, G. (2013). Estado del arte y opciones de manejo del Moko y la Sigatoka negra en América Latina y el Caribe. CIAT/FAO. 40 p.spa
dc.relation.referencesAlves, A. O., Santos, M. M. B., Souza, L. J. N., Souza, E. B., & Mariano, R. L. R. (2015). Use of silicon for reducing the severity of bacterial wilt of sweet pepper. Journal of Plant Pathology, 97(3), 419-429. doi: 10.4454/JPP.V97I3.002spa
dc.relation.referencesAnith, K. N., Momol, M. T., Kloepper, J. W., Marois, J. J., Olson, S. M., & Jones, J. B. (2004). Efficacy of plant growth-promoting rhizobacteria, acibenzolar-S-methyl, and soil amendment for integrated management of bacterial wilt on tomato. Plant disease, 88(6), 669-673.spa
dc.relation.referencesAnusuya, P. 2014. Studies on screening of banana genotypes against salt and water deficit stresses. Tesis de doctorado. Tamil Nadu Agricultural University, Coimbatore, India.spa
dc.relation.referencesAsari, S., D. Tarkowská, J. Rolčík, O. Novák, D. V. Palmero, S. Bejai, and J. Meijer. 2017. Analysis of plant growth-promoting properties of Bacillus amyloliquefaciens UCMB5113 using Arabidopsis thaliana as host plant. Planta. 245(1):15-30. Doi: 10.1007/s00425-016-2580-9spa
dc.relation.referencesAucique-Pérez, C.E., P.E. de Menezes Silva, W.R. Moreira, F.M. DaMatta, and F.Á. Rodrigues. 2017. Photosynthesis impairments and excitation energy dissipation on wheat plants supplied with silicon and infected with Pyricularia oryzae. Plant Physiology and Biochemistry. 121:196-205. Doi: 10.1016/j.plaphy.2017.10.023spa
dc.relation.referencesAyana, G., Fininsa, C., Ahmed, S., & Wydra, K. (2011). Effects of soil amendment on bacterial wilt caused by Ralstonia solanacerum and tomato yields in Ethiopia. Journal of Plant Protection Research 51:72-76. doi: 10.2478/v10045-011-0015-0spa
dc.relation.referencesBabar, S., Siddiqi, E. H., Hussain, I., Hayat Bhatti, K., & Rasheed, R. (2014). Mitigating the effects of salinity by foliar application of salicylic acid in fenugreek. Physiology Journal, 869058. doi: 10.1155/2014/869058spa
dc.relation.referencesBaichoo, Z., & Jaufeerally-Fakim, Y. (2017). Ralstonia solanacearum upregulates marker genes of the salicylic acid and ethylene signaling pathways but not those of the jasmonic acid pathway in leaflets of Solanum lines during early stage of infection. European Journal of Plant Pathology, 147(3), 615-625. doi: 10.1007/s10658-016-1030-7spa
dc.relation.referencesBarr, H. D., & Weatherley, P. E. (1962). A re-examination of the relative turgidity technique for estimating water deficit in leaves. Aust J Biol Sci, 15(3), 413-428. doi: 10.1071/BI9620413spa
dc.relation.referencesBarrios, M. O., Gaviria, P. A. R., Osorio, J. G. M., & Yepes, M. S. (2008). Hospedantes de Ralstonia solanacearum en plantaciones de banano y plátano en Colombia. Revista Facultad Nacional de Agronomia Medellin. 61(2): 4518.spa
dc.relation.referencesBarriuso, J., Solano, B. R., & Gutiérrez Mañero, F. J. (2008). Protection against pathogen and salt stress by four plant growth-promoting rhizobacteria isolated from Pinus sp. on Arabidopsis thaliana. Phytopathology, 98(6), 666-672. doi: 10.1094/PHYTO-98-6-0666spa
dc.relation.referencesBerger, S., Sinha, A. K., & Roitsch, T. (2007). Plant physiology meets phytopathology: plant primary metabolism and plant–pathogen interactions. Journal of experimental botany, 58(15-16), 4019-4026. Doi: 10.1093/jxb/erm298.spa
dc.relation.referencesBrown, P., & Saa, S. (2015). Biostimulants in agriculture. Frontiers in plant science, 6:671. doi: 10.3389/fpls.2015.00671spa
dc.relation.referencesBuah, J.N., and J. W. Tachie-Menson. 2015. Suitability of Bud Manipulation Technique as an Alternative to Tissue Culture in the Production of Suckers for Plantains and Bananas. Biotechnology. 14(1):41-46.spa
dc.relation.referencesBuchanan, B. B., Gruissem, W., & Jones, R. L. (2015). Biochemistry and molecular biology of plants. John Wiley & Sons.spa
dc.relation.referencesBulgari, R., Franzoni, G., & Ferrante, A. (2019). Biostimulants application in horticultural crops under abiotic stress conditions. Agronomy, 9(6), 306. doi: 10.3390/agronomy9060306spa
dc.relation.referencesCABI (2020). Disponible en: https://www.cabi.org/isc/datasheet/44999spa
dc.relation.referencesCaldwell, D., Kim, B. S., & Iyer-Pascuzzi, A. S. (2017). Ralstonia solanacearum differentially colonizes roots of resistant and susceptible tomato plants. Phytopathology, 107(5):528-536.spa
dc.relation.referencesCaldwell, D.C. (2016). The Role of root anatomy and root architecture in resistance to Ralstonia solanacearum (Tesis de maestría, Universidad de Purdue, Indiana, Estados Unidos). Recuperada desde: https://docs.lib.purdue.edu/spa
dc.relation.referencesCalvo, P., D.B. Watts, J.W. Kloepper, and H.A. Torbert, 2017. Effect of microbial-based inoculants on nutrient concentrations and early root morphology of corn (Zea mays). Journal of Plant Nutrition and Soil Science. 180(1):56-70. Doi: 10.1002/jpln.201500616spa
dc.relation.referencesCao, W.L., X.C. Meng, and W. Ma. 2015. Effect of salicylic acid on photosynthesis, physio-biochemistry and quality of Panax ginseng under full sun shine in spring. China journal of Chinese materia medica. 40(18):3553-3559.spa
dc.relation.referencesCao, Y., Pi, H., Chandrangsu, P., Li, Y., Wang, Y., Zhou, H., ... & Cai, Y. (2018). Antagonism of two plant-growth promoting Bacillus velezensis isolates against Ralstonia solanacearum and Fusarium oxysporum. Scientific reports, 8(1), 1-14. doi: 10.1038/s41598-018-22782-zspa
dc.relation.referencesCeballos, G., Álvarez, E., & Bolaños, M. M. (2014). Reducción de poblaciones de Ralstonia solanacearum raza 2 (Smith) en plátano (Musa AAB Simmonds) con aplicación de extractos de Trichoderma sp. (Alexopoulus y Mims) y bacterias antagonistas. Acta Agronómica, 63(1), 80-87. doi: 10.15446/acag.v63n1.43121spa
dc.relation.referencesChabi, M. C., Dassou, A. G., Dossou-Aminon, I., Ogouchoro, D., Aman, B. O., & Dansi, A. (2018). Banana and plantain production systems in Benin: ethnobotanical investigation, varietal diversity, pests, and implications for better production. Journal of ethnobiology and ethnomedicine, 14(1), 78. https://doi.org/10.1186/s13002-018-0280-1spa
dc.relation.referencesChaves C, B., Cayón S, G., & Jones, J. W. (2009). Modeling plantain (Musa AAB Simmonds) potential yield. Agronomía Colombiana, 27(3), 359-366.spa
dc.relation.referencesChaves-Gómez, J. L., Cotes-Prado, A. M., Gómez-Caro, S., & Restrepo-Díaz, H. (2019). Physiological response of cape gooseberry seedlings to two organic additives and their mixture under inoculation with Fusarium oxysporum f. sp. physali. HortScience horts, 55(1), 55-62.spa
dc.relation.referencesChávez-Arias, C. C., Gómez-Caro, S., & Restrepo-Díaz, H. (2020). Physiological responses to the foliar application of synthetic resistance elicitors in Cape Gooseberry seedlings infected with Fusarium oxysporum f. sp. physali. Plants, 9(2), 176. doi: 10.3390/plants9020176spa
dc.relation.referencesChen, Y., Liu, M., Wang, L., Lin, W., Fan, X., & Cai, K. (2015). Proteomic characterization of silicon-mediated resistance against Ralstonia solanacearum in tomato. Plant and soil, 387(1-2), 425-440.spa
dc.relation.referencesChen, Y., Ren, X., Zhou, X., Huang, L., Yan, L., Lei, Y., ... & Jiang, H. (2014). Dynamics in the resistant and susceptible peanut (Arachis hypogaea L.) root transcriptome on infection with the Ralstonia solanacearum. BMC genomics, 15(1), 1078.spa
dc.relation.referencesChoi, H. K., Iandolino, A., da Silva, F. G., & Cook, D. R. (2013). Water deficit modulates the response of Vitis vinifera to the Pierce's disease pathogen Xylella fastidiosa. Molecular Plant-Microbe Interactions, 26(6), 643-657. doi: 10.1094/MPMI-09-12-0217-R.spa
dc.relation.referencesChunyu, L. I., Weicong, H. U., Bin, P. A. N., Yan, L. I. U., Saifei, Y. U. A. N., Yuanyuan, D. I. N. G., ... & Qirong, S. H. E. N. (2017). Rhizobacterium Bacillus amyloliquefaciens strain SQRT3-mediated induced systemic resistance controls bacterial wilt of tomato. Pedosphere, 27(6), 1135-1146. doi: 10.1016/S1002-0160(17)60406-5spa
dc.relation.referencesCubides, W. (2016). Incidencia de Ralstonia solanacearum raza 2 en cultivos de plátano (Musa AAB), y su manejo en el control oficial, a través en el departamento del meta para el año 2015 (trabajo de especialización). Universidad Nacional de Colombia, Bogotá.spa
dc.relation.referencesDahal, A., Chen, L., Kiba, A., Hikichi, Y., & Ohnishi, K. (2018). Chloroplastic proteins are targets for the RipG effectors of Ralstonia solanacearum. Int. J. Environ. Technol. Sci, 5, 147-156.spa
dc.relation.referencesDalal, V.K., & Tripathy, B.C. (2018). Water-stress induced downsizing of light-harvesting antenna complex protects developing rice seedlings from photo-oxidative damage. Sci Rep 8, 5955. doi: 10.1038/s41598-017-14419-4spa
dc.relation.referencesde Lima, B. C., Moro, A. L., Santos, A. C. P., Bonifacio, A., Araujo, A. S. F., & de Araujo, F. F. (2019). Bacillus subtilis ameliorates water stress tolerance in maize and common bean. Journal of Plant Interactions, 14(1), 432-439. doi: 10.1080/17429145.2019.1645896spa
dc.relation.referencesDeng, X., Xiao, W., Shi, Z., Zeng, L., & Lei, L. (2020). Combined Effects of Drought and Shading on Growth and Non-Structural Carbohydrates in Pinus massoniana Lamb. Seedlings. Forests, 11(1), 18. doi: 10.3390/f11010018spa
dc.relation.referencesDien, D. C., Mochizuki, T., & Yamakawa, T. (2019). Effect of various drought stresses and subsequent recovery on proline, total soluble sugar and starch metabolisms in Rice (Oryza sativa L.) varieties. Plant Production Science, 22(4), 530-545.spa
dc.relation.referencesDing, P., & Ding, Y. (2020). Stories of salicylic acid: A plant defense hormone. Trends in Plant Science, 25(6), 549-565. doi: 10.1016/j.tplants.2020.01.004spa
dc.relation.referencesDiogo, R. V., & Wydra, K. (2007). Silicon-induced basal resistance in tomato against Ralstonia solanacearum is related to modification of pectic cell wall polysaccharide structure. Physiological and Molecular Plant Pathology, 70(4-6), 120-129. doi:10.1016/j.pmpp.2007.07.008spa
dc.relation.referencesDjaya, L., Istifadah, N., Hartati, S., & Joni, I. M. (2019). In vitro study of plant growth promoting rhizobacteria (PGPR) and endophytic bacteria antagonistic to Ralstonia solanacearum formulated with graphite and silica nano particles as a biocontrol delivery system (BDS). Biocatalysis and Agricultural Biotechnology, 19, 101153. doi: 10.1016/j.bcab.2019.101153spa
dc.relation.referencesDrobek, M., Frąc, M., & Cybulska, J. (2019). Plant biostimulants: importance of the quality and yield of horticultural crops and the improvement of plant tolerance to abiotic stress—a review. Agronomy, 9(6), 335. doi: 10.3390/agronomy9060335spa
dc.relation.referencesdu Jardin, P. (2015). Plant biostimulants: Definition, concept, main categories and regulation. Scientia Horticulturae, 196, 3-14. Doi: 10.1016/j.scienta.2015.09.021spa
dc.relation.referencesEBIC, 2020. Economic overview of the biostimulants sector in Europe. European Biostimulants industry Council. Consultado en: http://www.biostimulants.eu/spa
dc.relation.referencesElsayed, T. R., Jacquiod, S., Nour, E. H., Sørensen, S. J., & Smalla, K. (2020). Biocontrol of bacterial wilt disease through complex interaction between tomato plant, antagonists, the indigenous rhizosphere microbiota and Ralstonia solanacearum. Frontiers in microbiology, 10, 2835. doi: 10.3389/fmicb.2019.02835spa
dc.relation.referencesFan, X.Y., Lin, W.P., Rui, L.I.U., Jiang, N.H., & Cai, K.Z. (2018). Physiological response and phenolic metabolism in tomato (Solanum lycopersicum) mediated by silicon under Ralstonia solanacearum. Journal of Integrative Agriculture, 17(10), 2160-2171. doi: 10.1016/S2095-3119(18)62036-2spa
dc.relation.referencesFAO. FAOSTAT database. Roma: Food and Agriculture Organization; 2020.spa
dc.relation.referencesFAOSTAT. 2016. Agriculture data. Disponible en: http://www.fao.org/faostat/en/#data/QC (Consultado 14 de marzo de 2018).spa
dc.relation.referencesFarooq, M., Wahid, A., Kobayashi, N., Fujita, D. B. S. M. A., & Basra, S. M. A. (2009). Plant drought stress: effects, mechanisms and management. In Sustainable agriculture (pp. 153-188). Springer, Dordrecht.spa
dc.relation.referencesFernandes, A., Silva, M., Silva, D., Santos, T., Schmildt, E., Pfenning, L., & Falqueto, A. (2020). Silicon improves the photosynthetic performance of black pepper plants inoculated with Fusarium solani f. sp. piperis. Photosynthetica, 58(3), 692-701. doi: 10.32615/ps.2019.182spa
dc.relation.referencesFlores-Cruz, Z., & Allen, C. (2011). Necessity of OxyR for the hydrogen peroxide stress response and full virulence in Ralstonia solanacearum. Applied and environmental microbiology, 77(18), 6426-6432.spa
dc.relation.referencesFortunato, A. A., Rodrigues, F. Á., & do Nascimento, K. J. T. (2012). Physiological and biochemical aspects of the resistance of banana plants to Fusarium wilt potentiated by silicon. Phytopathology, 102(10), 957-966.spa
dc.relation.referencesGalán-Saúco, V., and J.C. Robinson. 2013. Fisiología, clima y producción de banano. pp. 44-56. En: XX Reunião Internacional da Associação para a Cooperação em Pesquisa e Desenvolvimento Integral das Musáceas (Bananas e Plátanos). Fortaleza, CE.spa
dc.relation.referencesGenin, S. (2010). Molecular traits controlling host range and adaptation to plants in Ralstonia solanacearum. New Phytologist, 187(4), 920-928. doi: 10.1111/j.1469-8137.2010.03397.xspa
dc.relation.referencesGhareeb, H., Bozsó, Z., Ott, P. G., Repenning, C., Stahl, F., & Wydra, K. (2011). Transcriptome of silicon-induced resistance against Ralstonia solanacearum in the silicon non-accumulator tomato implicates priming effect. Physiological and Molecular Plant Pathology, 75(3), 83-89. doi:10.1016/j.pmpp.2010.11.004spa
dc.relation.referencesHalpern, M., A. Bar-Tal, M. Ofek, D. Minz, T. Muller, and U. Yermiyahu. 2015. The Use of Biostimulants for Enhancing Nutrient Uptake. Advances in Agronomy. 130:141-174. Doi: 10.1016/bs.agron.2014.10.001spa
dc.relation.referencesHazman, M., & Brown, K. M. (2018). Progressive drought alters architectural and anatomical traits of rice roots. Rice, 11(1), 62. doi: 10.1186/s12284-018-0252-zspa
dc.relation.referencesHelaly, M.N., H. El-Hoseiny, N.I. El-Sheery, A. Rastogi, and H.M. Kalaji. (2017). Regulation and physiological role of silicon in alleviating drought stress of mango. Plant physiology and biochemistry. 118:31-44. Doi: 10.1016/j.plaphy.2017.05.021spa
dc.relation.referencesHessini, K., Issaoui, K., Ferchichi, S., Saif, T., Abdelly, C., Siddique, K. H., & Cruz, C. (2019). Interactive effects of salinity and nitrogen forms on plant growth, photosynthesis and osmotic adjustment in maize. Plant Physiology and Biochemistry, 139, 171-178.spa
dc.relation.referencesHuang, H., Ullah, F., Zhou, D. X., Yi, M., & Zhao, Y. (2019). Mechanisms of ROS regulation of plant development and stress responses. Frontiers in Plant Science, 10. doi: 10.3389/fpls.2019.00800spa
dc.relation.referencesICA. (2018a). Rendición de cuentas. Gerencia seccional Meta. Noviembre 2018.spa
dc.relation.referencesJacobs, J. M., Milling, A., Mitra, R. M., Hogan, C. S., Ailloud, F., Prior, P., & Allen, C. (2013). Ralstonia solanacearum requires PopS, an ancient AvrE-family effector, for virulence and to overcome salicylic acid-mediated defenses during tomato pathogenesis. MBio, 4(6):e00875-13. doi: 10.1128/mBio.00875-13.spa
dc.relation.referencesJiang N., Fan X., Lin W., Wang G., Cai K. (2019). Transcriptome analysis reveals new insights into the bacterial wilt resistance mechanism mediated by silicon in tomato. Int. J. Mol. Sci. 20(3), 761. doi: 10.3390/ijms20030761spa
dc.relation.referencesKarimi, S., Karami, H., Vahdati, K., & Mokhtassi-Bidgoli, A. (2020). Antioxidative responses to short-term salinity stress induce drought tolerance in walnut. Scientia Horticulturae, 267, 109322.spa
dc.relation.referencesKatiyar, D., Hemantaranjan, A., & Singh, B. (2015). Chitosan as a promising natural compound to enhance potential physiological responses in plant: a review. Indian Journal of Plant Physiology, 20(1), 1-9. doi: 10.1007/s40502-015-0139-6.spa
dc.relation.referencesLa, V.H., Lee, B.R., Zhang, Q., Park, S.H., Islam, M.T., & Kim, T.H. (2019). Salicylic acid improves drought-stress tolerance by regulating the redox status and proline metabolism in Brassica rapa. Hortic. Environ. Biotechnol., 60(1), 31-40. doi: 10.1007/s13580-018-0099-7spa
dc.relation.referencesLagogianni, C. S., & Tsitsigiannis, D. I. (2019). Effective biopesticides and biostimulants to reduce aflatoxins in maize fields. Frontiers in Microbiology, 10, 2645. doi: 10.3389/fmicb.2019.02645spa
dc.relation.referencesLee, B. R., Zhang, Q., Park, S. H., Islam, M. T., & Kim, T. H. (2019). Salicylic acid improves drought-stress tolerance by regulating the redox status and proline metabolism in Brassica rapa. Horticulture, Environment, and Biotechnology, 60(1), 31-40. doi: 10.1007/s13580-018-0099-7spa
dc.relation.referencesLiu, X., Rockett, K. S., Kørner, C. J., & Pajerowska-Mukhtar, K. M. (2015). Salicylic acid signalling: new insights and prospects at a quarter-century milestone. Essays in biochemistry, 58, 101-113.spa
dc.relation.referencesLowe‐Power, T. M., Hendrich, C. G., von Roepenack‐Lahaye, E., Li, B., Wu, D., Mitra, R., ... & Jancewicz, A. (2018). Metabolomics of tomato xylem sap during bacterial wilt reveals Ralstonia solanacearum produces abundant putrescine, a metabolite that accelerates wilt disease. Environmental microbiology, 20(4), 1330-1349. doi: 10.1111/1462-2920.14020spa
dc.relation.referencesLowe‐Power, T. M., Hendrich, C. G., von Roepenack‐Lahaye, E., Li, B., Wu, D., Mitra, R., ... & Jancewicz, A. (2018). Metabolomics of tomato xylem sap during bacterial wilt reveals Ralstonia solanacearum produces abundant putrescine, a metabolite that accelerates wilt disease. Environmental microbiology, 20(4), 1330-1349. doi: 10.1111/1462-2920.14020spa
dc.relation.referencesLu, H., Lema A, S., Planas-Marques, M., Alonso-Díaz, A., Valls, M., & Coll, N. S. (2018). Type III Secretion–Dependent and–Independent Phenotypes Caused by Ralstonia solanacearum in Arabidopsis Roots. Molecular plant-microbe interactions, 31(1), 175-184. doi: 10.1094/MPMI-05-17-0109-FIspa
dc.relation.referencesMaghsoudi, K., Y. Emam, and M. Ashraf. (2016a). Foliar application of silicon at different growth stages alters growth and yield of selected wheat cultivars. Journal of Plant Nutrition. 39(8):1194-1203. Doi: 10.1080/01904167.2015.1115876spa
dc.relation.referencesMaghsoudi, K., Y. Emam, and M. Pessarakli. (2016b). Effect of silicon on photosynthetic gas exchange, photosynthetic pigments, cell membrane stability and relative water content of different wheat cultivars under drought stress conditions. Journal of Plant Nutrition. 39(7):1001-1015.spa
dc.relation.referencesMandal, S., Acharya, P., & Kar, I. (2014). Reactive oxygen species signaling in eggplant in response to Ralstonia solanacearum infection. Journal of plant pathology, 96(3), 525-534. doi: 10.4454/JPP.V96I3.018spa
dc.relation.referencesMartínez A.A.M., and D.G. Cayón Salinas. 2011. Dinámica del crecimiento y desarrollo del banano (Musa AAA Simmonds cvs. Gran Enano y Valery). Revista Facultad Nacional de Agronomía-Medellín. 64(2):6055-60-64.spa
dc.relation.referencesMartínez, A. (1998). El cultivo de plátano en los Llanos Orientales, aspectos generales y labores del cultivo. Manual. Corporación Colombiana de Investigación Agropecuaria (Corpoica); Programa Nacional de Transferencia de Tecnología Agropecuaria (Pronatta). Recuperado de: http://bibliotecadigital.agronet.gov.co/bitstream/11348/4031/1/20061127152826_El%20cultivo%20del%20platano%20llanos.pdfspa
dc.relation.referencesMateus-Cagua, D., & Rodríguez-Yzquierdo, G. (2019). Effect of biostimulants on the dry matter accumulation and gas exchange in plantains plants (Musa AAB). Revista Colombiana de Ciencias Hortícolas, 13(2): 151-160. doi: 10.17584/rcch.2019v13i2.8460spa
dc.relation.referencesMhlongo, M. I., Piater, L. A., Madala, N. E., Labuschagne, N., & Dubery, I. A. (2018). The chemistry of plant–microbe interactions in the rhizosphere and the potential for metabolomics to reveal signaling related to defense priming and induced systemic resistance. Frontiers in plant science, 9, 112. doi: 10.3389/fpls.2018.00112spa
dc.relation.referencesMia, M.B., Z.H. Shamsuddin, and M. Mahmood. 2010a. Use of plant growth promoting bacteria in banana: a new insight for sustainable banana production. Int J Agric Biol. 12(3):459-467.spa
dc.relation.referencesMia, M.B., Z.H. Shamsuddin, Z. Wahab, and M. Marziah. 2010b. Rhizobacteria as bioenhancer and biofertilizer for growth and yield of banana (Musa spp. cv.‘Berangan’). Scientia horticulturae. 126(2):80-87. Doi: 10.1016/j.scienta.2010.06.005spa
dc.relation.referencesMimouni, H., Wasti, S., Manaa, A., Gharbi, E., Chalh, A., Vandoorne, B., ... & Ahmed, H. B. (2016). Does salicylic acid (SA) improve tolerance to salt stress in plants? A study of SA effects on tomato plant growth, water dynamics, photosynthesis, and biochemical parameters. Omics: a journal of integrative biology, 20(3), 180-190.spa
dc.relation.referencesMimouni, H., Wasti, S., Manaa, A., Gharbi, E., Chalh, A., Vandoorne, B., ... & Ahmed, H. B. (2016). Does salicylic acid (SA) improve tolerance to salt stress in plants? A study of SA effects on tomato plant growth, water dynamics, photosynthesis, and biochemical parameters. Omics: a journal of integrative biology, 20(3), 180-190.spa
dc.relation.referencesNakano, M., & Mukaihara, T. (2018). Ralstonia solanacearum type III effector RipAL targets chloroplasts and induces jasmonic acid production to suppress salicylic acid-mediated defense responses in plants. Plant and Cell Physiology, 59(12), 2576-2589. doi: 10.1093/pcp/pcy177spa
dc.relation.referencesNansamba, M., Sibiya, J., Tumuhimbise, R., Karamura, D., Kubiriba, J., & Karamura, E. (2020). Breeding banana (Musa spp.) for drought tolerance: A review. Plant Breeding. doi: 10.1111/pbr.12812spa
dc.relation.referencesNarancio, R., Zorrilla, P., Robello, C., Gonzalez, M., Vilaró, F., Pritsch, C., & Dalla Rizza, M. (2013). Insights on gene expression response of a characterized resistant genotype of Solanum commersonii Dun. against Ralstonia solanacearum. European journal of plant pathology, 136(4), 823-835. doi: 10.1007/s10658-013-0210-yspa
dc.relation.referencesNarasimhamurthy, K., Soumya, K., Udayashankar, A. C., Srinivas, C., & Niranjana, S. R. (2019). Elicitation of innate immunity in tomato by salicylic acid and Amomum nilgiricum against Ralstonia solanacearum. Biocatalysis and Agricultural Biotechnology, 22, 101414. doi: 10.1016/j.bcab.2019.101414spa
dc.relation.referencesOlumba, C. C., & Onunka, C. N. (2020). Banana and plantain in West Africa: production and marketing. African Journal of Food, Agriculture, Nutrition & Development, 15474-15489. doi: 10.18697/ajfand.90.18365spa
dc.relation.referencesParađiković, N., Teklić, T., Zeljković, S., Lisjak, M., & Špoljarević, M. (2019). Biostimulants research in some horticultural plant species—A review. Food and Energy Security, 8(2), e00162. doi: 10.1002/fes3.162spa
dc.relation.referencesPeeters, N., Guidot, A., Vailleau, F., & Valls, M. (2013). Ralstonia solanacearum, a widespread bacterial plant pathogen in the post‐genomic era. Molecular plant pathology, 14(7), 651-662. doi: 10.1111/mpp.12038spa
dc.relation.referencesRamírez, D. A., Yactayo, W., Gutiérrez, R., Mares, V., De Mendiburu, F., Posadas, A., & Quiroz, R. (2014). Chlorophyll concentration in leaves is an indicator of potato tuber yield in water-shortage conditions. Scientia Horticulturae, 168, 202-209.spa
dc.relation.referencesRamírez, G., Guillermo, J., Muñoz, A., Patiño, H., Fernando, L., Morales, O., & Gonzalo, J. (2015). Banana Moko disease management with resistance inducers and chlorine dioxide. Agronomía Colombiana, 33(2), 194-202. doi: 10.15446/agron.colomb.v33n2.48663.spa
dc.relation.referencesRamírez, M., Neuman, B., & Ramírez, C. A. (2020). Bacteriophages as promising agents for the biological control of moko disease (Ralstonia solanacearum) of banana. Biological Control, 104238. doi: 10.1016/j.biocontrol.2020.104238spa
dc.relation.referencesRay, S. K., Kumar, R., Peeters, N., Boucher, C., & Genin, S. (2015). rpoN1, but not rpoN2, is required for twitching motility, natural competence, growth on nitrate, and virulence of Ralstonia solanacearum. Frontiers in microbiology, 6, 229.spa
dc.relation.referencesRobinson, J. H., & Sauco, V. G. (2010). Banana and Plantains. 2nd Editition. CABI North America Office. USA. 1-9 pp.spa
dc.relation.referencesRodríguez, G. A., Becerra, J. J., Betancourt, M., Miranda, T. C., Alzate, S. V., Pisco, Y. C & Sandoval, H. A. (2018). Modelo productivo para la producción de plátano en los Llanos Orientales. Mosquera, Colombia. Corporación Colombiana de Investigación Agropecuaria-AGROSAVIA. 216 p.spa
dc.relation.referencesRodríguez, G. A., J. Becerra, M. Betancourt, T. Miranda & S. Alzate. (2019). Modelo productivo: Tecnologías eficientes para la producción de semilla de plátano en los Llanos Orientales. Mosquera, Colombia. Corporación Colombiana de Investigación Agropecuaria-AGROSAVIA. 82 p.spa
dc.relation.referencesSaa, S., O.D. Rio, S. Castro, and P.H. Brown. 2015. Foliar application of microbial and plant based biostimulants increases growth and potassium uptake in almond (Prunus dulcis [Mill.] DA Webb). Frontiers in plant science. 6:87. Doi: 10.3389/fpls.2015.00087spa
dc.relation.referencesSaud, S., Chen, Y., Fahad, S., Hussain, S., Na, L., Xin, L., et al. (2016). Silicate application increases the photosynthesis and its associated metabolic activities in Kentucky bluegrass under drought stress and post-drought recovery. Environ. Sci. Pollut. Res. 23, 17647–17655. doi: 10.1007/s11356-016-6957-xspa
dc.relation.referencesSayago, P., Juncosa, F., Albarracín Orio, A.G., Luna, D.F., Molina, G., Lafi, J., & Ducasse D.A. (2020). Bacillus subtilis ALBA01 alleviates onion pink root by antagonizing the pathogen Setophoma terrestris and allowing physiological status maintenance. Eur J Plant Pathol. doi: 10.1007/s10658-020-02012-xspa
dc.relation.referencesSharma, A., Shahzad, B., Kumar, V., Kohli, S. K., Sidhu, G. P. S., Bali, A. S., ... & Zheng, B. (2019). Phytohormones regulate accumulation of osmolytes under abiotic stress. Biomolecules, 9(7), 285. doi: 10.3390/biom9070285spa
dc.relation.referencesSilva, P. A., Cosme, V. S., Rodrigues, K. C., Detmann, K. S., Leão, F. M., Cunha, R. L., ... & Pinheiro, H. A. (2017). Drought tolerance in two oil palm hybrids as related to adjustments in carbon metabolism and vegetative growth. Acta physiologiae plantarum, 39(2), 58. doi: 10.1007/s11738-017-2354-4spa
dc.relation.referencesSimko, I., & Piepho, H. P. (2012). The area under the disease progress stairs: calculation, advantage, and application. Phytopathology, 102(4), 381-389.spa
dc.relation.referencesSingh, D., Yadav, D. K., Chaudhary, G., Rana, V. S., & Sharma, R. K. (2016). Potential of Bacillus amyloliquefaciens for biocontrol of bacterial wilt of tomato incited by Ralstonia solanacearum. J Plant Pathol Microbiol, 7:327. doi: 10.4172/2157-7471.1000327spa
dc.relation.referencesSinha, R., Gupta, A., & Senthil-Kumar, M. (2017). Concurrent drought stress and vascular pathogen infection induce common and distinct transcriptomic responses in chickpea. Frontiers in plant science, 8, 333. doi: 10.3389/fpls.2017.00333/fullspa
dc.relation.referencesSohag, A. A. M., Tahjib-Ul-Arif, M., Brestič, M., Afrin, S., Sakil, M. A., Hossain, M. T., ... & Hossain, M. A. (2020). Exogenous salicylic acid and hydrogen peroxide attenuates drought stress in rice. Plant Soil Environ, 66:7-13. doi: 10.17221/472/2019-PSEspa
dc.relation.referencesSong, A., Li, P., Fan, F., Li, Z., & Liang, Y. (2014). The effect of silicon on photosynthesis and expression of its relevant genes in rice (Oryza sativa L.) under high-zinc stress. PLoS One, 9(11):e113782. doi:10.1371/journal.pone.0113782spa
dc.relation.referencesTahir, H. A. S., Gu, Q., Wu, H., Raza, W., Safdar, A., Huang, Z., ... & Gao, X. (2017). Effect of volatile compounds produced by Ralstonia solanacearum on plant growth promoting and systemic resistance inducing potential of Bacillus volatiles. BMC plant biology, 17(1), 1-16. doi: 10.1186/s12870-017-1083-6spa
dc.relation.referencesTan, S., Gu, Y., Yang, C., Dong, Y., Mei, X., Shen, Q., & Xu, Y. (2016). Bacillus amyloliquefaciens T-5 may prevent Ralstonia solanacearum infection through competitive exclusion. Biology and Fertility of Soils, 52(3), 341-351. doi: 10.1007/s00374-015-1079-z.spa
dc.relation.referencesTurner, M., Jauneau, A., Genin, S., Tavella, M. J., Vailleau, F., Gentzbittel, L., & Jardinaud, M. F. (2009). Dissection of bacterial wilt on Medicago truncatula revealed two type III secretion system effectors acting on root infection process and disease development. Plant Physiology, 150 (4):1713–1722. doi: 10.1104/pp.109.141523.spa
dc.relation.referencesUgena, L., Hýlová, A., Podlešáková, K., Humplík, J. F., Doležal, K., Diego, N. D., & Spíchal, L. (2018). Characterization of biostimulant mode of action using novel multi-trait high-throughput screening of Arabidopsis germination and rosette growth. Frontiers in Plant Science, 9, 1327.spa
dc.relation.referencesVan Oosten, M. J., Pepe, O., De Pascale, S., Silletti, S., & Maggio, A. (2017). The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chemical and Biological Technologies in Agriculture, 4(1), 5. doi: 10.1186/s40538-017-0089-5spa
dc.relation.referencesWang, H. C., Guo, H., Cai, L., Cai, L. T., Guo, Y. S., & Ding, W. (2019). Effect of temperature on phenotype characterization of Ralstonia solanacearum from tobacco. Canadian Journal of Plant Pathology, 1-18.spa
dc.relation.referencesWang, R., Gao, M., Ji, S., Wang, S., Meng, Y., & Zhou, Z. (2016). Carbon allocation, osmotic adjustment, antioxidant capacity and growth in cotton under long-term soil drought during flowering and boll-forming period. Plant Physiology and Biochemistry, 107, 137-146.spa
dc.relation.referencesWang, W., Qiu, Y., Qiu, S., Ke, Y., & Pan, T. (2014). Photosynthetic characteristics and chloroplast ultrastructure of sweet potato leaves infected by Ralstonia solanacearum. Journal of Tropical and Subtropical Botany, 22(6), 610-616.spa
dc.relation.referencesWen-ying, Y., Wei-ying, W., Q., Yong-xiang, Yu-qin, K., Wei, W., & Zhi-dong, C. (2008). Salicylic acid induced sweet potato resistance to Ralstonia solanacearum through antioxidant enzymes. Journal of Fujian Agriculture and Forestry University (Natu. Sci. Ed.). 37: 23-26.spa
dc.relation.referencesXiao, X., Lin, W., Li, K., Li, W., Gao, X., & Lv, L. (2017). Early burst of reactive oxygen species positively regulates resistance of eggplant against bacterial wilt. Journal of Phytopathology, 165(10), 652–661. doi:10.1111/jph.12604spa
dc.relation.referencesYabuuchi, E., Kosako, Y., Yano, I., Hotta, H., & Nishiuchi. Y. (1995). Transfer of two Burkholderia and an Alcaligenes species to Ralstonia genus nov.: proposal of Ralstonia pickettii (Ralston, Palleroni and Douderoff 1973) comb.nov., Ralstonia solanacearum (Smith 1896) comb. nov. and Ralstonia eutropha (Davis 1969) comb. nov. Microbiology and Immunology, 39, 897-904.spa
dc.relation.referencesYuliar, N. Y. A., & Toyota, K. (2015). Recent trends in control methods for bacterial wilt diseases caused by Ralstonia solanacearum. Microbes and environments. 30(1): 1-11. doi: 10.1264/jsme2.ME14144.spa
dc.relation.referencesZhang, Y., Liang, Y., Zhao, X., Jin, X., Hou, L., Shi, Y., & Ahammed, G. J. (2019). Silicon compensates phosphorus deficit-induced growth inhibition by improving photosynthetic capacity, antioxidant potential, and nutrient homeostasis in tomato. Agronomy, 9(11), 733. doi: 10.3390/agronomy9110733.spa
dc.relation.referencesZhang, Y., Shi, Y., Gong, H., Zhao, H., Li, H., Hu, Y., & Wang, Y. (2018). Beneficial effects of silicon on photosynthesis of tomato seedlings under water stress. Journal of Integrative Agriculture, 17(10), 2151–2159. doi:10.1016/s2095-3119(18)62038-6spa
dc.relation.referencesZhao, C., Wang, H., Lu, Y., Hu, J., Qu, L., Li, Z., Wang, D., He, Y., Valls, M., Coll, N. S, Chen, Q., & Lu, H. (2019). Deep Sequencing Reveals Early Reprogramming of Arabidopsis Root Transcriptomes Upon Ralstonia solanacearum Infection. Molecular plant-microbe interactions, 32, 813-827. doi: 10.1094/MPMI-10-18-0268-Rspa
dc.relation.referencesZheng, X., Zhu, Y., Liu, B., Lin, N., & Zheng, D. (2017). Invasive properties of Ralstonia solanacearum virulent and avirulent strains in tomato roots. Microbial pathogenesis, 113, 144-151. doi: 0.1016/j.micpath.2017.10.046spa
dc.relation.referencesZuur, A., Ieno, E. N., Walker, N., Saveliev, A. A., & Smith, G. M. (2009). Mixed effects models and extensions in ecology with R. Springer Science & Business Media. Chapter 5.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.agrovocEnfermedad de mokospa
dc.subject.agrovocmoko diseaseeng
dc.subject.agrovocbioestimulantesspa
dc.subject.agrovocbiostimulantseng
dc.subject.agrovocEstrés bióticospa
dc.subject.agrovocbiotic stresseng
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::632 - Lesiones, enfermedades, plagas vegetalesspa
dc.subject.proposalRoot lenghteng
dc.subject.proposalLongitud de raícesspa
dc.subject.proposalMokoeng
dc.subject.proposalMokospa
dc.subject.proposalMusáceasspa
dc.subject.proposalMusaceaseng
dc.subject.proposalPlant defenseeng
dc.subject.proposalDefensa vegetalspa
dc.subject.proposalÁcido salicílicospa
dc.subject.proposalSalicylic acideng
dc.subject.proposalSilicon dioxideeng
dc.subject.proposalDióxido de siliciospa
dc.subject.proposalProlinaspa
dc.subject.proposalProlineeng
dc.titleRespuesta fisiológica inducida por bioestimulantes en plantas de plátano (Musa AAB) sometidas a estrés bióticos (Ralstonia solanacearum) en condiciones de viverospa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1121835531.2020.pdf
Tamaño:
2.27 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias Agrarias

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: