Operador Laplaciano Adaptado para Mallas Hibridas de Triángulos y Cuadrángulos

dc.contributorRomero, Eduardospa
dc.contributor.authorPinzon Fernandez, Alexanderspa
dc.date.accessioned2019-07-02T13:05:05Zspa
dc.date.available2019-07-02T13:05:05Zspa
dc.date.issued2016-01-29spa
dc.description.abstractEn las dos últimas décadas los métodos de modelado tridimensional utilizadas por los artistas han ido evolucionando y desarrollándose rápidamente, en parte gracias al uso de operadores vectoriales de geometría diferencial, como el operador de Laplace. Este operador permite modelar de una manera sencilla el comportamiento de aplicaciones complejas tales como la reducción de ruido, realce, remallado, mapeado UV, posado y esqueletonización, entre otros. Este operador Laplaciano es teóricamente definido en un dominio continuo y suave llamado variedad, las variedades son a menudo aproximadas por mallas discretas de polígonos compuestas por triángulos y cuadrángulos que a su vez representan objetos tridimensionales del mundo real que los artistas trabajan. En estas mallas se calcula la estructura espectral con el uso de algún operador Laplaciano discreto, la versión discreta del operador Laplaciano propuesta por Pinkall en el 1993 trabaja únicamente con mallas compuestas por triángulos, y la de Xiong en el 2011 trabaja exclusivamente con cuadrángulos. Esta tesis propone una extensión original del Operador Laplaciano que permite trabajar con mallas híbridas compuestas por triángulos y cuadrángulos. Junto con el operador, este trabajo presenta nuevas aplicaciones en esculpido y modelamiento con base en el realce, aplicaciones en subdivisión de superficies con el uso de suavizado, posado de mallas con el uso de coordenadas diferenciales y esqueletonización usando contracción iterativa. Esta serie de aplicaciones demuestra la calidad, predictibilidad y flexibilidad del operador propuesto. El operador propuesto fue usado con exitoso en las nuevas herramientas del software para gráficos 3D por computadora Blender. Actualmente estas herramientas están disponibles como programas de código abierto.spa
dc.description.abstractAbstract. In the last two decades three-dimensional modeling methods used by artists have been evolving and developing rapidly thanks to the use of vector operators of differential geometry such as the Laplacian operator. This operator allows to model in a simple way the behavior of complex applications such as noise reduction, enhancement, remeshing, UV mapping, posing and skeletonization, among others. The Laplacian operator is theoretically defined in a continuous and smooth domain named manifold. In practice manifolds are often approximated by discrete polygon meshes composed by triangles and quadrangles which represent the real world three-dimensional objects with which the artists work. In these meshes spectral structure is calculated using a discrete Laplacian operator, i.e. the discrete version of the Laplacian operator given by Pinkall in 1993. This approach only worked with triangle meshes. In 2011 Xiong extended the operator to work exclusively with quad meshes. This thesis proposes an original extension of the Laplacian operator that allows working with hybrid meshes composed by triangles and quadrangles. Along with the operator, this work presents new sculpting and modeling applications based on enhancement. Additionally applications on subdivision surfaces using smoothing, mesh posing using differential coordinates and skeletonization using iterative contraction are develop. This series of applications demonstrates the quality, predictability and flexibility of the proposed operator. The proposed operator was successfully used in new software tools in real production environment within 3D computer graphics software Blender. Currently these tools are available as open source software.spa
dc.description.degreelevelMaestríaspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.eprintshttp://bdigital.unal.edu.co/54005/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/57659
dc.language.isospaspa
dc.relation.ispartofUniversidad Nacional de Colombia Sede Bogotá Facultad de Ingeniería Departamento de Ingeniería de Sistemas e Industrial Ingeniería de Sistemasspa
dc.relation.ispartofIngeniería de Sistemasspa
dc.relation.referencesPinzon Fernandez, Alexander (2016) Operador Laplaciano Adaptado para Mallas Hibridas de Triángulos y Cuadrángulos. Maestría thesis, Universidad Nacional de Colombia - Sede Bogota.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc0 Generalidades / Computer science, information and general worksspa
dc.subject.ddc62 Ingeniería y operaciones afines / Engineeringspa
dc.subject.proposalSmoothspa
dc.subject.proposalEnhancespa
dc.subject.proposalSculptingspa
dc.subject.proposalSpectral mesh processingspa
dc.titleOperador Laplaciano Adaptado para Mallas Hibridas de Triángulos y Cuadrángulosspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
80737844.2016.pdf
Tamaño:
8.08 MB
Formato:
Adobe Portable Document Format