Evaluación agroindustrial de bloques nutricionales para alimentación de precisión bovina con potencial de mitigación de gas metano

dc.contributor.advisorHleap Zapata, José Igor
dc.contributor.advisorArango Mejía, Jacobo
dc.contributor.authorMazabel Parra, Lady Johanna
dc.contributor.orcid0000-0002-7494-4608spa
dc.date.accessioned2024-10-08T15:21:43Z
dc.date.available2024-10-08T15:21:43Z
dc.date.issued2024-06-21
dc.descriptionIlustraciones, fotografías, tablasspa
dc.description.abstractLa agroindustria alimentaria produce bloques nutricionales para el sector ganadero bovino, como una opción para mejorar la calidad de la dieta animal, su salud y rendimientos productivos. Sin embargo, en concordancia con la demanda de reducciones de emisiones de gases efecto invernadero (GEI) por parte de la ganadería, principalmente de gas metano (CH4), se hace necesario que los productos, brinden sus beneficios nutritivos en proporciones equilibradas para una alimentación de precisión, y que también aporten en la mitigación del cambio climático. Este estudio, fue llevado a cabo en el campus del Centro Internacional de agricultura Tropical (CIAT), Palmira, Valle del Cauca. Su objetivo fue la evaluación de bloques nutricionales para bovinos en etapa de levante. Para la elaboración de los bloques se usaron: frutos de Enterolobium cyclocarpum (EC), hojas de Tithonia diversifolia (TD), vainas (LP) y hojas de Leucaena leucophela CIAT20561 (LL). Un Bloque comercial (BC) fue empleado para control. Durante el estudio, se llevaron a cabo mediciones durante un periodo de 60 días, realizando tomas de datos cada 15 días. Los parámetros evaluados fueron: composición química, análisis textural, análisis de color, pH, actividad de agua y presencia de microorganismos. Adicionalmente, una prueba in vitro de producción de gas, simulando condiciones ruminales, permitió evaluar la concentración de gas metano producido cuando un bloque nutricional es incubado con Urochloa brizantha cultivar Toledo, como dieta basal. Los resultados obtenidos revelan productos finales (BLL, BLP y BMix) con altos contenidos nutricionales para los bovinos, beneficios significativos (p≤0.05) en la producción de CH4 entérico y una alternativa de uso para aprovechar frutos de leguminosas con potencial de mitigación. (Texto tomado de la fuente).spa
dc.description.abstractFood agro industrial produces nutritional blocks for the bovine livestock sector, as an option to improve the quality of the animal diet, its health and productive performance. However, in accordance with the demand for reductions in greenhouse gas (GHG) emissions by livestock farming, mainly methane gas (CH4), it is necessary for products to provide their nutritional benefits in balanced proportions for a healthy diet of precision, and that also contribute to the mitigation of climate change. This study was carried out at campus of International Center for Tropical Agriculture (CIAT), Palmira, Valle del Cauca. Its Objective was evaluation of nutritional blocks for cattle in the rearing stage. To prepare the blocks, the following were used: fruits of Enterolobium cyclocarpum (EC), leaves of Tithonia diversifolia (TD), pods (LP) and leaves of Leucaena leucophela CIAT20561 (LL). A Commercial Block (BC) was used like control. During the study, measurements were carried out over a period of 60 days, taking data every 15 days. The parameters evaluated were chemical composition, textural analysis, color analysis, pH, water activity and presence of microorganisms. Additionally, in vitro gas production test run, simulating ruminal conditions. Evaluated methane concentration produced when a nutritional block is incubated with Urochloa brizantha cultivar Toledo, as basal diet. The results obtained showed final products (BLL, BLP and BMix) with high nutritional contents for cattle, significant benefits (p≤0.05) in the production of enteric CH4 and an alternative use like advantage of legume fruits with mitigation potential.eng
dc.description.curricularareaIngeniería.Sede Palmiraspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería Agroindustrialspa
dc.description.methodsEste estudio, fue llevado a cabo en el campus del Centro Internacional de agricultura Tropical (CIAT), Palmira, Valle del Cauca Su objetivo fue la evaluación de bloques nutricionales para bovinos en etapa de levante. Para la elaboración de los bloques se usaron: frutos de Enterolobium cyclocarpum (EC), hojas de Tithonia diversifolia (TD), vainas (LP) y hojas de Leucaena leucophela CIAT20561 (LL). Un Bloque comercial (BC) fue empleado para control. Durante el estudio, se llevaron a cabo mediciones durante un periodo de 60 días, realizando tomas de datos cada 15 días. Los parámetros evaluados fueron: composición química, análisis textural, análisis de color, pH, actividad de agua y presencia de microorganismos. Adicionalmente, una prueba in vitro de producción de gas, simulando condiciones ruminales, permitió evaluar la concentración de gas metano producido cuando un bloque nutricional es incubado con Urochloa brizantha cultivar Toledo, como dieta basal.spa
dc.description.researchareaAgroindustria de Productos Alimentariosspa
dc.format.extentxvi, 68 páginas + anexosspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86912
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Palmiraspa
dc.publisher.facultyFacultad de Ingeniería y Administraciónspa
dc.publisher.placePalmira, Valle del Cauca, Colombiaspa
dc.publisher.programPalmira - Ingeniería y Administración - Maestría en Ingeniería Agroindustrialspa
dc.relation.referencesAboagye, I. A., Oba, M., Castillo, A. R., Koenig, K. M., Iwaasa, A. D., & Beauchemin, K. A. (2018). Effects of hydrolyzable tannin with or without condensed tannin on methane emissions, nitrogen use and performance of beef cattle fed a high-forage diet. Journal of Animal Science, 96(12), 5276-5286. https://doi.org/10.1093/jas/sky352spa
dc.relation.referencesAdejoro, F. A., Hassen, A., Akanmu, A. M., & Morgavi, D. P. (2020). Replacing urea with nitrate as a non-protein nitrogen source increases lambs’ growth and reduces methane production, whereas acacia tannin has no effect. Animal Feed Science and Technology, 259, 114360. https://doi.org/10.1016/j.anifeedsci.2019.114360spa
dc.relation.referencesAdi, D., Oduro, I. N., & Tortoe, C. (2019). Physicochemical changes in plantain during normal storage ripening. Scientific African, 6, e00164. https://doi.org/10.1016/j.sciaf.2019.e00164spa
dc.relation.referencesArias, L. C., Soriano, R., Losada, H., Rivera., & Cortés, J. (2005). Multi ­ nutrient blocks with fresh fruit of Pitaya (Stenocereus griseus) replacing sugar cane molasses. Livestock Research for Rural Development.,17(4), 37. [Online}: http://www.lrrd.org/lrrd17/4/aria17037.htmspa
dc.relation.referencesArreaza, L. C. (2004). Utilizacion Del Sistema CNCPS Como Herramienta De Soporte Para La Investigación En Forrajes Tropicales. Primera Reunión de la Red Temática de Recuersos Forrajeros. Coorpoica. Bogota, Colombia. [Online]: http://tiesmexico.cals.cornell.edu/courses/shortcourse2/minisite/herramienta.htmspa
dc.relation.referencesANDI. (2022). Balance 2022 Y Perspectivas 2023. Asociación Nacional de Industriales - ANDI. 1–124. [Online]: https://www.andi.com.co/Home/Camara/17-industria-de-alimentos-balanceadosspa
dc.relation.referencesAOAC. (1989). Association of Official Analytical Chemists. Official Methods of Analysis. Microbiological methods. Method 966.23-1989: Microbiological methods. Washington DC. AOAC Internationalspa
dc.relation.referencesAOAC. (2005). Association of Official Analytical Chemists . Official Methods of Analysis. Method 2001.11-2005: Protein (crude) in animal feed,Forage (plant tissue),Grain,and oilseeds. Block digestion method using copper catalyst and steam distillation into boric acid. Gaithersburg. MD . AOAC Internationalspa
dc.relation.referencesBalehegn, M., Duncan, A., Tolera, A., Ayantunde, A. A., Issa, S., Karimou, M., . . . Adesogan, A. T. (2020). Improving adoption of technologies and interventions for increasing supply of quality livestock feed in low- and middle-income countries. Global Food Security, 26, 100372. https://doi.org/10.1016/j.gfs.2020.100372spa
dc.relation.referencesBarrientos, L., Vargas-Radillo, J. J., Segura-Nieto, M., Manríquez-González, R., & López-Dellamary Toral, F. A. (2015). Nutritional evaluation of mature seeds of Enterolobium cyclocarpum (parota) from diverse ecological zones in western Mexico. Bosque (Valdivia) , 36(1), 95–104. https://doi.org/10.4067/S0717-92002015000100010spa
dc.relation.referencesBeauchemin, K. A., Ungerfeld, E. M., Abdalla, A. L., Alvarez, C., Arndt, C., Becquet, P., . . Kebreab, E. (2022). Invited review: Current enteric methane mitigation options. Journal of Dairy Science, 105(12), 9297–9326. https://doi.org/10.3168/jds.2022-22091spa
dc.relation.referencesBerça, A. S., Tedeschi, L. O., Da silva, C. A., & Andrade, A. (2023). Meta-analysis of the relationship between dietary condensed tannins and methane emissions by cattle. Animal Feed Science and Technology, 298(1), 115564 https://doi.org/https://doi.org/10.1016/j.anifeedsci.2022.115564spa
dc.relation.referencesBhatta, R., Uyeno, Y., Tajima, K., Takenaka, A., Yabumoto, Y., Nonaka, I., . . . Kurihara, M. (2009). Difference in the nature of tannins on in vitro ruminal methane and volatile fatty acid production and on methanogenic archaea and protozoal populations. Journal of Dairy Science, 92(11), 5512–5522. https://doi.org/10.3168/jds.2008-1441spa
dc.relation.referencesBoval, M., & Dixon, R. M. (2012). The importance of grasslands for animal production and other functions: A review on management and methodological progress in the tropics. Animal, 6(5), 748–762. https://doi.org/10.1017/S1751731112000304spa
dc.relation.referencesCalle Díaz, Z., & Murgueitio, E. (2020). Árboles nativos para predios ganaderos: especies focales del Proyecto Ganadería Colombiana Sostenible. Árboles nativos para predios ganaderos: especies focales del Proyecto Ganadería Colombiana Sostenible. [Online]: https://bit.ly/3W5cF5Cspa
dc.relation.referencesCardoso-Gutierrez, E., Aranda-Aguirre, E., Robles-Jimenez, L. E., Castelán-Ortega, O. A., Chay-Canul, A. J., Foggi, G., . . . González-Ronquillo, M. (2021). Effect of tannins from tropical plants on methane production from ruminants: A systematic review. Veterinary and Animal Science, 14(1), 100214. https://doi.org/10.1016/j.vas.2021.100214spa
dc.relation.referencesCarrillo, M. L. C., & Munguía, A. (2007). Vida útil de los alimentos. Revista Iberoamericana de Las Ciencias Biológicas y Agropecuarias, 2(3), e2007-9990. https://doi.org/10.23913/ciba.v2i3.20spa
dc.relation.referencesCastro-Montoya, J., De Campeneere, S., Van Ranst, G., & Fievez, V. (2012). Interactions between methane mitigation additives and basal substrates on in vitro methane and VFA production. Animal Feed Science and Technology, 176, 47–60. https://doi.org/10.1016/j.anifeedsci.2012.07.007spa
dc.relation.referencesChará, J., Rivera, J., Barahona, R., Murgueitio R, E., Deblitz, C., Reyes, E., . . . Zuluaga, A. (2017). Intensive silvopastoral systems: economics and contribution to climate change mitigation and public policies. Integrating landscapes: Agroforestry for biodiversity conservation and food sovereignty. Advances in Agroforestry, 12, 395-416. Springer, Cham. https://doi.org/10.1007/978-3-319-69371-2_16spa
dc.relation.referencesCook, B. G., Pengelly, B. C., Schultze-Kraft, R., Taylor, M., Burkart, S., Cardoso, J., . . . Peters, M. (2020). Tropical Forages: an interactive selection tool. 2nd and revised Edn. [Online]: http://www.tropicalforages.info/spa
dc.relation.referencesCorporación autónoma regional del Valle del Cauca, y Instituto Geográfico Agustín Codazzi. 2021. Geoportal CVC. [Online]: https://geo.cvc.gov.co/visores/suelos/16/spa
dc.relation.referencesDayioğlu, M. A., & Türker, U. (2021). Digital transformation for sustainable future-agriculture 4.0: A review. Journal of Agricultural Sciences, 27(4), 373–399. https://doi.org/10.15832/ankutbd.986431spa
dc.relation.referencesDickinson, R. A., Morton, J. M., Beggs, D. S., Anderson, G. A., Pyman, M. F., . . . Blackwood, C. B. (2013). An automated walk-over weighing system as a tool for measuring liveweight change in lactating dairy cows. Journal of Dairy Science, 96(7), 4477–4486. https://doi.org/10.3168/jds.2012-6522spa
dc.relation.referencesDogan Comert, E., Burçe Ataç., & Mogol, V. G. (2020). Current Research in Food Science Relationship between color and antioxidant capacity of fruits and vegetables . Current Research in Food Science, 2, 1–10. https://doi.org/10.1016/j.crfs.2019.11.001spa
dc.relation.referencesDurango, S. G. D., Rosales, R. B., Vergara, D. M. B., Chirinda, N., & Arango, J. (2021). Feeding strategies to increase nitrogen retention and improve rumen fermentation and rumen microbial population in beef steers fed with tropical forages. Sustainability, 13(18), 10312. https://doi.org/10.3390/su131810312spa
dc.relation.referencesEgan, A. R. (2017). Animal Nutrition and Feed Science. Engineering, 3(5), 586–587. https://doi.org/10.1016/J.ENG.2017.05.025spa
dc.relation.referencesEnciso, K., Sotelo, M., Peters, M., & Burkart, S. (2019). The inclusion of Leucaena diversifolia in a Colombian beef cattle production system: An economic perspective. Tropical Grasslands, 7(4), 359–369. https://doi.org/10.17138/TGFT(7)359-369spa
dc.relation.referencesEngland, P. H. (2017). Determination of water activity in foods. National Infection Service Food, Water and Environmental Microbiology Standard Method Ed. 2 London , UK : PHE publicationsspa
dc.relation.referencesEPA. (2019). Global Non-CO2 Greenhouse Gas Emission Projections & Mitigation: 2015 -2050. U.S. Environmental Protection Agency, EPA 430-R-19-010. [Online]: https://www.epa.gov/global-mitigation-non-co2-greenhouse-gases/global-non-co2-greenhouse-gas-emission-projectionsspa
dc.relation.referencesEPA (2023) Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2021. U.S. Environmental Protection Agency, EPA 430-R-23-002. [Online]: https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-andsinks-1990-2021.spa
dc.relation.referencesEspitia, L. M. (2016). Evaluación de la calidad composicional de la leche influenciada por el periodo de transición en vacas doble porpósito en el tropico bajo colombiano. [ Tesis , Universidad de la Salle]. [Online]: https://ciencia.lasalle.edu.co/cgi/viewcontent.cgi?article=1280&context=medicina_veterinariaspa
dc.relation.referencesEvangelista, C., Basiricò, L., & Bernabucci, U. (2021). An overview on the use of near infrared spectroscopy (nirs) on farms for the management of dairy cows. Agriculture, 11(4), 296. https://doi.org/10.3390/agriculture11040296spa
dc.relation.referencesFAO .2009. Global agriculture towards 2050 The challenge. Roma, Italia. [Online]:https://www.fao.org/fileadmin/templates/wsfs/docs/Issues_papers/HLEF2050_Global_Agriculture.pdfspa
dc.relation.referencesFAO. 2023. Methane emissions in livestock and rice systems. Roma, Italia. [Online]: https://doi.org/10.4060/cc7607enspa
dc.relation.referencesFernández, A.., Izquierdo, P., Valero, K., Allara,M., Pinero, M., & Gsrcía, (2006). A Efecto del Tiempo y Temperatura de Almacenamiento Sobre la Calidad Microbiológica de Carne de Hamburguesa. Revista Cientifica, 16(4), 315–324. [Online]: http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0798-22592006000400013&lng=es&nrm=isospa
dc.relation.referencesFrance, J., Dhanoa, M. S., Theodorou, M. K., Lister, S. J., Davies, D. R., & Isac, D. (1993). A model to interpret gas accumulation profiles associated with in vitro degradation of ruminant feeds. Journal of Theoretical Biology, 163(1), 99–111. https://doi.org/10.1006/jtbi.1993.1109spa
dc.relation.referencesFurtado, D. A., Castro, T. B. D. S., Neto, J. P. L., Constantino, R. A., Cunha, M. G. G., & Nascimento, J. W. B. (2018). P Physical-mechanical properties of multinutrient blocks with different binders for goats and sheep intake. Revista Brasileira de Engenharia Agrícola e Ambiental, 22(8), 558–563. https://doi.org/10.1590/1807-1929/agriambi.v22n8p558-563spa
dc.relation.referencesGaviria-Uribe, X., Bolivar, D. M., Rosenstock, T. S., Molina-Botero, I. C., Chirinda, N., Barahona, R.,& Arango, J. (2020). Nutritional Quality, Voluntary Intake and Enteric Methane Emissions of Diets Based on Novel Cayman Grass and Its Associations With Two Leucaena Shrub Legumes. Frontiers in Veterinary Science, 7, 1–12. https://doi.org/10.3389/fvets.2020.579189spa
dc.relation.referencesGodoy, D., Gonzales, J., Roque, R., Fernández, M., Gamarra, S., Hidalgo, V., & Gómez, C. (2021). Use of unconventional agro-industrial by-products for supplementation of grazing dairy cattle in the Peruvian Amazon region. Tropical Animal Health and Production, 53(2), 294. https://doi.org/10.1007/s11250-021-02718-yspa
dc.relation.referencesGonzález Garcia, U. A., Corona Gochi, L., Flores, J. G. E., Amesquita, D. K. A., & González Ronquillo, M. (2017). Digestión Ruminal e Intestinal del Maíz (Zea Mays) y Sorgo (Sorghum Bicolor L. Moench) utilizando diferentes técnicas de digestibilidad (In Vivo, In Vitro e In Sacco). Tropical and Subtropical Agroecosystems, 20(2), 183–194. [Online]: https://www.redalyc.org/articulo.oa?id=93952506003spa
dc.relation.referencesGonzález, L. A., Kyriazakis, I., & Tedeschi, L. O. (2018). Review: Precision nutrition of ruminants: Approaches, challenges and potential gains. Animal, 12(s2), s246–S261. https://doi.org/10.1017/S1751731118002288spa
dc.relation.referencesHernández, C., Carias, L., Gómez, N.M., Panameno, J.F., Guillén, E.E., & Barrientos, L,V. (2017). Evaluación de bloques multinutricionales en la alimentación de ganado de doble propósito en ordeno. Agrociencia, 1, 32–43. [Online]: https://api.semanticscholar.org/CorpusID:109862112spa
dc.relation.referencesHidalgo, V., & Valerio C., H. (2020). Digestibilidad y energía digestible y metabolizable del gluten de maíz, hominy feed y subproducto de trigo en cuyes (Cavia porcellus). Revista de Investigaciones Veterinarias del Perú, 31(2), e17816. https://doi.org/10.15381/rivep.v31i2.17816spa
dc.relation.referencesHolguín, V. A., Cuchillo-Hilario, M., Mazabel, J., Quintero, S., & Mora-Delgado, J. (2020). Effect of a Pennisetum purpureum and Tithonia diversifolia silage mixture on in vitro ruminal fermentation and methane emission in a RUSITEC system. Revista Mexicana De Ciencias Pecuarias, 11(1), 19–37. https://doi.org/10.22319/RMCP.V11I1.4740spa
dc.relation.referencesICONTEC. (2000). Instituto Colombiano de Normas Técnicas y Certificación. Microbiologia de alimentos y alimentos para animales. Metodo horizontal para el recuento de clostridium sulfito reductores e identificacion de clostridium perfringens - tecnicas de recuento de colonias. NTC 4834. Bogotá DC, Colombia. pp 20spa
dc.relation.referencesICONTEC. (2022). Instituto Colombiano de Normas Técnicas y Certificación. Suplementos alimenticios y alimentos complementarios para rumiantes productores de leche.. NTC 2030. Bogotá DC, Colombia. pp 12spa
dc.relation.referencesIntergovernmental Panel on Climate Change (IPCC) 2023: Sections In: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland, pp. 35-115, doi: 10.59327/IPCC/AR6-9789291691647spa
dc.relation.referencesInternational Standardization Organization. (1998). ISO 9831:1998: Animal Feeding Stuffs Animal Products, and Faeces or Urine - Determination of Gross Calorific Value - Bomb Calorimeter Method. [Online]: https://www.iso.org/standard/17702.htmlspa
dc.relation.referencesInternational Standard Organization. (2017). ISO 18787:2017. Foodstuffs - Determination of water activity. [Online]: https://www.iso.org/obp/ui/en/#iso:std:iso:18787:ed-1:v1:enspa
dc.relation.referencesInternational Standard Organization. (2017). ISO 6579-1:2017. Microbiology of the food chain. Horizontal method for the detection, enumeration and serotyping of Salmonella. Part 1: Detection of Salmonella spp. [Online]: https://www.iso.org/standard/56712.htmlspa
dc.relation.referencesInternational Standard Organization. (2022). ISO 5984:2022. Animal feeding stuffs. Determination of crude ash. [Online]: https://www.iso.org/standard/77807.htmlspa
dc.relation.referencesJaurena, G., Cantet, J. M., Arroquy, J. I., Palladino, R. A., Wawrzkiewicz, M., & Colombatto, D. (2015). Prediction of the Ym factor for livestock from on-farm accessible data. Livestock Science, 177(1871-1413), 52–62. https://doi.org/10.1016/j.livsci.2015.04.009spa
dc.relation.referencesJin, Q., & Kirk, M. F. (2018). pH as a Primary Control in Environmental Microbiology : 1 . Thermodynamic Perspective. Froniers in Environmental Sciense, 6, 2296- 665x.. https://doi.org/10.3389/fenvs.2018.00021spa
dc.relation.referencesKu-Vera, J. C., Ayala-Burgos, A. J., Solorio-Sánchez, F. J., Briceño-Poot, E. G., Ruiz-González, A., Piñeiro-Vázquez, A. T., . . . Ramírez-Avilés, L. (2013). Nutritional Strategies of Animal Feed Additives . New York, E.E.UU. Nova Science Publishers. [Online]:https://www.researchgate.net/publication/267626768_Tropical_tree_foliage_and_shrubs_as_feed_additives_in_ruminant_rations#fullTextFileContentspa
dc.relation.referencesKu-Vera, J. C., Jiménez-Ocampo, R., Valencia-Salazar, S. S., Montoya-Flores, M. D., Molina-Botero, I. C., Arango, J., . . . Solorio-Sánchez, F. J. (2020). Role of Secondary Plant Metabolites on Enteric Methane Mitigation in Ruminants. Frontiers in Veterinary Science, 7. https://doi.org/10.3389/fvets.2020.00584spa
dc.relation.referencesLavrenčič, A., Stefanon, B., & Susmel, P. (1997). An evaluation of the Gompertz model in degradability studies of forage chemical components. Animal Science, 64(3), 423–431. https://doi.org/10.1017/S1357729800016027spa
dc.relation.referencesLee, M. A. (2018). A global comparison of the nutritive values of forage plants grown in contrasting environments. Journal of Plant Research, 131(4), 641–654. https://doi.org/10.1007/s10265-018-1024-yspa
dc.relation.referencesLongo, C., Hummel, J., Liebich, J., Bueno, I. C. S., Burauel, P., Ambrosano, E. J., . . . Südekum, K. H. (2012). Chemical characterization and in vitro biological activity of four tropical legumes, Styzolobium aterrimum L., Styzolobium deeringianum, Leucaena leucocephala, and Mimosa caesalpiniaefolia, as compared with a tropical grass, Cynodon spp. for the use in rumiant diets. Czech Journal of Animal Science, 57(6), 255–264. https://doi.org/10.17221/5960-cjasspa
dc.relation.referencesMacdougall, D. B. (2010). Colour measurement of food: principles and practice. Advances and industrial application, 13, 312–342. https://doi.org/10.1533/9780857090195.2.312spa
dc.relation.referencesMakkar, P. S. H., Sánchez, M., & Speedy, W. A. (2007). Feed supplementation blocks. Urea-molasses multi-nutrient blocks: simple and effective feed supplement technology for ruminant agriculture. Roma, Italia: . FAO Publisher.spa
dc.relation.referencesMalik, A., Gunawan, A., Erlina, S., Widaningsih, N., Elvania, R., Zuraidah,A., . . . , Suyanto, M. (2020). Effect Addition of Urea Molasses Multi-nutrient Moringa Block (UM3B) on the Ovarian Follicular Dynamics in Crossbred Cows. Adances in Animal Veterinary Sciences, 8(5), 458–462. http://doi.org/10.17582/journal.aavs/2020/8.5.458.462spa
dc.relation.referencesMaskan, M. (2001). Kinetics of colour change of kiwifruits during hot air and microwave drying. Journal of Food Engineering, 48(2), 169–175. https://doi.org/10.1016/S0260-8774(00)00154-0spa
dc.relation.referencesMcGrath, J., Duval, S. M., Tamassia, L. F. M., Kindermann, M., Stemmler, R. T., de Gouvea, V. N., . . . Celi, P. (2018). Nutritional strategies in ruminants: A lifetime approach. Research in Veterinary Science, 116, 28–39. https://doi.org/10.1016/j.rvsc.2017.09.011spa
dc.relation.referencesMejías, R., Díaz, J. A., Hechemendía, M., Jordán, H., & Rodríguez, R. G. J. (2007). Evaluación de propiedades físicas de bloques multinutricionales que incluyen zeolita y harina de caña: compactación y consumo en carneros estabulados. Revista Cubana de Ciencia Agrícola, 41(1), 35–38. [Online]:https://www.redalyc.org/pdf/1930/193017666006.pdfspa
dc.relation.referencesMin, B. R., Solaiman, S., Waldrip, H. M., Parker, D., Todd, R. W., & Brauer, D. (2020). Dietary mitigation of enteric methane emissions from ruminants: A review of plant tannin mitigation options. Animal Nutrition, 6(3), 231–246. https://doi.org/10.1016/j.aninu.2020.05.002spa
dc.relation.referencesMladenović, D., Djukić-Vuković, A., Stanković, M., Milašinović-Šeremešić, M., Radosavljević, M., Pejin, J., & Mojović, L. (2019). Bioprocessing of agro-industrial residues into lactic acid and probiotic enriched livestock feed. Journal of the Science of Food and Agriculture, 99(12), 5293–5302. https://doi.org/10.1002/jsfa.9759spa
dc.relation.referencesMolina, I. C., Arroyave , J., Valencia. S., Barahona , R., Olivera-Castillo, L., Barahona-Rosales, R., . . . Ku-Vera,J. (2019). Effects of tannins and saponins contained in foliage of Gliricidia sepium and pods of Enterolobium cyclocarpum on fermentation, methane emissions and rumen microbial population in crossbred heifers. Animal Feed Science and Technolog, 251(1), 1–11. https://doi.org/10.1016/j.anifeedsci.2019.01.011spa
dc.relation.referencesMolina-Botero, I. C., Mazabel, J., Arceo-Castillo, J., Urrea-Benítez, J. L., Olivera-Castillo, L., Barahona-Rosales, R., . . . Arango, J. (2020). Effect of the addition of Enterolobium cyclocarpum pods and Gliricidia sepium forage to Brachiaria brizantha on dry matter degradation, volatile fatty acid concentration, and in vitro methane production. Tropical Animal Health and Production, 52(6), 2787–2798. https://doi.org/10.1007/s11250-020-02324-4spa
dc.relation.referencesMorey, L., Bach, A., Sabrià, D., Riau, V., Fernández, B., & Terré, M. (2023). Effectiveness of precision feeding in reducing N excretion in dairy cattle. Animal Feed Science and Technology, 304, 115722. https://doi.org/10.1016/j.anifeedsci.2023.115722spa
dc.relation.referencesMota, M., Rodríguez, R., Solanas, E., & Fondevila, M. (2005). Evaluation of four tropical browse legumes as nitrogen sources: Comparison of in vitro gas production with other methods to determine N degradability. Animal Feed Science and Technology, 124(1) , 341-350. https://doi.org/10.1016/j.anifeedsci.2005.04.018.spa
dc.relation.referencesNavarro, C., de Evan, T., Jiménez, C., & Carro, M. D. (2022). Potential of Agroindustrial By-Products to Modulate Ruminal Fermentation and Reduce Methane Production: In Vitro Studies. Animals, 12(24), 3540. https://doi.org/10.3390/ani12243540spa
dc.relation.referencesOrdóñez-Santos, L. E., Velasco-Arango, V.A., & Hleap-Zapata, J. I. (2022). Ultrasound-assisted extraction of total carotenoids in papaya epicarp and its application in Frankfurt sausage. Ciência e Agrotecnologia, 46, e006722. https://doi.org/10.1590/1413-7054202246006722spa
dc.relation.referencesPathare, P. B., Opara, U. L., & Al-said, F. A. (2012). Colour Measurement and Analysis in Fresh and Processed Foods : A Review. Food and Bioprocess Technology, 6(1), 36-60. https://doi.org/10.1007/s11947-012-0867-9spa
dc.relation.referencesPeters, M., Franco, L., Schmidt, A., & Hincapié, B. (2011). Especies forrajeras multipropósito. Opciones para productores del trópico americano. Bundesministerium für …. Cali, Colombia : CIAT Publications.spa
dc.relation.referencesPomar, C., & Remus, A. (2023). Review: Fundamentals, limitations and pitfalls on the development and application of precision nutrition techniques for precision livestock farming. Animal, 17, 100763. https://doi.org/10.1016/j.animal.2023.100763spa
dc.relation.referencesPujaningsih, R., Widiyanto., & Tampoebolon, B. (2019). Effect of Organic Basic Multrinutrient Block Supplementation on Total Mixed Ratio of Kacang Goat in Feedlot System. IOP Conference Series: Earth and Environmental Science, 372(1), 012062. https://doi.org/10.1088/1755-1315/372/1/012062spa
dc.relation.referencesQuintero-Anzueta, S., Molina-Botero, I. C., Ramirez-Navas, J. S., Rao, I., Chirinda, N., Barahona-Rosales, R., . . . Arango, J. (2021). Nutritional Evaluation of Tropical Forage Grass Alone and Grass-Legume Diets to Reduce in vitro Methane Production. Frontiers in Sustainable Food Systems, 5. 2571-581x. . https://doi.org/10.3389/fsufs.2021.663003spa
dc.relation.referencesQuintino, A. da C., de Abreu, J. G., de Almeida, R. G., Macedo, M. C. M., Cabral, L. da S., & Galati, R. L. (2013). P roduction and nutrition rates of piatã grass and hybrid sorghum at different cutting ages. Acta Scientiarum Animal Sciences, 35(3), 243–249. https://doi.org/10.4025/actascianimsci.v35i3.18016spa
dc.relation.referencesRahmawati, N., Lisnanti, E., Rudiono, D., Mukmin, A., Muladno, M., & Atabany, A. (2022). Comparative study several feed formulation based on agro-industrial by-product on production performance and in vivo digestibility of beef cattle. IOP Conference Series: Earth and Environmental Science, 977(1). https://doi.org/10.1088/1755-1315/977/1/012125spa
dc.relation.referencesRivera-Herrera, J. E., Molina-Botero, I., Chará-Orozco, J., Murgueitio-Restrepo, E., & Barahona-Rosales, R. (2017). Intensive silvopastoral systems with Leucaena leucocephala (Lam.) de Wit: productive alternative in the tropic in view of the climate change . Pastos y Forrajes, 40(3), 171–183. [Online]: https://www.redalyc.org/journal/2691/269158175001/html/spa
dc.relation.referencesRivero, T., Carrascal, S. E., & Gómez Ayala, W. (2013). Elaboración de bloques multinutricionales (BMN) para la alimentación de rumiantes de la Región Caribe. Bogotá, Colombia. CORPOICA. [Online]: https://repository.agrosavia.co/bitstream/handle/20.500.12324/1905/64209_64874.pdf?sequence=1&isAllowed=yspa
dc.relation.referencesRodríguez C. E.,& Pulido, N. J. (2018). Determinación del valor nutricional de bloques nutricionales con diferentes porcentajes de Sambucus peruviana y Zea mays. Ciencia y Agricultura, 15 (1), 93–100. https://doi.org/10.19053/01228420.v15.n1.2018.7760spa
dc.relation.referencesRomero Huelva, M. (2012). Utilization of multinutrient blocks including tomato and cucumber waste fruits as an alternative to the concentrate in goat diets . [Tesis doctoral, Universidad de Córdoba, Campus Rabanales]. [Online]: https://helvia.uco.es/bitstream/handle/10396/7673/595.pdf?sequence=1&isAllowed=yspa
dc.relation.referencesSalami, S. A., Luciano, G., O’Grady, M. N., Biondi, L., Newbold, C. J., Kerry, J. P., & Priolo, A. (2019). Sustainability of feeding plant by-products: A review of the implications for ruminant meat production. Animal Feed Science and Technology, 251, 37–55. https://doi.org/10.1016/j.anifeedsci.2019.02.006spa
dc.relation.referencesStewart, L. (2017). Mineral supplements for beef cattle. Mineral Supplements for Beef Cattle- Bulletin 895. UGA Cooperative Extension. [Online]:https://secure.caes.uga.edu/extension/publications/files/pdf/B 895_4.PDFspa
dc.relation.referencesStifkens, A., Matthews, E. M., McSweeney, C. S., & Charmley, E. (2022). Increasing the proportion of Leucaena leucocephala in hay-fed beef steers reduces methane yield. Animal Production Science, 62(7), 622-632. https://doi.org/10.1071/AN21576spa
dc.relation.referencesSuarez, H., Borrás-Sandoval, L., & Rodríguez-Molano, C. (2021). Characterization Of Multi-Nutritional Bovine Blocks Enriched With A Preparation Based On Lactic Acid Bacteria. Revista de Investigación Agraria y Ambiental, 12(2), 115–126. https://doi.org/10.22490/214 56453.3914spa
dc.relation.referencesSuharyono, Sutanto, H., Purwanti, Y., Martanti, Agus, A., & Utomo, R. (2014). The effect of urea molasses multi-nutrient and medicated block for beef cattle, beef and dairy cow. Atom Indonesia, 40(2), 77–87. https://doi.org/10.17146/aij.2014.274spa
dc.relation.referencesSun, X.; Pacheco, D. . T., G.; Janssen, P.H., & Swainson, N. M. (2022). Evaluation of Feed Near-Infrared Reflectance Spectra as Predictors of Methane Emissions from Ruminants. Animals, 12(18), 2478. https://doi.org/https:// doi.org/10.3390/ani12182478spa
dc.relation.referencesSurender, S., Pathak, A. K., Khan, M., & Sharma, R. K. (2015). Multi-Nutrient Blocks with and without Tanniferous Leaf Meal Mixture: Formulation and Preparation under Sub-Tropical Environment of Jammu. Journal of Animal Research, 5(1), 7-14. https://doi.org/10.5958/2277-940X.2015.00002.9spa
dc.relation.referencesSyamaladevi, R. M., Tang, J., Villa-rojas, R., Sablani, S., Carter, B., & Campbell, G. (2016). Influence of Water Activity on Thermal Resistance of Microorganisms in Low-Moisture Foods : A Review. Comprehensive Reviews In Food Science And Food Safety, 15(3), 353–370. https://doi.org/10.1111/1541-4337.12190spa
dc.relation.referencesSzczesniak, A. S. (2002). Texture is a sensory property. Food Quality and Preference, 13 (4) , 215–225. https://doi.org/10.1016/S0950-3293(01)00039-8spa
dc.relation.referencesTakawale, P. S., Jade, S. S., & Ghorpade, S. D. (2016). Leguminous blocks: Nutritional values and economics. Agricultural Science Digest, 36(2), 149-151. https://doi.org/ 10.18805/asd.v0iof.9623spa
dc.relation.referencesTendonkeng, F., Fogang Zogang, B., Sawa, C., Boukila, B., & Pamo, E. T. (2014). Inclusion of Tithonia diversifolia in multinutrient blocks for WestAfrican dwarf goats fed Brachiaria straw.. Tropical Animal Health and Production, 46(6), 981–986. https://doi.org/10.1007/s11250-014-0597-2spa
dc.relation.referencesTheodorou, M. K., Williams, B. A., Dhanoa, M. S., McAllan, A. B., & France, J. (1994). A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Animal Feed Science and Technology, 48, 185–197. https://doi.org/10.1016/0377-8401(94)90171-6spa
dc.relation.referencesTilley, J. M. A., & Terry, R. A. (1963). a Two‐Stage Technique for the in Vitro Digestion of Forage Crops. Grass and Forage Science, 18(2), 104–111. https://doi.org/10.1111/j.1365-2494.1963.tb00335.xspa
dc.relation.referencesTobía, C., & Vargas González, E. (1999). Fabricación artesanaly semi-artesanal de bloques nutricionales. Nutrición Animal Tropical, 5(1), 51–65. [Online]: https://www.academia.edu/17482942/Fabricacion_artesanal_y_semi_industrial_de_bloques_nutricionalesspa
dc.relation.referencesTorres, J., González, M, K., & Acevedo, , D. (2015). Análisis del Perfil de Textura en Frutas, Productos Cárnicos y Quesos. Review. ReCiTeIA, 14(2), 63–75. [Online]:https://www.researchgate.net/publication/283352303_Analisis_del_Perfil_de_Textura_en_Frutas_Productos_Carnicos_y_Quesosspa
dc.relation.referencesTylutki, T. P., Fox, D. G., Durbal, V. M., Tedeschi, L. O., Russell, J. B., Van Amburgh, M. E., . . . Pell, A. N. (2008). Cornell Net Carbohydrate and Protein System: A model for precision feeding of dairy cattle. Animal Feed Science and Technology, 143, 174–202. https://doi.org/10.1016/j.anifeedsci.2007.05.010spa
dc.relation.referencesUyeh, D. D., Pamulapati, T., Mallipeddi, R., Park, T., Asem-Hiablie, S., Woo, S., . . . Ha, Y. (2019). Precision animal feed formulation: An evolutionary multi-objective approach. Animal Feed Science and Technology, 256(0377-8401) , 114211. https://doi.org/10.1016/j.anifeedsci.2019.114211spa
dc.relation.referencesVan Amburgh, M. E., Collao-Saenz, E. A., Higgs, R. J., Ross, D. A., Recktenwald, E. B., Raffrenato, E., . . . Foskolos, A. (2015). The Cornell Net Carbohydrate and Protein System: Updates to the model and evaluation of version 6.5. Journal of Dairy Science, 98(9), 6361–6380. https://doi.org/10.3168/jds.2015-9378spa
dc.relation.referencesVan Soest, P. J., Robertson, J. B., & Lewis, B. A. (1991). Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. Journal of Dairy Science, 74(10), 3583–3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2spa
dc.relation.referencesVazquez, E., Teutscherova, N., Lojka, B., Arango, J., & Pulleman, M. (2020). Pasture diversification affects soil macrofauna and soil biophysical properties in tropical (silvo)pastoral systems. Agriculture, Ecosystems and Environment, 302(1), 107083. https://doi.org/10.1016/j.agee.2020.107083spa
dc.relation.referencesZhao, X., Degen, A., Hao, L., & Liu, S. (2022). Ruminant Lick Blocks, Particularly in China: A Review. Sustainability , 14(13), 7620. https://doi.org/10.3390/su14137620spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.agrovocIndustria alimentaria
dc.subject.agrovocFood industry
dc.subject.agrovocBloque de pienso
dc.subject.agrovocFeed blocks
dc.subject.agrovocSuplemento de piensos
dc.subject.agrovocFeed supplements
dc.subject.agrovocPiensos para el ganado
dc.subject.agrovocEmisiones de gases de efecto invernadero
dc.subject.agrovocGreenhouse gas emissions
dc.subject.agrovocEmisiones de metano
dc.subject.agrovocMethane emission
dc.subject.agrovocMitigación del cambio climático
dc.subject.agrovocClimate change mitigation
dc.subject.agrovocEnterolobium cyclocarpum
dc.subject.agrovocTithonia diversifolia
dc.subject.agrovocLeucaena leucocephala
dc.subject.ddc630 - Agricultura y tecnologías relacionadasspa
dc.subject.proposalAlimento para ganadospa
dc.subject.proposalFermentaciónspa
dc.subject.proposalDegradabilidadspa
dc.subject.proposalEmisiones de gasspa
dc.subject.proposalLivestock feedeng
dc.subject.proposalFermentationeng
dc.subject.proposalDegradabilityeng
dc.subject.proposalLivestockeng
dc.subject.proposalGas emissionseng
dc.titleEvaluación agroindustrial de bloques nutricionales para alimentación de precisión bovina con potencial de mitigación de gas metanospa
dc.title.translatedAgro-industrial evaluation of nutrient blocks for precision cattle feeding with methane gas mitigation potentialeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentGrupos comunitariosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameCentro Internacional de agricultura Tropical (CIAT)spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
29677033.20224.pdf
Tamaño:
2.29 MB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: