Diameter growth, ontogenic traits, and silvicultural metrics of tropical trees in the Chocó biogeographic region

dc.contributor.advisorOrrego Suaza, Sergio Alonso
dc.contributor.advisorHernández Barajas, Freddy
dc.contributor.authorMartínez Forero, Camilo Enrique
dc.contributor.orcidMartínez Forero, Camilo Enrique [0009-0005-2318-2200]
dc.contributor.orcidHernández Barajas, Freddy [0000-0001-7459-3329]
dc.contributor.researchgroupBosques y Cambio Climático
dc.coverage.regionChocó (Colombia)
dc.date.accessioned2025-09-05T13:08:12Z
dc.date.available2025-09-05T13:08:12Z
dc.date.issued2025
dc.descriptionIlustraciones, mapasspa
dc.description.abstractThe biogeographical region of Chocó is of strategic importance for the conservation of biodiversity. However, its forests are being deforested at an accelerated rate, with illegal logging being one of the main causes. Management and conservation prescriptions must be based on the best possible scientific knowledge of the forests of the Chocó biogeographical region, which requires a rigorous study of the growth of the forest species of interest. Modeling diametric growth makes it possible to obtain values for ontogenic traits and silvicultural metrics that are important for forest management. In addition, dendrochronological methods allow for accurate measurements of tree diameter growth with annual resolution. These measurements allow researchers to reconstruct the diameter growth trajectories of tree populations, which exhibit considerable variation and heterogeneity as trees grow. This phenomenon, known in ecology as growth depensation, is partially explained by the autocorrelation present in the data. While several studies have modeled diameter growth using various quantitative approaches, few have rigorously accounted for the inherent autocorrelation in the data. In this study, dendrochronological data from five species from the Chocó biogeographical region were used to study their diameter growth. In the first chapter, two types of statistical models widely used to fit diameter growth curves—nonlinear least squares and nonlinear mixed-effects models—were compared, and their impact on the calculation of ontogenic traits and silvicultural metrics was evaluated. In the second chapter, a novel modeling approach was used that considered autocorrelation as an explanatory factor for growth depensation. This approach allowed for the estimation of biologically plausible ontogenic traits and silvicultural metrics for the studied species. This methodology could be applied to study the diameter growth of other tree species present in the Chocó biogeographical region and to propose appropriate strategies for their management and conservation in this biodiversity hotspot. (Tomado de la fuente)eng
dc.description.abstractEl Chocó biogeográfico es una región estratégica para la conservación de la biodiversidad. Sin embargo, sus bosques se están deforestando a un ritmo acelerado, siendo la tala ilegal de maderas finas una de las principales causas. Se requieren prescripciones de manejo y conservación fundamentadas en el mejor conocimiento científico posible de los bosques del Chocó biogeográfico, para lo cual es necesario un estudio riguroso del crecimiento de las especies forestales de interés. La modelación del crecimiento diamétrico permite obtener valores de rasgos ontogénicos y métricas silviculturales importantes para el manejo forestal. Los métodos dendrocronológicos, por su parte, posibilitan mediciones precisas del crecimiento diamétrico de los árboles con una resolución anual. Estas mediciones permiten reconstruir las trayectorias de crecimiento diamétrico de poblaciones de árboles, que evidencian una variación sustancial y heterogeneidad a medida que crecen. Este fenómeno, conocido en ecología como depensación del crecimiento, es explicado en parte por la autocorrelación que exhiben los datos. Si bien varios estudios modelan el crecimiento diamétrico usando diferentes aproximaciones cuantitativas, pocos han considerado rigurosamente la inherente autocorrelación en los datos. En esta investigación se utilizaron datos dendrocronológicos de cinco especies del Chocó biogeográfico para estudiar su crecimiento diamétrico. En el primer capítulo se compararon dos tipos de modelos estadísticos, los mínimos cuadrados no lineales y los modelos no lineales de efectos mixtos, ampliamente utilizados para ajustar curvas de crecimiento diamétrico, y se evaluó su efecto en el cálculo de rasgos ontogénicos y métricas silviculturales. En el segundo capítulo se empleó una novedosa aproximación de modelación que tiene en cuenta la autocorrelación como causa explicativa de la depensación del crecimiento. Esta aproximación permitió obtener rasgos ontogénicos y métricas silviculturales biológicamente razonables para las especies estudiadas, y podría aplicarse para analizar el crecimiento diamétrico de otras especies de árboles presentes en el Chocó biogeográfico, así como para proponer estrategias apropiadas de manejo y conservación en este hotspot de biodiversidad.spa
dc.description.curricularareaBosques Y Conservación Ambiental.Sede Medellín
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Bosques y Conservación Ambiental
dc.description.researchareaCrecimiento forestal
dc.description.sponsorshipThe data used in this study were obtained from projects funded by the National University of Colombia (No 4083), Colciencias (No 1118-714-51372), and the Expedition Antioquia 2013 research project. I received partial support from the Curricular Area in Forests and Environmental Conservation, National University of Colombia, Medellín.
dc.format.extent91 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88622
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.publisher.facultyFacultad de Ciencias Agrarias
dc.publisher.placeMedellín, Colombia
dc.publisher.programMedellín - Ciencias Agrarias - Maestría en Bosques y Conservación Ambiental
dc.relation.indexedLaReferencia
dc.relation.referencesÁlvarez, M. R., Arevalo, L. M., Barbosa, A. P., Cuéllar, M. R., Ladino, M. J., Olarte, C. P., Padilla, L. G., & Rivera, I. D. (2011). Boletín forestal 2008-2010. Subdirección de Ecosistemas e Información Ambiental, Instituto de Hidrología Meteorología y Estudios Ambientales.
dc.relation.referencesAnaya, J. A., Gutiérrez-Vélez, V. H., Pacheco-Pascagaza, A. M., Palomino-Ángel, S., Han, N., & Balzter, H. (2020). Drivers of Forest Loss in a Megadiverse Hotspot on the Pacific Coast of Colombia. Remote Sensing, 12(8), 1235. https://doi.org/10.3390/rs12081235
dc.relation.referencesAnderson-Teixeira, K. J., Herrmann, V., Rollinson, C. R., Gonzalez, B., Gonzalez-Akre, E. B., Pederson, N., Alexander, M. R., Allen, C. D., Alfaro-Sánchez, R., Awada, T., Baltzer, J. L., Baker, P. J., Birch, J. D., Bunyavejchewin, S., Cherubini, P., Davies, S. J., Dow, C., Helcoski, R., Kašpar, J., … Zuidema, P. A. (2022). Joint effects of climate, tree size, and year on annual tree growth derived from tree-ring records of ten globally distributed forests. Global Change Biology, 28(1), 245–266. https://doi.org/10.1111/gcb.15934
dc.relation.referencesAndrade, V. H. F., Machado, S. do A., Figueiredo Filho, A., Botosso, P. C., Miranda, B. P., & Schöngart, J. (2019). Growth models for two commercial tree species in upland forests of the Southern Brazilian Amazon. Forest Ecology and Management, 438, 215–223. https://doi.org/10.1016/j.foreco.2019.02.030
dc.relation.referencesAndreu-Hayles, L., Tejedor, E., D’Arrigo, R., Locosselli, G. M., Rodríguez-Catón, M., Daux, V., Oelkers, R., Pacheco-Solana, A., Paredes-Villanueva, K., & Rodríguez-Morata, C. (2023). Dendrochronological advances in the tropical and subtropical Americas: Research priorities and future directions. Dendrochronologia, 81, 126124. https://doi.org/10.1016/j.dendro.2023.126124
dc.relation.referencesBaker, T. R., Burslem, D. F. R. P., & Swaine, M. D. (2003). Associations between tree growth, soil fertility and water availability at local and regional scales in Ghanaian tropical rain forest. Journal of Tropical Ecology, 19(2), 109–125. https://doi.org/10.1017/S0266467403003146
dc.relation.referencesBates, D. M., & Watts, D. G. (1988). Nonlinear regression analysis and its applications. John Wiley & Sons, Inc.
dc.relation.referencesBertalanffy, V. L. (1976). Teoría general de los sistemas. México: Editorial Fondo de Cultura Económica, 336.
dc.relation.referencesBowman, D. M. J. S., Brienen, R. J. W., Gloor, E., Phillips, O. L., & Prior, L. D. (2013). Detecting trends in tree growth: not so simple. Trends in Plant Science, 18(1), 11–17. https://doi.org/10.1016/j.tplants.2012.08.005
dc.relation.referencesBox, G. E. P., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time series analysis: forecasting and control. John Wiley & Sons.
dc.relation.referencesBrienen, R. J. W., Schöngart, J., & Zuidema, P. A. (2016). Tree Rings in the Tropics: Insights into the Ecology and Climate Sensitivity of Tropical Trees (pp. 439–461). https://doi.org/10.1007/978-3-319-27422-5_20
dc.relation.referencesBrienen, R. J. W., & Zuidema, P. A. (2006a). Lifetime growth patterns and ages of Bolivian rain forest trees obtained by tree ring analysis. Journal of Ecology, 94(2), 481–493. https://doi.org/10.1111/j.1365-2745.2005.01080.x
dc.relation.referencesBrienen, R. J. W., & Zuidema, P. A. (2006b). The use of tree rings in tropical forest management: Projecting timber yields of four Bolivian tree species. Forest Ecology and Management, 226(1–3), 256–267. https://doi.org/10.1016/j.foreco.2006.01.038
dc.relation.referencesBrienen, R. J. W., Zuidema, P. A., & During, H. J. (2006). Autocorrelated growth of tropical forest trees: Unraveling patterns and quantifying consequences. Forest Ecology and Management, 237(1–3), 179–190. https://doi.org/10.1016/j.foreco.2006.09.042
dc.relation.referencesBrienen, R. J. W., Zuidema, P. A., & Martínez-Ramos, M. (2010). Attaining the canopy in dry and moist tropical forests: strong differences in tree growth trajectories reflect variation in growing conditions. Oecologia, 163(2), 485–496. https://doi.org/10.1007/s00442-009-1540-5
dc.relation.referencesBronisz, K., & Zasada, M. (2019). Comparison of Fixed- and Mixed-effects Approaches to Taper Modeling for Scots Pine in West Poland. Forests, 10(11), 975. https://doi.org/10.3390/f10110975
dc.relation.referencesBullock, S. H., Turner, R. M., Hastings, J. R., Escoto-Rodríguez, M., Ramírez, Z., López, A., & Luis Rodríguez, J. (2004). Variance of Size-Age Curves: Bootstrapping with Autocorrelation. Ecology, 85(8), 2114–2117.
dc.relation.referencesBurkhart, H. E., & Tomé, M. (2012). Modeling Forest Trees and Stands. In Modeling Forest Trees and Stands (Vol. 9789048131). Springer Netherlands. https://doi.org/10.1007/978-90-481-3170-9
dc.relation.referencesCastellanos, Y., Contreras, F., Zuleta, O., Ocoró, W., Puentes, M., Díaz, D., & Canaval, S. (2006). Plan de Manejo Forestal para un área de 23.651 ha de Propiedad del Consejo Comunitario del Alto Guapi en el Municipio de Guapi Departamento del Cauca.
dc.relation.referencesCintra, B. B. L., Schietti, J., Emillio, T., Martins, D., Moulatlet, G., Souza, P., Levis, C., Quesada, C. A., & Schöngart, J. (2013). Soil physical restrictions and hydrology regulate stand age and wood biomass turnover rates of Purus–Madeira interfluvial wetlands in Amazonia. Biogeosciences, 10(11), 7759–7774. https://doi.org/10.5194/bg-10-7759-2013
dc.relation.referencesComets, E., Lavenu, A., & Lavielle, M. (2017). Parameter estimation in nonlinear mixed effect models using saemix, an R implementation of the SAEM algorithm. Journal of Statistical Software, 80(3). https://doi.org/10.18637/jss.v080.i03
dc.relation.referencesConde, M. L. G., Piedade, M. T. F., Wittmann, F., Nascimento, R. G. M., & Schöngart, J. (2024). Evaluation of the management potential of timber resources in clearwater floodplain forests in the Amazon using growth models. Journal of Environmental Management, 351(July 2023), 119781. https://doi.org/10.1016/j.jenvman.2023.119781
dc.relation.referencesCONIF. (1996). Investigación Forestal del Pacífico Colombiano.
dc.relation.referencesCOOMES, D. A., & ALLEN, R. B. (2007). Effects of size, competition and altitude on tree growth. Journal of Ecology, 95(5), 1084–1097. https://doi.org/10.1111/j.1365-2745.2007.01280.x
dc.relation.referencesde-Miguel, S., Guzmán, G., & Pukkala, T. (2013). A comparison of fixed- and mixed-effects modeling in tree growth and yield prediction of an indigenous neotropical species (Centrolobium tomentosum) in a plantation system. Forest Ecology and Management, 291, 249–258. https://doi.org/10.1016/j.foreco.2012.11.026
dc.relation.referencesde-Miguel, S., Mehtätalo, L., Shater, Z., Kraid, B., & Pukkala, T. (2012). Evaluating marginal and conditional predictions of taper models in the absence of calibration data. Canadian Journal of Forest Research, 42(7), 1383–1394. https://doi.org/10.1139/x2012-090
dc.relation.referencesDe Micco, V., Carrer, M., Rathgeber, C. B. K., Julio Camarero, J., Voltas, J., Cherubini, P., & Battipaglia, G. (2019). From xylogenesis to tree rings: wood traits to investigate tree response to environmental changes. IAWA Journal, 40(2), 155–182. https://doi.org/10.1163/22941932-40190246
dc.relation.referencesEl Halimi, R. (2009). Nonlinear mixed-effects models and bootstrap resampling: Analysis of non-normal repeated measures in biostatistical practice. VDM Verlag Dr. Müller.
dc.relation.referencesFaber-Langendoen, D. (1992). Ecological constraints on rain forest management at Bajo Calima, western Colombia. Forest Ecology and Management, 53(1), 213–244. https://doi.org/https://doi.org/10.1016/0378-1127(92)90044-A
dc.relation.referencesFaber-Langendoen, D., & Gentry, A. H. (1991). The structure and diversity of rain forests at Bajo Calima, Choco Region, Western Colombia. Biotropica, 2–11.
dc.relation.referencesFox, J. C., Ades, P. K., & Bi, H. (2001). Stochastic structure and individual-tree growth models. Forest Ecology and Management, 154(1–2), 261–276. https://doi.org/10.1016/S0378-1127(00)00632-0
dc.relation.referencesFree, C. M., Matthew Landis, R., Grogan, J., Schulze, M. D., Lentini, M., & Dünisch, O. (2014). Management implications of long-term tree growth and mortality rates: A modeling study of big-leaf mahogany (Swietenia macrophylla) in the Brazilian Amazon. Forest Ecology and Management, 330, 46–54. https://doi.org/10.1016/j.foreco.2014.05.057
dc.relation.referencesFu, L., Lei, Y., Sharma, R. P., & Tang, S. (2013). Parameter estimation of nonlinear mixed-effects models using first-order conditional linearization and the EM algorithm. Journal of Applied Statistics, 40(2), 252–265. https://doi.org/10.1080/02664763.2012.740621
dc.relation.referencesGarcia, M. N., Hu, J., Domingues, T. F., Groenendijk, P., Oliveira, R. S., & Costa, F. R. C. (2022). Local hydrological gradients structure high intraspecific variability in plant hydraulic traits in two dominant central Amazonian tree species. Journal of Experimental Botany, 73(3), 939–952. https://doi.org/10.1093/jxb/erab432
dc.relation.referencesGarcía, O. (2019). Estimating reducible stochastic differential equations by conversion to a least-squares problem. Computational Statistics, 34(1), 23–46. https://doi.org/10.1007/s00180-018-0837-4
dc.relation.referencesGertsev, V. ., & Gertseva, V. . (2004). Classification of mathematical models in ecology. Ecological Modelling, 178(3–4), 329–334. https://doi.org/10.1016/j.ecolmodel.2004.03.009
dc.relation.referencesGiraldo, J. A., del Valle, J. I., González-Caro, S., David, D. A., Taylor, T., Tobón, C., & Sierra, C. A. (2023). Tree growth periodicity in the ever-wet tropical forest of the Americas. Journal of Ecology, 111(4), 889–902. https://doi.org/10.1111/1365-2745.14069
dc.relation.referencesGiraldo, J. A., & del Valle, J. I. (2011). Estudio del crecimiento de Prioria copaifera (Caesalpinaceae) mediante técnicas dendrocronológicas. Revista de Biología Tropical, 59(4), 1813–1831.
dc.relation.referencesGiraldo, J. A., del Valle, J. I., González-Caro, S., & Sierra, C. A. (2022). Intra-annual isotope variations in tree rings reveal growth rhythms within the least rainy season of an ever-wet tropical forest. Trees, 36(3), 1039–1052. https://doi.org/10.1007/s00468-022-02271-7
dc.relation.referencesGiraldo, J. A., del Valle, J. I., González‐Caro, S., David, D. A., Taylor, T., Tobón, C., & Sierra, C. A. (2023). Tree growth periodicity in the ever‐wet tropical forest of the Americas. Journal of Ecology, July 2022, 1–14. https://doi.org/10.1111/1365-2745.14069
dc.relation.referencesGiraldo, J. A., del Valle, J. I., Sierra, C. A., & Melo, O. (2020). Dendrochronological Potential of Trees from America’s Rainiest Region. In M. Pompa-García & J. J. Camarero (Eds.), Latin American Dendroecology (pp. 79–119). Springer International Publishing. https://doi.org/10.1007/978-3-030-36930-9_5
dc.relation.referencesGiraldo, V. D., & Del Valle, J. I. (2012). Modelación del crecimiento de Albizia niopoides (Mimosaceae) por métodos dendrocronológicos. Revista de Biología Tropical, 60(3), 1117–1136. https://doi.org/10.15517/rbt.v60i3.1762
dc.relation.referencesGregoire, T. G., & Schabenberger, O. (1996). A non-linear mixed-effects model to predict cumulative bole volume of standing trees. Journal of Applied Statistics, 23(2–3), 257–272. https://doi.org/10.1080/02664769624233
dc.relation.referencesGroenendijk, P., Sass-Klaassen, U., Bongers, F., & Zuidema, P. A. (2014). Potential of tree-ring analysis in a wet tropical forest: A case study on 22 commercial tree species in Central Africa. Forest Ecology and Management, 323, 65–78. https://doi.org/10.1016/j.foreco.2014.03.037
dc.relation.referencesHeskel, M. A., O’Sullivan, O. S., Reich, P. B., Tjoelker, M. G., Weerasinghe, L. K., Penillard, A., Egerton, J. J. G., Creek, D., Bloomfield, K. J., Xiang, J., Sinca, F., Stangl, Z. R., Martinez-de la Torre, A., Griffin, K. L., Huntingford, C., Hurry, V., Meir, P., Turnbull, M. H., & Atkin, O. K. (2016). Convergence in the temperature response of leaf respiration across biomes and plant functional types. Proceedings of the National Academy of Sciences, 113(14), 3832–3837. https://doi.org/10.1073/pnas.1520282113
dc.relation.referencesHuy, B., Canh Nam, L., Poudel, K. P., & Temesgen, H. (2021). Individual tree diameter growth modeling system for Dalat pine (Pinus dalatensis Ferré) of the upland mixed tropical forests. Forest Ecology and Management, 480. https://doi.org/10.1016/j.foreco.2020.118612
dc.relation.referencesIGAC. (1997). Mapa Digital de Suelos del Departamento de Chocó, República de Colombia. Escala 1:100.000. In Infraestructura Colombiana de Datos Espaciales. https://geoportal.igac.gov.co/contenido/datos-abiertos-agrologia
dc.relation.referencesIGAC. (2006). Mapa Digital de Suelos del Departamento de Valle del Cauca, República de Colombia. Escala 1:100.000. https://geoportal.igac.gov.co/contenido/datos-abiertos-agrologia
dc.relation.referencesInga, J. G., & del Valle, J. I. (2017). Log-relative growth: A new dendrochronological approach to study diameter growth in Cedrela odorata and Juglans neotropica, Central Forest, Peru. Dendrochronologia, 44, 117–129. https://doi.org/10.1016/j.dendro.2017.03.009
dc.relation.referencesKarger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R. W., Zimmermann, N. E., Linder, H. P., & Kessler, M. (2017). Climatologies at high resolution for the earth’s land surface areas. Scientific Data, 4. https://doi.org/10.1038/sdata.2017.122
dc.relation.referencesKohyama, T., Kubo, T., & Macklin, E. (2005). Effect of temporal autocorrelation on apparent growth rate variation in forest tree census data and an alternative distribution function of tree growth rate. Ecological Research, 20(1), 11–15. https://doi.org/10.1007/s11284-004-0007-8
dc.relation.referencesLacoste, J., & Alexandre, D. (1991). Le goupi (Goupia glabra Aubl), essence forestière d’avenir en Guyane : analyse bibliographique. Annales Des Sciences Forestières, 48(4), 429–441. https://doi.org/10.1051/forest:19910406
dc.relation.referencesLappi, J., & Bailey, R. L. (1988). A Height Prediction Model with Random Stand and Tree Parameters: An Alternative to Traditional Site Index Methods. Forest Science, 34(4), 907–927. https://doi.org/10.1093/forestscience/34.4.907
dc.relation.referencesLeal, C., & Restrepo, E. (2003). Unos bosques sembrados de aserríos. Historia de la extracción maderera en el Pacífico colombiano. Editorial Universidad de Antioquia.
dc.relation.referencesLeoni, J. M., da Fonseca, S. F., & Schöngart, J. (2011). Growth and population structure of the tree species Malouetia tamaquarina (Aubl.) (Apocynaceae) in the central Amazonian floodplain forests and their implication for management. Forest Ecology and Management, 261(1), 62–67. https://doi.org/10.1016/j.foreco.2010.09.025
dc.relation.referencesLindstrom, M. J., & Bates, D. M. (1990). Nonlinear Mixed Effects Models for Repeated Measures Data. Biometrics, 46(3), 673–687. https://doi.org/10.2307/2532087
dc.relation.referencesLocosselli, G. M., Brienen, R. J. W., Leite, M. de S., Gloor, M., Krottenthaler, S., Oliveira, A. A. de, Barichivich, J., Anhuf, D., Ceccantini, G., Schöngart, J., & Buckeridge, M. (2020). Global tree-ring analysis reveals rapid decrease in tropical tree longevity with temperature. Proceedings of the National Academy of Sciences, 117(52), 33358–33364. https://doi.org/10.1073/pnas.2003873117
dc.relation.referencesLópez, R., & Montero, M. (2005). Manual de identificación de especies forestales en Bosques Naturales con manejo certificable por comunidades. Instituto Amazónico de Investigaciones Científicas SINCHI.
dc.relation.referencesMarqués, L., Weng, E., Bugmann, H., Forrester, D. I., Rohner, B., Hobi, M. L., Trotsiuk, V., & Stocker, B. D. (2023). Tree Growth Enhancement Drives a Persistent Biomass Gain in Unmanaged Temperate Forests. AGU Advances, 4(5), e2022AV000859. https://doi.org/10.1029/2022AV000859
dc.relation.referencesMehtätalo, L., & Lappi, J. (2020). Biometry for Forestry and Environmental Data. Chapman and Hall/CRC. https://doi.org/10.1201/9780429173462
dc.relation.referencesMeng, S. X., Huang, S., Yang, Y., Trincado, G., & VanderSchaaf, C. L. (2009). Evaluation of population-averaged and subject-specific approaches for modeling the dominant or codominant height of lodgepole pine trees. Canadian Journal of Forest Research, 39(6), 1148–1158. https://doi.org/10.1139/X09-039
dc.relation.referencesMerle, C., López, O., Castellanos, Y., Macía, F., Parrot, I., Valderrama, M., & Reyes, P. (2018). Diagnóstico sintético del sector forestal en Colombia: principales características, barreras y oportunidades para su desarrollo. ONF Andina.
dc.relation.referencesMesa-Sánchez, O. J., & Rojo-Hernández, J. D. (2020). On the general circulation of the atmosphere around Colombia. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 44(172), 857–875. https://doi.org/10.18257/raccefyn.899
dc.relation.referencesMeyer, V., Saatchi, S., Ferraz, A., Xu, L., Duque, A., García, M., & Chave, J. (2019). Forest degradation and biomass loss along the Chocó region of Colombia. Carbon Balance and Management, 14(1), 2. https://doi.org/10.1186/s13021-019-0117-9
dc.relation.referencesMoreno, M. M., & del Valle, J. I. (2015). Influence of local climate and ENSO on the growth of Abarco (Cariniana pyriformis) in Chocó, Colombia. Trees, 29(1), 97–107. https://doi.org/10.1007/s00468-014-1094-y
dc.relation.referencesMuller‐Landau, H. C., Condit, R. S., Chave, J., Thomas, S. C., Bohlman, S. A., Bunyavejchewin, S., Davies, S., Foster, R., Gunatilleke, S., Gunatilleke, N., Harms, K. E., Hart, T., Hubbell, S. P., Itoh, A., Kassim, A. R., LaFrankie, J. V., Lee, H. S., Losos, E., Makana, J.-R., … Ashton, P. (2006). Testing metabolic ecology theory for allometric scaling of tree size, growth and mortality in tropical forests. Ecology Letters, 9(5), 575–588. https://doi.org/10.1111/j.1461-0248.2006.00904.x
dc.relation.referencesMyers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403(6772), 853–858. https://doi.org/10.1038/35002501
dc.relation.referencesOliveira, M. F. d. (2014). Critérios para o manejo sustentável de duas espécies madeireiras das florestas tropicais do Mato Grosso.
dc.relation.referencesOrrego, S., Montes, C., Restrepo, H. I., Bullock, B. P., & Zapata, M. (2021). Modeling height growth for teak plantations in Colombia using the reducible stochastic differential equation approach. Journal of Forestry Research, 32(3), 1035–1045. https://doi.org/10.1007/s11676-020-01174-y
dc.relation.referencesPanik, M. J. (2014). Growth curve modeling: theory and applications. John Wiley & Sons.
dc.relation.referencesPaulo, J. A., Tomé, J., & Tomé, M. (2011). Nonlinear fixed and random generalized height–diameter models for Portuguese cork oak stands. Annals of Forest Science, 68(2), 295–309. https://doi.org/10.1007/s13595-011-0041-y
dc.relation.referencesPérez-Escobar, O. A., Lucas, E., Jaramillo, C., Monro, A., Morris, S. K., Bogarín, D., Greer, D., Dodsworth, S., Aguilar-Cano, J., Sanchez Meseguer, A., & Antonelli, A. (2019). The Origin and Diversification of the Hyperdiverse Flora in the Chocó Biogeographic Region. In Frontiers in Plant Science (Vol. 10). Frontiers Media S.A. https://doi.org/10.3389/fpls.2019.01328
dc.relation.referencesPfister, C. A., & Stevens, F. R. (2002). The Genesis of Size Variability in Plants and Animals. Ecology, 83(1), 59–72.
dc.relation.referencesPienaar, L. V, & Turnbull, K. J. (1973). The Chapman-Richards generalization of von Bertalanffy’s growth model for basal area growth and yield in even - aged stands. Forest Science, 19(1), 2–22. https://doi.org/10.1093/forestscience/19.1.2
dc.relation.referencesPinheiro, J., & Bates, D. (2000). Mixed-Effects Models in S and S-PLUS. Springer-Verlag. https://doi.org/10.1007/b98882
dc.relation.referencesPinheiro, J., Bates, D., DebRoy, S., Sarkar, D., & R Core Team. (2021). nlme: Linear and Nonlinear Mixed Effects Models. https://cran.r-project.org/package=nlme
dc.relation.referencesPlan, E. L., Maloney, A., Mentré, F., Karlsson, M. O., & Bertrand, J. (2012). Performance comparison of various maximum likelihood nonlinear mixed-effects estimation methods for dose-response models. AAPS Journal, 14(3), 420–432. https://doi.org/10.1208/s12248-012-9349-2
dc.relation.referencesPoorter, L. (1999). Growth responses of 15 rain‐forest tree species to a light gradient: the relative importance of morphological and physiological traits. Functional Ecology, 13(3), 396–410. https://doi.org/10.1046/j.1365-2435.1999.00332.x
dc.relation.referencesPretzsch, H. (2009). Forest Dynamics, Growth, and Yield (H. Pretzsch (ed.)). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-88307-4_1
dc.relation.referencesPretzsch, H. (2020). The course of tree growth. Theory and reality. Forest Ecology and Management, 478(September), 118508. https://doi.org/10.1016/j.foreco.2020.118508
dc.relation.referencesR Core Team. (2024). A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.r-project.org/
dc.relation.referencesRicker, W. E. (1958). Handbook of computations for biological statistics of fish populations (Vol. 119). Fisheries Research Board of Canada.
dc.relation.referencesRosa, S. A., Barbosa, A. C. M. C., Junk, W. J., da Cunha, C. N., Piedade, M. T. F., Scabin, A. B., Ceccantini, G. C. T., & Schöngart, J. (2017). Growth models based on tree-ring data for the Neotropical tree species Calophyllum brasiliense across different Brazilian wetlands: implications for conservation and management. Trees - Structure and Function, 31(2), 729–742. https://doi.org/10.1007/s00468-016-1503-5
dc.relation.referencesRozendaal, D. M. A., Soliz-Gamboa, C. C., & Zuidema, P. A. (2011). Assessing long-term changes in tropical forest dynamics: a first test using tree-ring analysis. Trees, 25(1), 115–124. https://doi.org/10.1007/s00468-010-0478-x
dc.relation.referencesRüger, N., Berger, U., Hubbell, S. P., Vieilledent, G., & Condit, R. (2011). Growth Strategies of Tropical Tree Species: Disentangling Light and Size Effects. PLoS ONE, 6(9), e25330. https://doi.org/10.1371/journal.pone.0025330
dc.relation.referencesRüger, N., & Condit, R. (2012). Testing metabolic theory with models of tree growth that include light competition. Functional Ecology, 26(3), 759–765. https://doi.org/10.1111/j.1365-2435.2012.01981.x
dc.relation.referencesRunyan, C. W., & Stehm, J. (2020). Deforestation: Drivers, Implications, and Policy Responses. In Oxford Research Encyclopedia of Environmental Science. Oxford University Press. https://doi.org/10.1093/acrefore/9780199389414.013.669
dc.relation.referencesSalas-Eljatib, C. (2020). Height growth–rate at a given height: A mathematical perspective for forest productivity. Ecological Modelling, 431, 109198. https://doi.org/10.1016/j.ecolmodel.2020.109198
dc.relation.referencesSalas-Eljatib, C., Mehtätalo, L., Gregoire, T. G., Soto, D. P., & Vargas-Gaete, R. (2021). Growth Equations in Forest Research: Mathematical Basis and Model Similarities. In Current Forestry Reports (Vol. 7, Issue 4, pp. 230–244). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/s40725-021-00145-8
dc.relation.referencesSalas‐Eljatib, C. (2021). An approach to quantify climate–productivity relationships: an example from a widespread Nothofagus forest. Ecological Applications, 31(4), e02285. https://doi.org/10.1002/eap.2285
dc.relation.referencesSalas, C., Stage, A. R., & Robinson, A. P. (2008). Modeling Effects of Overstory Density and Competing Vegetation on Tree Height Growth. Forest Science, 54(1), 107–122. https://doi.org/10.1093/forestscience/54.1.107
dc.relation.referencesSchöngart, J. (2008). Growth-Oriented Logging (GOL): A new concept towards sustainable forest management in Central Amazonian várzea floodplains. Forest Ecology and Management, 256(1–2), 46–58. https://doi.org/10.1016/j.foreco.2008.03.037
dc.relation.referencesSchöngart, J. (2010). Growth-Oriented Logging (GOL): The Use of Species-Specific Growth Information for Forest Management in Central Amazonian Floodplains. In W. J. Junk, M. T. F. Piedade, F. Wittmann, J. Schöngart, & P. Parolin (Eds.), Amazonian Floodplain Forests: Ecophysiology, Biodiversity and Sustainable Management (pp. 437–462). Springer Netherlands. https://doi.org/10.1007/978-90-481-8725-6_21
dc.relation.referencesSchöngart, J., Bräuning, A., Barbosa, A. C. M. C., Lisi, C. S., & de Oliveira, J. M. (2017). Dendroecological Studies in the Neotropics: History, Status and Future Challenges. In M. M. Amoroso, L. D. Daniels, P. J. Baker, & J. J. Camarero (Eds.), Dendroecology: Tree-Ring Analyses Applied to Ecological Studies (pp. 35–73). Springer International Publishing. https://doi.org/10.1007/978-3-319-61669-8_3
dc.relation.referencesSiliprandi, N. C., Nogueira, E. M., Toledo, J. J., Fearnside, P. M., & Nascimento, H. E. M. (2016). Inter-site variation in allometry and wood density of Goupia glabra Aubl. in Amazonia. Brazilian Journal of Biology, 76(1), 268–276. https://doi.org/10.1590/1519-6984.22514
dc.relation.referencesToledo, M., Poorter, L., Peña‐Claros, M., Alarcón, A., Balcázar, J., Leaño, C., Licona, J. C., Llanque, O., Vroomans, V., Zuidema, P., & Bongers, F. (2011). Climate is a stronger driver of tree and forest growth rates than soil and disturbance. Journal of Ecology, 99(1), 254–264. https://doi.org/10.1111/j.1365-2745.2010.01741.x
dc.relation.referencesvan Eynde, K., & Blomley, T. (2015). Causas de la ilegalidad de la madera en Colombia (P. Pedraza (trans.)). World Wildlife Fund [WWF]. http://d2ouvy59p0dg6k.cloudfront.net/downloads/ilegalidadmadera_m3_b18_c5_web.pdf
dc.relation.referencesVanclay, J. K. (1994). Modelling forest growth and yield: applications to mixed tropical forests. Cab International.
dc.relation.referencesWorbes, M., & Schöngart, J. (2019). Measures for sustainable forest management in the tropics – A tree-ring based case study on tree growth and forest dynamics in a Central Amazonian lowland moist forest. PLoS ONE, 14(8). https://doi.org/10.1371/journal.pone.0219770
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::634 - Huertos, frutas, silvicultura
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::635 - Cultivos hortícolas (Horticultura)
dc.subject.lembDiversidad biológica - Chocó
dc.subject.lembSilvicultura - Chocó
dc.subject.lembOntogenia de plantas - Chocó
dc.subject.lembPlantas tropicales - Chocó
dc.subject.lembArboles - Anillos de crecimiento - Chocó
dc.subject.proposalGrowth depensationeng
dc.subject.proposalGrowth autocorrelationeng
dc.subject.proposalTree-ringseng
dc.subject.proposalGrowth modelingeng
dc.subject.proposalMixed-effects modelseng
dc.subject.proposalDepensación del crecimientospa
dc.subject.proposalAutocorrelaciónspa
dc.subject.proposalAnillos de crecimientospa
dc.subject.proposalModelación del crecimientospa
dc.subject.proposalModelos de efectos mixtosspa
dc.titleDiameter growth, ontogenic traits, and silvicultural metrics of tropical trees in the Chocó biogeographic regioneng
dc.title.translatedCrecimiento diamétrico, rasgos ontogénicos y métricas silviculturales de árboles tropicales del Chocó biogeográficospa
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentPúblico general
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis de Maestría en Bosques y Conservación Ambiental
Tamaño:
3.13 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 3 de 3
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
Cargando...
Miniatura
Nombre:
Licencia capitulo 1.pdf
Tamaño:
128.84 KB
Formato:
Adobe Portable Document Format
Descripción:
Cargando...
Miniatura
Nombre:
Licencia capitulo 2.pdf
Tamaño:
167.51 KB
Formato:
Adobe Portable Document Format
Descripción: