En 6 día(s), 4 hora(s) y 32 minuto(s): El Repositorio Institucional UNAL informa a la comunidad universitaria que, con motivo del periodo de vacaciones colectivas, el servicio de publicación estará suspendido: Periodo de cierre: Del 20 de diciembre al 18 de enero de 2026. Sobre los depósitos: Durante este tiempo, los usuarios podrán continuar realizando el depósito respectivo de sus trabajos en la plataforma. Reanudación: Una vez reiniciadas las actividades administrativas, los documentos serán revisados y publicados en orden de llegada.

An extension to pre-conceptual schemas for refining event representation and mathematical notation

dc.contributor.advisorZapata Jaramillo, Carlos Mariospa
dc.contributor.authorNoreña Cardona, Paola Andreaspa
dc.contributor.corporatenameUniversidad Nacional de Colombia - Sede Medellínspa
dc.contributor.researchgroupLenguajes Computacionalesspa
dc.date.accessioned2020-08-27T22:59:27Zspa
dc.date.available2020-08-27T22:59:27Zspa
dc.date.issued2020-08-24spa
dc.description.abstractAn event is an occurrence within a particular software system or domain. Software and scientific models are representations of computing and natural systems. Such models have software and scientific components—domain knowledge elements. Scientists and business analysts use such models and their components for recognizing a domain, e.g., pre-conceptual schemas (PCS) used in software engineering. Scientific software domains (SSD) comprise fields in engineering and science, which are focused on developing and simulating scientific software systems for event or phenomenon research. Event-based software development has increased in scientific domains. Approaches to event-driven modeling are used from software/scientific modeling. Some advances have emerged in such approaches for integrating software and scientific components in science and engineering projects. However, scientists and business analysts lack a computational model for SSD in order to integrate both components in the same model. PCS notation includes software components based on structural and dynamic features, which allow for representing events and mathematical operations. Nonetheless, PCS lack scientific components for representing events in SSD. In this Ph.D. Thesis, we propose an extension to pre-conceptual schemas for refining event representation and mathematical notation. Such an extension comprises scientific components as graphical, linguistic, and mathematical structures for the sake of such refinement. We validate our proposal by using both an experimental process and a software application. Extension to PCS is included as a new work product for representing events in SSD. Therefore, the extended PCS are intended to be computing models for scientists and business analysts in scientific software development and simulation processes.spa
dc.description.abstractUn evento es una ocurrencia en un sistema de software o dominio particular. Los modelos científicos y de software son representaciones de sistemas informáticos o naturales. Esos modelos tienen componentes científicos y de software (elementos del conocimiento del dominio). Científicos y analistas de negocio usan estos modelos y sus componentes para reconocer un dominio. Un ejemplo de esos modelos son los esquemas preconceptuales (EP), que se usan en ingeniería de software. Los dominios de software científico comprenden áreas en ingeniería y ciencia que se enfocan en el desarrollo y simulación de sistemas de software científico para la investigación de eventos o fenómenos. El desarrollo de software dirigido por eventos se viene incrementando en dominios científicos. Enfoques de modelado basado en eventos se usan desde el modelado científico y el modelado de software. En estos enfoques surgen algunos avances para integrar componentes científicos y componentes de software en proyectos de ingeniería y ciencia. Sin embargo, científicos y analistas de negocio carecen de un modelo computacional para dominios de software científico que integre ambos componentes en el mismo modelo. La notación de los EP incluye componentes de software que se basan en características estructurales y dinámicas, los cuales permiten representar eventos y operaciones matemáticas. No obstante, los EP carecen de componentes científicos para representar eventos en dominios de software científico. En esta Tesis Doctoral se propone una extensión a los esquemas preconceptuales para el refinamiento en la representación de eventos y la notación matemática. Esta extensión integra componentes científicos (estructuras gráficas, lingüísticas y matemáticas) para lograr este refinamiento. También, se valida la propuesta mediante un proceso experimental y una aplicación de software. La extensión a los EP se incluye como un nuevo producto de trabajo para representar eventos en dominios de software científico. Por lo tanto, se pretende que los EP extendidos sean modelos de computación, para científicos y analistas de negocio en procesos de desarrollo y simulación de software científico.spa
dc.description.degreelevelDoctoradospa
dc.description.sponsorshipMincienciasspa
dc.format.extent115spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationNoreña, P.A. (2020). An Extension to Pre-conceptual Schemas for Refining Event Representation and Mathematical Notation. Tesis Doctoral, Universidad Nacional de Colombia, sede Medellín.spa
dc.identifier.citationNoreña, P.A. (2020). An Extension to Pre-conceptual Schemas for Refining Event Representation and Mathematical Notation. Ph.D. Thesis, Universidad Nacional de Colombia, Medellín campus.spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78302
dc.language.isoengspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.programMedellín - Minas - Doctorado en Ingeniería - Sistemasspa
dc.relation.referencesAmjad, A., Azam, F., Anwar, M. W., & Butt, W. H. (2017). Verification of Event-Driven Process Chain with Timed Automata and Time Petri Nets. In 9th IEEE-GCC Conference and Exhibition (GCCCE). IEEE. Manama, Bahrain, 1–6.spa
dc.relation.referencesArmas-Cervantes, A., Baldan, P., Dumas, M., & Garcia-Ba˜nuelos, L. (2016). Diagnosing Behavioral Differences between Business Process Models: An Approach based on Event Structures. Information Systems, 56:304–325.spa
dc.relation.referencesBalkesen, C., Dindar, N., Wetter, M., & Tatbul, N. (2013). RIP: Run-based Itra-query Parallelism for Scalable Complex Event Processing. In 7th ACM International Conference on Distributed Event-based Systems. ACM. Texas, US, 3–14.spa
dc.relation.referencesBaouya, A., Bennouar, D., Mohamed, O. A., & Ouchani, S. (2015). A Probabilistic and Timed Verification Approach of SysML State Machine Diagram. In 12th International Symposium on Programming and Systems (ISPS). IEEE. Algiers, Algeria, 1–9.spa
dc.relation.referencesBazhenova, E., Zerbato, F., Oliboni, B., & Weske, M. (2019). From BPMN process models to DMN decision models. Information Systems, 83:69–88.spa
dc.relation.referencesBazydlo, G., Adamski, M., & Stefanowicz, L. (2014). Translation UML diagrams into Verilog. In 7th International Conference on Human System Interactions (HSI). IEEE. Costa da Caparica, Portugal, 267–271.spa
dc.relation.referencesBeltrán-Saavedra, P. A. (2015). Precio del petróleo y el ajuste de las tasas de interés en las economías emergentes. Borradores de Economía, 901:1–37.spa
dc.relation.referencesBoubeta-Puig, J., D´ıaz, G., Valero, V., & Ortiz, G. (2019). Medit4CEP-CPN: An Approach for Complex Event Processing Modeling by Prioritized Colored Petri Nets. Information Systems, 81:267–289.spa
dc.relation.referencesBoubeta-Puig, J., Ortiz, G., & Medina-Bulo, I. (2015). Medit4CEP: A Model-Driven Solution for Real-time Decision Making in SOA 2.0. Knowledge-Based Systems, 89:97–112.spa
dc.relation.referencesBurcea, S., Cica, R., & Bojariu, R. (2016). Hail Climatology and Trends in Romania: 1961–2014. Monthly Weather Review, 144(11):4289–4299.spa
dc.relation.referencesCalle, J. M. (2016). Identificación de patrones de diseño para software científico a partir de esquemas preconceptuales. M.Sc. Thesis, Universidad Nacional de Colombia, Medellín Campus, Colombia.spa
dc.relation.referencesCampos-Rebelo, R., Costa, A., & Gomes, L. (2015). Event Life Time in Detection of Sequences of Events. In IEEE International Conference on Industrial Technology (ICIT). IEEE. Seville, Spain, 3144–3149.spa
dc.relation.referencesChaverra, J. J. (2011). Generación automática de prototipos funcionales a partir de esquemas preconceptuales. M.Sc. Thesis, Universidad Nacional de Colombia, Medellín Campus, Colombia.spa
dc.relation.referencesChen, W., Wang, J., Shi, D., & Shi, L. (2017). Event based State Estimation of Hidden Markov Models through a Gilbert–Elliott Channel. IEEE Transactions on Automatic Control, 62(7):3626–3633.spa
dc.relation.referencesChoi, E., Bahadori, M. T., Schuetz, A., Stewart, W. F., & Sun, J. (2016). Doctor ai: Predicting Clinical Events via Recurrent neural networks. In Machine Learning for Healthcare Conference. Durham, US, 301–318.spa
dc.relation.referencesChonoles, M. J. (2017). “Behavior: State Machine Diagrams.” In OCUP 2 Certification Guide (313–342). ElSevier: Cambridgespa
dc.relation.referencesDa Silva, A. R. (2015). Model-Driven Engineering: A Survey Supported by the Unified Conceptual Model. Computer Languages, Systems & Structures, 43:139–155.spa
dc.relation.referencesDávid, I., Ráth, I., & Varró, D. (2018). Foundations for Streaming Model Transformations by Complex Event Processing. Software & Systems Modeling, 17(1):135–162.spa
dc.relation.referencesDayeh, M., Evans, N., Fuselier, S., Trevino, J., Ramaekers, J., Dwyer, J., Lucia, R., Rassoul, H., Kotovsky, D., Jordan, D., et al. (2015). First Images of Thunder: Acoustic Imaging of Triggered Lightning. Geophysical Research Letters, 42(14):6051–6057.spa
dc.relation.referencesDraghici, T., Negreanu, L., Bratu, O. G., Tincu, R., Socea, B., Iancu, M. A., Stanescu, A. M. A., & Diaconu, C. (2018). Liver Abnormalities in Patients with Heart Failure. Archives of the Balkan Medical Union, 53(1):76–81.spa
dc.relation.referencesEtzion, O., Fournier, F., Skarbovsky, I., & von Halle, B. (2016). A Model Driven Approach for Event Processing Applications. In 10th ACM International Conference on Distributed and Event-based Systems. ACM. Irvine, US, 81–92.spa
dc.relation.referencesEtzion, O., Niblett, P., & Luckham, D. (2011). Event Processing in Action. Stanford: Manning Publications Cospa
dc.relation.referencesFillmore, C. J. (1971). Some Problems for Case Grammar. Working Papers in Linguistics, 10:245–265.spa
dc.relation.referencesFillmore, C. J. (1977). The Case for Case Reopened in Syntax and Semantics. New York: Academic Press In.spa
dc.relation.referencesGao, F., Curry, E., & Bhiri, S. (2014). Complex Event Service Provision and Composition based on Event Pattern Matchmaking. In 8th ACM International Conference on Distributed Event-Based Systems. ACM. New York, US, 71–82.spa
dc.relation.referencesGarrudo, F. (1990). Enlace mediante casos entre inglés y español. Revista española de lingüística aplicada, 6:9–18.spa
dc.relation.referencesGilbert, J. K. (2004). Models and Modelling: Routes to more Authentic Science Education. International Journal of Science and Mathematics Education, 2(2):115–130.spa
dc.relation.referencesGiraldo, F. D., España, S., Giraldo, W. J., Pastor, O., & Krogstie, J. (2019). A Method to Evaluate Quality of Modelling Languages based on the Zachman Reference Taxonomy. Software Quality Journal, 27:1239–1269.spa
dc.relation.referencesGomaa, H. (2011). Software Modeling and Design: UML, Use Cases, Patterns, and Software Architectures. Cambridge: Cambridge University Press.spa
dc.relation.referencesGruber, J. S. (1965). Studies in Lexical Relations. Ph.D. Thesis, Massachusetts Institute of Technology, Boston, US.spa
dc.relation.referencesHaas, W. (1960). Linguistic Structures. Word, 16(2):251–276.spa
dc.relation.referencesHaisjackl, C., Soffer, P., Lim, S. Y., & Weber, B. (2018). How do humans inspect BPMN models: An Exploratory Study. Software & Systems Modeling, 17(2):655–673.spa
dc.relation.referencesHe, Y. (2016). Ontology-based Vaccine and Drug Adverse Event Representation and Theory-guided Systematic Causal Network Analysis toward Integrative Pharmacovigilance Research. Current Pharmacology Reports, 2(3):113–128.spa
dc.relation.referencesHeaton, D. & Carver, J. C. (2015). Claims about the Use of Software Engineering Practices in Science: A Systematic Literature Review. Information and Software Technology, 67:207–219.spa
dc.relation.referencesHeiko, A. (2012). Consensus Measurement in Delphi Studies: Review and Implications for Future Quality Assurance. Technological Forecasting and Social Change, 79(8):1525–1536.spa
dc.relation.referencesHerzberg, N., Meyer, A., & Weske, M. (2013). An Event Processing Platform for Business Process Management. In 17th IEEE International Enterprise Distributed Object Computing Conference. IEEE. Vancouver, Canada, 107–116.spa
dc.relation.referencesHoley, E. A., Feeley, J. L., Dixon, J., & Whittaker, V. J. (2007). An Exploration of the Use of Simple Statistics to Measure Consensus and Stability in Delphi Studies. BMC medical research methodology, 7(1):52.spa
dc.relation.referencesHowison, J., Deelman, E., McLennan, M. J., Ferreira da Silva, R., & Herbsleb, J. D. (2015). Understanding the Scientific Software Ecosystem and its Impact: Current and Future Measures. Research Evaluation, 24(4):454–470.spa
dc.relation.referencesJaramillo, C. M. & Esteban, P. V. (2006). Enseñanza y aprendizaje de las estructuras matemáticas a partir del modelo de van hiele. Revista Educación y pedagogía, 18:109–118.spa
dc.relation.referencesJohanson, A. & Hasselbring, W. (2018). Software Engineering for Computational Science: Past, Present, Future. Computing in Science & Engineering, 20(2):90–109.spa
dc.relation.referencesKanewala, U. & Bieman, J. M. (2014). Testing Scientific Software: A Systematic Literature Review. Information and software technology, 56(10):1219–1232.spa
dc.relation.referencesKelly, D. (2015). Scientific Software Development Viewed as Knowledge Acquisition: Towards Understanding the Development of Risk-averse Scientific Software. Journal of Systems and Software, 109:50–61.spa
dc.relation.referencesKoltsov, V. B., Sevryukova, E. A., Yakovenko, D. V., & Kondrutieva, O. V. (2018). Physical-Chemical Modelling of the Ingredients of Air in the System of Monitoring Modern Industrial City. In IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). IEEE. Moscow, Russia, 1902–1906.spa
dc.relation.referencesKuipers, J., Ueda, T., & Vermaseren, J. (2015). Code Optimization in Form. Computer Physics Communications, 189:1–19.spa
dc.relation.referencesKuznetsov, E. & Merzlikin, A. (2019). The Surface Wave on the Boundary between a Hyperbolic Magnetooptical Single-axis Metamaterial and an Isotropic Dielectric. Journal of Communications Technology and Electronics, 64(3):223–228.spa
dc.relation.referencesLee, S. & Hwang, I. (2015). Event-based State Estimation for Stochastic Hybrid Systems. IET Control Theory & Applications, 9(13):1973–1981.spa
dc.relation.referencesLi, Y. (2015). DRUMS: Domain-specific Requirements Modeling for Scientists. Ph.D. Thesis, Technische Universit¨at M¨unchen, M¨unchen, Germanyspa
dc.relation.referencesLi, Y., Guzman, E., Tsiamoura, K., Schneider, F., & Bruegge, B. (2015). Automated Requirements Extraction for Scientific Software. Procedia Computer Science, 51:582–591.spa
dc.relation.referencesLiu, F. & Zhao, G. (2016). Monitoring of Software Project Progress base on Automata Theory. In 2nd Workshop on Advanced Research and Technology in Industry Applications (WARTIA-16). Atlantis Press. Dalian, China, 404–409spa
dc.relation.referencesLiu, W., Tan, Y., Ding, N., Zhang, Y., & Liu, Z. (2016). An Ontology Pattern for Emergency Event Modeling. In IEEE 14th International Conference on Dependable, Autonomic and Secure Computing (DASC/PiCom/DataCom/CyberSciTech). IEEE. Auckland, New Zeland, 151–156.spa
dc.relation.referencesLuckham, D. (2002). The Power of Events. An Introduction to Complex Event Processing in Distributed Enterprise Systems. Boston: Addison-Wesley.spa
dc.relation.referencesLuckham, D. (2011). Event Processing for Business: Organizing the Real-time Enterprise. New Jersey: John Wiley & Sons.spa
dc.relation.referencesLuo, J. & Zhou, M. (2016). Petri-Net Controller Synthesis for Partially Controllable and Observable Discrete Event Systems. IEEE Transactions on Automatic Control, 62(3):1301–1313.spa
dc.relation.referencesMeng, M., Ping, W., Chao-Hsien, C, & Ling, L. (2014). Efficient Multipattern Event Processing over High-speed Train Data Streams. IEEE Internet of Things Journal, 2(4):295–309.spa
dc.relation.referencesMerkens, J.-L., Reimann, L., Hinkel, J., & Vafeidis, A. T. (2016). Gridded Population Projections for the Coastal Zone under the Shared Socioeconomic Pathways. Global and Planetary Change, 145:57–66.spa
dc.relation.referencesMezerins, A. (2014). Experimental Studies of Analog Signal Digital Representing based on a High Performance Event Timer. In 14th Biennial Baltic Electronic Conference (BEC). IEEE. Tallinn, Estonia, 169–172.spa
dc.relation.referencesMolaei, S. M. & Keyvanpour, M. R. (2015). An Analytical Review for Event Prediction System on Time Series. In 2nd International Conference on Pattern Recognition and Image Analysis (IPRIA). IEEE. Rasht, Iran, 1–6.spa
dc.relation.referencesMoreda, P. (2008). Los roles semánticos en la tecnología del lenguaje humano: anotación y aplicación. Ph.D. Thesis, Universidad de Alicante, Alicante, España.spa
dc.relation.referencesNanthaamornphong, A. & Carver, J. C. (2017). Test-Driven Development in Scientific Software: A Survey. Software Quality Journal, 25(2):343–372.spa
dc.relation.referencesNavas, J. (2017). Modelos matemáticos discretos en la empresa. España: Universidad de Jaén.spa
dc.relation.referencesNoreña, P. A. (2014). Un mecanismo de consistencia en los eventos disparador y de resultado para los artefactos de UNC-Method. M.Sc. Thesis, Universidad Nacional de Colombia, Medellín Campus, Colombiaspa
dc.relation.referencesNoreña, P. A. (2018). An Extension to Pre-conceptual Schemas for Refining Event Representation and Mathematical Notation. In XXI Ibero-American Conference on Software: CIbSE 2018. Bogot´a, Colombia, (45)589–596.spa
dc.relation.referencesNoreña, P. A., Torres, D. M., & Zapata, C. M. (2017). “Interoperabilidad dinámica entre sistemas basados en internet de las cosas: una representación a partir de esquemas preconceptuales”. In Industria 4.0 Escenario e impacto (159–173). Medellín: Sello Editorial Universidad de Medellín.spa
dc.relation.referencesNoreña, P. A. & Zapata, C. M. (2018a). Una representación basada en esquemas preconceptuales de eventos determinísticos y aleatorios tipo señal desde dominios de software científico. Research in Computing Science, 147(2):207–220.spa
dc.relation.referencesNoreña, P. A. & Zapata, C. M. (2018b). A Game for Learning Event-driven Architecture: Pre-conceptual-schema-based Pedagogical Strategy. Developments in Business Simulation and Experiential Learning, 45:24–37.spa
dc.relation.referencesNoreña, P. A. & Zapata, C. M. (2018c). A Pre-conceptual-schema-based Representation of Time Events Coming from Scientific Software Domain. In 22nd World Multi-Conference on Systemics, Cybernetics and Informatics: WMSCI 2018. Orlando, US, 53–58.spa
dc.relation.referencesNoreña, P. A., Zapata, C. M., & Villamizar, A. E. (2018). “Representación de eventos a partir de estructuras lingúíısticas basadas en roles semánticos: una extensión al esquema preconceptual”. In Investigaci´on e Innovaci´on, v.2 (69–79). Medellín: Publicar T, Sello editorial Tecnológico de Antioquia.spa
dc.relation.referencesNoreña, P. A. & Zapata, C. M. (2019). Business Simulation by using Events from Pre-conceptual Schemas. Developments in Business Simulation and Experiential Learning, 46:258–263.spa
dc.relation.referencesNoreña, P. A., Zapata, C. M., & Villamizar, A. E. (2019). Representing Chemical Events by using Mathematical Notation from Pre-conceptual Schemas. IEEE Latin America Transactions, 17(01):46–53spa
dc.relation.referencesObi, K., Ramsey, M., Hinton, A., Stanich, P., Gray II, D. M., Krishna, S. G., El-Dika, S., & Hussan, H. (2018). Insights into Insulin Resistance, Lifestyle, and Anthropometric Measures of Patients with Prior Colorectal Cancer compared to Controls: A National Health and Nutrition Examination Survey (nhanes) Study. Current Problems in Cancer, 42(2):276–285.spa
dc.relation.referencesOMG. (2011). Superestructure 2.4.1. OMG, Object Management Group. http://www.omg.org/spec/UML/2.4.1.spa
dc.relation.referencesOMG. (2014a). Business Process Model and Notation 2.0. OMG, Object Management Group. https://www.omg.org/spec/BPMN/About-BPMN/.spa
dc.relation.referencesOMG. (2014b). Model Driven Architecture (MDA) Guide rev. 2.0. OMG, Object Management Group. https://www.omg.org/cgi-bin/doc?ormsc/14-06-01.spa
dc.relation.referencesOMG. (2015). Superstructure 2.5. OMG, Object Management Group. http://www.omg.org/spec/UML/2.5/.spa
dc.relation.referencesPaddock, M. & Chapin, J. (2016). Bleeding diatheses: Approach to the Patient who Bleeds or has Abnormal Coagulation. Primary Care: Clinics in Office Practice, 43(4):637–650.spa
dc.relation.referencesPatri, O. P., Sorathia, V. S., Panangadan, A. V., & Prasanna, V. (2014). The Process-oriented Event Model (PoEM): A Conceptual Model for Industrial Events. In 8th ACM International Conference on Distributed Event-Based Systems. ACM. Mumbai, India, 154–165.spa
dc.relation.referencesPayne, T. E. (1997). Describing Morphosyntax: A Guide for Field Linguists. Cambridge: Cambridge University Press.spa
dc.relation.referencesPozo, J. I. (2006). Teor´ıas cognitivas del aprendizaje. Madrid: Ediciones Morata.spa
dc.relation.referencesRavikumar, G., Khaparde, S. A., & Joshi, R. K. (2016). Integration of Process Model and CIM to represent Events and Chronology in Power System Processes. IEEE Systems Journal, 12(1):149–160.spa
dc.relation.referencesReinartz, C., Metzger, A., & Pohl, K. (2015). Model-based Verification of Event-driven Business Processes. In 9th ACM International Conference on Distributed Event-Based Systems. ACM. Oslo, Norway, 1–9.spa
dc.relation.referencesSahoo, A., Xu, H., & Jagannathan, S. (2015). Adaptive Neural network-based Event-Triggered Control of Single-input Single-output Nonlinear Discrete-time Systems. IEEE Transactions on Neural Networks and Learning Systems, 27(1):151–164.spa
dc.relation.referencesSarno, R., Wibowo, W. A., Solichah, A., et al. (2015). Time based Discovery of Parallel Business Processes. In International Conference on Computer, Control, Informatics and its Applications (IC3INA). IEEE. Bandung, Indonesia, 28–33.spa
dc.relation.referencesShekarpour, S., Alshargi, F., Thirunaravan, K., Shalin, V. L., & Sheth, A. (2019). CEVO: Comprehensive EVent Ontology Enhancing Cognitive Annotation on Relations. In IEEE 13th International Conference on Semantic Computing (ICSC). IEEE. Newport Beach, US, 385–391.spa
dc.relation.referencesSudars, K., Bilinskis, I., Boole, E., & Vedin, V. (2015). Signal Analog-to-event-to-digital Converting based on Periodic Sampling and Precise Event Timing. In 25th International Conference Radioelektronika. IEEE. Pardubice, Czech Republic, 133–136.spa
dc.relation.referencesTaiwe, G., Moto, F., Pale, S., Kandeda, A., Dawe, A., Kouemou, N., Ayissi, E., Ngoupaye, G., Njapdounke, J., Nkantchoua, G., et al. (2016). Extracts of Feretia Apodanthera del. demonstrated Anticonvulsant Activities against Seizures induced by Chemicals and Maximal electroshock. Epilepsy Research, 127:30–39.spa
dc.relation.referencesTarun, M., Kumar, V., Kumar, S., Jajoo, M. U., Rahman, S. U., & Sengupta, J. (2017). GPS and GSM based Rail Signaling and Tracking System. In 4th International Conference on Control, Decision and Information Technologies (CoDIT). IEEE. Barcelona, Spain, 0500–0504.spa
dc.relation.referencesTesniére, L. (1965). Eléments de Syntaxe Structurale . Paris: Klincksieck.spa
dc.relation.referencesTreur, J. (2016). Dynamic Modeling based on a Temporal–causal Network Modeling Approach. Biologically Inspired Cognitive Architectures, 16:131–168.spa
dc.relation.referencesVásquez, A. S. & Sandova, E. L. (2017). Una comparación cualitativa de la dinámica de sistemas, la simulación de eventos discretos y la simulación basada en agentes. Ingeniería Industrial, 35:27–52.spa
dc.relation.referencesVelásquez, S. (2019). Un modelo ejecutable para la simulación multi-física de procesos de recobro mejorado en yacimientos de petróleo basado en esquemas preconceptuales. M.Sc. Thesis, Universidad Nacional de Colombia, Medellín Campus, Colombia.spa
dc.relation.referencesVose, R., Easterling, D. R., Kunkel, K., & Wehner, M. (2017). Temperature changes in the United States. Climate Science Special Report: A Sustained Assessment Activity of the U.S. Global Change Research Program, 267–300.spa
dc.relation.referencesWang, H., Lu, S., Zhang, C., Wang, Q., & Xu, F. (2016). Timing-IdeaGraph: A directed Cognition Graph Approach for Decision Making based on Temporal Event Sequences. In IEEE 20th International Conference on Computer Supported Cooperative Work in Design (CSCWD). IEEE. Hsinchu, Taiwan, 322–326.spa
dc.relation.referencesWang, J., Chen, M., Shen, H., Park, J. H., & Wu, Z.-G. (2017). A Markov Jump Model Approach to Reliable Event-triggered retarded Dynamic output Feedback H∞ Control for Networked Systems. Nonlinear Analysis: Hybrid Systems, 26:137–150.spa
dc.relation.referencesWang, Y., Gao, H., & Chen, G. (2018). Predictive Complex Event Processing based on Evolving Bayesian Networks. Pattern Recognition Letters, 105:207–216.spa
dc.relation.referencesWhite, R. & McCausland, W. (2016). Volcano-tectonic Earthquakes: A New Tool for Estimating Intrusive volumes and Forecasting Eruptions. Journal of Volcanology and Geothermal Research, 309:139–155.spa
dc.relation.referencesWieringa, R. J. (2014). Design Science Methodology for Information Systems and Software Engineering. New York: Springer.spa
dc.relation.referencesWiese, I. S., Polato, I., & Pinto, G. (2019). Naming the Pain in Developing Scientific Software. IEEE Software. DOI: 10.1109/MS.2019.2899838spa
dc.relation.referencesWilson, G., Aruliah, D. A., Brown, C. T., Hong, N. P. C., Davis, M., Guy, R. T., Haddock, S. H., Huff, K. D., Mitchell, I. M., Plumbley, M. D., et al. (2014). Best Practices for Scientific Computing. PLoS biology, 12(1):e1001745.spa
dc.relation.referencesWohlin, C., Runeson, P., H¨ost, M., Ohlsson, M. C., Regnell, B., & Wessl´en, A. (2012). Experimentation in Software Engineering. New York: Springer.spa
dc.relation.referencesWonham, W., Cai, K., & Rudie, K. (2018). Supervisory Control of Discrete-Event Systems: A Brief History. Annual Reviews in Control, 45:250–256.spa
dc.relation.referencesWu, T. H., Pang, G. K.-H., & Kwong, E. W.-Y. (2014). Predicting Systolic Blood Pressure using Machine Learning. In 7th International Conference on Information and Automation for Sustainability. IEEE. Colombo, Sri Lanka, 1–6.spa
dc.relation.referencesXia, H., Jiao, J., & Dong, J. (2019). Extend UML based Timeliness Modeling Approach for Complex System. In International Conference on Mathematics, Modeling, Simulation and Statistics Application (MMSSA 2018). Atlantis Press. Shanghai, China, 1–6.spa
dc.relation.referencesXia, W., Junpeng, M., et al. (2014). Research on Flexible Business Process of Bank Modeling based on EPC. In International Conference on Management of e-Commerce and e-Government. IEEE. Shanghai, China, 54–60.spa
dc.relation.referencesXue, D. & El-Farra, N. H. (2016). Output Feedback-based event-triggered Control of distributed Processes with Communication Constraints. In IEEE 55th Conference on Decision and Control (CDC). IEEE. Las Vegas, US, 4296–4301.spa
dc.relation.referencesXue, S., Wu, B., & Chen, J. (2013). LightEPC: A Formal Approach for Modeling personalized Lightweight Event-Driven Business Process. In IEEE International Conference on Services Computing. IEEE. Santa Clara, US, 1–8.spa
dc.relation.referencesZapata, C. M. (2007). Definición de un esquema preconceptual para la obtención automática de esquemas conceptuales de UML. Ph.D. Thesis, Universidad Nacional de Colombia, Medellín Campus, Colombia.spa
dc.relation.referencesZapata, C. M. (2012). The UNC-Method Revisited: Elements of the New Approach. Saarbrücken: Lambert Academic Publishing.spa
dc.relation.referencesZapata, C. M., Noreña, P. A., & Granados, N. E. (2013). Representación de eventos disparadores y de resultado en el grafo de interacción de eventos. Ingenierías USBMed, 4(2):23–32.spa
dc.relation.referencesZapata, C. M., Noreña, P. A., & Vargas, F. A. (2014). The Event Interaction Game: Understanding Events in the Software Development Context. Developments in Business Simulation and Experiential Learning, 41:256–262.spa
dc.relation.referencesZapata-Tamayo, J. S. (2019). Generación semiautomática de código PL/SQL a partir de representaciones de eventos basadas en esquemas preconceptuales. M.Sc. Thesis, Universidad Nacional de Colombia, Medellín Campus, Colombia.spa
dc.relation.referencesZapata-Tamayo, J. S. & Zapata-Jaramillo, C. M. (2018). Pre-conceptual schemas: Ten Years of Lessons Learned about Software Engineering Teaching. Developments in Business Simulation and Experiential Learning, 45:250–257.spa
dc.relation.referencesZhang, K. & Zhang, L. (2016). Observability of Boolean Control Networks: A Unified Approach based on the Theories of Finite Automata and Formal Languages. IEEE Transactions on Automatic Control, 61(9):2733–2738.spa
dc.relation.referencesZhang, Y., Liu, W., Ding, N., Wang, X., & Tan, Y. (2015). An Event Ontology Description Framework based on SKOS. In IEEE 12th International Conference on Ubiquitous Intelligence and Computing. IEEE. Bali, Indonesia, 1774–1779.spa
dc.relation.referencesZhao, X.-J., Yang, Y.-Z., Zheng, Y.-J., Wang, S.-C., Gu, H.-M., Pan, Y., Wang, S.-J., Xu, H.-J., & Kong, L.-D. (2017). Magnesium isoglycyrrhizinate blocks Fructose-induced hepatic NF-κb/NLRP3 Inflammasome Activation and Lipid metabolism disorder. European Journal of Pharmacology, 809:141–150.spa
dc.relation.referencesZhong, X. & He, H. (2016). An Event-triggered ADP Control Approach for Continuous-time System with Unknown Internal States. IEEE transactions on cybernetics, 47(3):683–694.spa
dc.relation.referencesZhu, L. (2018). Ontology Pattern of Trajectory Anonymity for Query events. In International Conference on Sensor Networks and Signal Processing (SNSP). IEEE. Xi‘an, China, 457–461.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::003 - Sistemasspa
dc.subject.proposalIngeniería de softwarespa
dc.subject.proposalSoftware Engineeringeng
dc.subject.proposalPre-conceptual Schemaseng
dc.subject.proposalDominios de software científicospa
dc.subject.proposalEsquemas preconceptualesspa
dc.subject.proposalSoftware Scientific Domainseng
dc.subject.proposalRepresentación de eventosspa
dc.subject.proposalComputacional Science and Engineering projectseng
dc.subject.proposalSistemas de software científicospa
dc.subject.proposalEvent Representationeng
dc.subject.proposalMathematical notationeng
dc.subject.proposalNotación matemáticaspa
dc.subject.proposalSoftware Modelingeng
dc.subject.proposalModelado de softwarespa
dc.subject.proposalScientific Software Systemseng
dc.subject.proposalSimulaciónspa
dc.titleAn extension to pre-conceptual schemas for refining event representation and mathematical notationspa
dc.title.alternativeUna extensión a los esquemas preconceptuales para el refinamiento en la representación de eventos y la notación matemáticaspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1017149117.2020.pdf
Tamaño:
9.18 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería - Sistemas

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.8 KB
Formato:
Item-specific license agreed upon to submission
Descripción: