Evaluación de geometrías de canales de refrigeración por película en álabes de turbinas de gas

dc.contributor.advisorDuque Daza, Carlos Alberto
dc.contributor.authorPinzón Rincón, Christian David
dc.contributor.researchgroupGrupo de Investigación: GNUMspa
dc.date.accessioned2023-11-30T18:49:59Z
dc.date.available2023-11-30T18:49:59Z
dc.date.issued2023
dc.descriptionilustraciones, diagramasspa
dc.description.abstractLa refrigeración por película ha permitido incrementar las temperaturas de trabajo en álabes de turbinas de gas, al mantener parte de la superficie cubierta por un flujo de refrigerante de menor temperatura que el flujo principal de los gases de combustión. El rendimiento de la refrigeración por película está altamente influenciado por la relación de velocidades entre el flujo de refrigeración y el flujo principal de gases calientes, ası́ como de la geometría de descarga, principalmente. La influencia de estos parámetros genera fenómenos como la formación de vórtices, los cuales pueden atenuar o acelerar la separación del refrigerante, dependiendo el caso. Una técnica usada para mejorar el rendimiento de refrigeración ha sido colocar obstáculos o resaltos aguas arriba del agujero de descarga, los cuales retardan la mezcla del refrigerante con el flujo principal. En este trabajo se analizó, mediante simulaciones numéricas de flujo incompresible en OpenFoam, el efecto generado por la prensencia de dos diferentes obstáculos aguas arriba de la descarga de refrigerante sobre una placa plana. El análisis se llevó a cabo mediante la evaluación de diferentes indicadores de rendimiento de refrigeración, en el que se evaluarón tres configuraciones diferentes de la placa plana: sin obstáculo, con obstáculo triangular y con obstáculo curvo. En los tres casos la relación de velocidades entre el chorro y el flujo principal fue de uno (U c /U ∞ = 1). Encontrandose que al agregar obstáculos se tiene un incremento en la efectividad de enfriamiento promedio (η) y el flujo de calor neto reducido (NHFR), debido a que estos generan una mejor propagación lateral en la descarga del refrigerante al no separarse tempranamente de la superficie. El obstáculo curvo es el de mejor desempeño al tener la mayor (η) y el mayor (NHFR) respecto a los demás casos. (Texto tomado de la fuente)spa
dc.description.abstractFilm cooling technology has increased the operating temperature of gas turbine blades and vanes. The refrigerant film cools part of the surface, keeping it at a lower temperature than the main stream of combustion gases. The performance of film cooling is affected by the velocity of the refrigerant relative to the main stream (vlocity relation), and the geometry of the holes through which the refrigerant is discharged. These parameters can generate vortices, which can either diminish or accelerate the separation of the refrigerant from the surface. In this work, the effect of placing a triangular and a circular obstacle upstream of the refrigerant discharge in a flat plate was carried out by means of numerical simulation of incompressible flow with OpenFoam software. The analysis was conducted by evaluating different performance indicators of film cooling. Three different configuration of flat plate were evaluated: whithout obstacle, triangular obstacle and curve obtacle. The velocity relation of the three cases was set as one (U c /U ∞ = 1). It was found that adding obstacles increased the average cooling effectiveness (η) and the net heat flux reduction (NHFR). This is because obstacles promote better lateral spreading of the coolant, preventing early separation from the surface. Among the obstacles simulated, the circular one showed the best performance, due to their average film cooling efectiveness (η) and the net heat flux reduction (NHFR) was the highest.eng
dc.description.degreelevelMaestríaspa
dc.description.researchareaIngeniería Térmica y Fluidosspa
dc.format.extentxvi, 61 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85028
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Mecánicaspa
dc.relation.referencesInternational Energy Agency, Energy efficiency market report 2013, Paris, 2013, International Energy Agency, pp 18.spa
dc.relation.referencesInternational Energy Agency, Capturing the Multiple Benefits of Energy Efficiency, Paris, 2014, International Energy Agency, pp 19.spa
dc.relation.referencesM. M. Rahman, T. K. Ibrahim , K. Kadirgama, R. Mamat y Rosli A. Bakar, Influence of Operation Conditions and Ambient Temperature on Performance of Gas Turbine Power Plant , Advanced Materials Research. 2011, vol 189, pp 3007-3013. https://doi.org/10.4028/www.scientific.net/AMR.189-193.3007spa
dc.relation.referencesA. Noroozian, M. Bidi, An applicable method for gas turbine efficiency improvement. Case study: Montazar Ghaem power plant, Iran , Journal of Gas Science and Engineering. 2016, vol 28, pp 95-105. https://doi.org/10.1016/j.jngse.2015.11.032spa
dc.relation.referencesGE9X , GE9X Engine, disponible en : https://www.geaerospace.com/propulsion/ commercial/ge9xspa
dc.relation.referencesN Uddin , J T Gravdhal Introducing Back-up to Active Compressor Surge Control System , IFAC Proceedings Volumes. 2012, vol 45, pp 263-268. https://doi.org/10. 3182/20120531-2-NO-4020.00053spa
dc.relation.referencesD Garcia , G Liśkiewiczb Stable or not stable? Recognizing surge based on the pressure signal , TRANSACTIONS OF THE INSTITUTE OF FLUID-FLOW MACHINERY. 2016, vol 133, pp 55-68.spa
dc.relation.referencesS Naik Basic Aspects of Gas Turbine Heat Transfer, INTECH. 2017, pp 111-139. http: //dx.doi.org/10.5772/67323spa
dc.relation.referencesS Chena, X Zhoua, W Songb, J Suna, H Zhanga, J Jianga, L Denga,S Donga, X Caoa, Mg2SiO4 as a novel thermal barrier coating material for gas turbine applications, Journal of the European Ceramic Society. 2019, vol 39, pp 2397-2408. https://doi.org/10.1016/j.jeurceramsoc.2019.02.016spa
dc.relation.referencesI Gartshore, M Salcudean, I Hassan Film cooling injection hole geometry: hole shape comparison for compound cooling orientation, Aerospace Research Central. 2001, vol 31, pp 1493-1499. https://doi.org/10.2514/2.1500spa
dc.relation.referencesJ Zhang, S Zhang, C Wang, X Tan Recent advances in film cooling enhancement: A review, Chinese Journal of Aeronautics. 2020, vol 33 , pp 1119-1136 . https://doi. org/10.1016/j.cja.2019.12.023spa
dc.relation.referencesS M Kim, K D Lee, K Y Kim, A comparative análisis of various shaped film-cooling holes, Heat Mass Transfer, 2012, vol 48, pp 1929-1939 . 10.1007/s00231-012-1043-5spa
dc.relation.referencesP Kalghatgi ,S Acharya Improved Film Cooling Effectiveness With a Round Film Cooling Hole Embedded in a Contoured Crater, Journal of Turbumachinery. 2015, vol 137 , pp 1-9 DOI:10.1115/1.4030395spa
dc.relation.referencesJ Heidmann A Numerical Study of Anti-Vortex Film Cooling Designs at High Blowing Ratio, NASA. 2008, pp 1-11 .spa
dc.relation.referencesM Ely, B Jubran, A numerical evaluation on the effect of sister holes on film cooling effectiveness and surrounding Flow field, Heat Mass Transfer, 2009, vol 45 , pp 1435–1446 . 10.1007/s00231-009-0523-8spa
dc.relation.referencesP Kalghatgi, S Acharty, Improved Film Cooling Effectiveness With a Round Film Cooling Hole Embedded in a Contoured Crater, Journal of Turbomachinery, 2018, vol 137, 10.1115/1.4030395spa
dc.relation.referencesS Zhang, J Zhang, X Tan, Improvement on shape-hole film cooling effectiveness by iterating upstream sand-dune-shaped ramps, Chinese Journal of Aeronautics, 2020spa
dc.relation.referencesZhang, S Chang, Zhang, J Zhou, Tan, X ming, Numerical investigation of film cooling enhancement using an upstream sand-dune-shaped ramp, MDPI, 2018 , vol 49, pp 2-13, https://doi.org/10.3390/computation6030049spa
dc.relation.referencesR Goldstein, Film Colling, Department of Mechanical Engineering. University of Minnesota. Minneapolis, 1971.spa
dc.relation.referencesF Zhang ,X Wang ,J Li The effects of upstream steps with unevenly spanwise distributed height on rectangular hole film cooling performance, International Journal of Heat and Mass Transfer. 2016, pp 1209-1221. https://doi.org/10.1016/j. ijheatmasstransfer.2016.07.001spa
dc.relation.referencesA Coussement, O Gicquel, G Degrez, Large Eddy Simulation of a Pulsed Jet in Crossflow, Journal of Fluid Mechanics, 2012, Vol 695, pp 1-34,https://doi.org/10. 1017/jfm.2011.539.spa
dc.relation.referencesN Rajaratnam Chapter 9 Jets in Cross-Flow , Developments in Water Science, Ed by N. Rajaratnam , Elsevier, 1976, Vol 5, pp 184-210. https://doi.org/10.1016/ S0167-5648(08)70909-2.spa
dc.relation.referencesC Cárdenas, R Suntz, J Denev, H Bockhorn, Two-dimensional estimation of Reynolds-fluxesand - stresses in a Jet-in-Crossflow arrangement by simultaneous 2D-LIF and PIV,Lasers and Optics ,2007, Vol 88, pp 588-591, 10.1007/s00340-007-2734-3.spa
dc.relation.referencesJ Andreopoulos , W Rodi , Experimental investigation of jets in crossflow . Journal of Fluid Mechanics, 1984, vol. 138, pp 93-127, doi:10.1017/s0022112084000057.spa
dc.relation.referencesR.J. Goldstein, E.R.G. Eckert, J.W. Ramsey , Film cooling with injection through holes: adiabatic wall temperatures downstream of a circular hole, J. Eng. Power, 1968, pp 384–393, https://doi.org/10.1115/1.3609223.spa
dc.relation.referencesS Acharya, Y Kanani , Advances in Film Cooling Heat Transfer, Advances in Heat Transfer, Ed E.M. Sparrow, J.P. Abraham, J.M. Gorman, Elsevier, 2017, pp 91-156, https://doi.org/10.1016/bs.aiht.2017.10.001.spa
dc.relation.referencesR.S. Colladay, L.M. Russell , Streakline flow visualization of discrete hole film cooling for gas turbine applications, J. Heat Transfer 98, 1976, pp 245–250, https: //doi.org/10.1115/1.3450526.spa
dc.relation.referencesS. Baldauf, M. Scheurlen, A. Schulz, S. Wittig , Correlation of film-cooling effective- ness from thermographic measurements at engine like conditions, J. Turbomach 124, 2002, pp 686–698, https://doi.org/10.1115/1.1504443spa
dc.relation.referencesD. Schmidt,, B.Sen, and D.Bogard , Film Cooling with Compound Angle Holes: Adiabatic Effectiveness, Journal of Turbomachinery Vol. 118, 1996, pp. 807–813., doi: 10.1115/94-gt-312spa
dc.relation.referencesD. Bogard, K. Thole , Gas Turbine Film Cooling, Journal of Propulsion and Power Vol. 22, 2006, pp. 249-270., doi:10.2514/1.18034spa
dc.relation.referencesJ.C. Han, A.B. Mehendale , Flat-Plate Film Cooling with Steam Injection Through One Row and Two Rows of Inclined Holes, Journal of Turbomachinery, Vol. 108, 1986, pp. 137–144, https://doi.org/10.1115/1.3262013spa
dc.relation.referencesN. W. Foster, D. Lampard , The Flow and Film Cooling Effectiveness Following Injection Through a Row of Holes, Journal of Engineering for Power, Vol. 102, 1980, pp. 584–588, https://doi.org/10.1115/1.3230306spa
dc.relation.referencesA. Kohli, D.Bogard , Adiabatic Effectiveness, Thermal Fields,and Velocity Fields for Film Cooling with Large Angle Injection, Journal of Turbomachinery,Vol. 119, 1997, pp. 352–358, https://doi.org/10.1115/1.2841118spa
dc.relation.referencesC. Saumweber, A. Schulz, S. Wittig , Free-Stream Turbulence Effects on Film Cooling with Shaped Holes, Journal of Turbomachinery,Vol. 125, 2003, pp. 65–73, https: //doi.org/10.1115/1.1515336.spa
dc.relation.referencesK. Kadotani, R.Goldstein , Effect of Mainstream Variables on Jets Issuing from a Row of Inclined Round Holes, Transaction of the American Society of Mechanical Engineers, Vol. 101, 1979, pp. 298–304. https://doi.org/10.1115/1.3446486.spa
dc.relation.referencesAokomoriuta , Law of Wall, disponible en : https://commons.wikimedia.org/ wiki/File:Law_of_the_wall_(English).svg, 2011, consultado en Enero de 2023.spa
dc.relation.referencesJ.B. Anderson, E.K. Wilkes, J.W. Mcclintic, D.G. Bogard , Effects of freestream Mach number, reynolds number, and boundary layer thickness on film cooling effectiveness of shaped holes, ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition, Seoul, South Korea, 2016, https://doi.org/10.1115/ GT2016-56152.spa
dc.relation.referencesS. Ito, R. Goldstein, E. Eckert, Film Cooling of a Gas Turbine Blade, Journal of Engineering for Power, Vol. 100, 1978, pp. 476–481, https://doi.org/10.1115/1. 3446382spa
dc.relation.referencesJ.P Bons, R Taylor,S McClain, R.B Rivir, The Many Faces of Turbine Surface Roughness, Journal of Turbomachinery, Vol. 123, 2001, pp. 739–748, https://doi.org/ 10.1115/1.1400115spa
dc.relation.referencesD. G Bogard, D.L Schmidt, M Tabbita, Characterization and Laboratory Simulation of Turbine Airfoil Surface Roughness and Associated Heat Transfer, Journal of Turbomachinery, Vol. 120, 1998, pp. 337–342, https://doi.org/10.1115/1.2841411spa
dc.relation.referencesR. J. Goldstein, E. R. G. Eckert, H. D. Chiang, E Elovic, Effect of Surface Roughness on Film Cooling Performance, Journal of Engineering for Gas Turbines and Power, Vol. 107, 1985, pp. 111–116, https://doi.org/10.1115/1.3239669spa
dc.relation.referencesD. L Schmidt, B Sen, D.G Bogard, Effects of Surface Roughness on Film Cooling, American Society of Mechanical Engineers, ASME Paper 96-GT-299, 1996.spa
dc.relation.referencesVA Kurganov , Adiabatic Wall Temperature, disponible en : https://www. thermopedia.com/content/291/#ADIABATIC_WALL_TEMPERATURE_FIG1spa
dc.relation.referencesY Ito , Heat Transfer of Supercritical Fluid Flows and Compressible Flows, IntechOPen, capı́tulo 6, pp 140 .spa
dc.relation.referencesJ Librizzi, R Gresci, Transpiration Cooling of a Turbulent Boundary Layer in an Axisymmetric Nozzle, AIAA JOURNAL, Vol 2, 1964, pp. 617–624, https://doi.org/ 10.2514/3.2397spa
dc.relation.referencesS. S. Kutateladze, A. I. Leont’ev, Cortina térmica con capa lı́mite turbulenta de gas, TVT, 1963, Volume 1,Issue 2, pp 281–290.spa
dc.relation.referencesJ.L. Stollery, A.A.M. El-Ehwany, On the use of a boundary-layer model for correlating film cooling data, Heat Mass Transfer, 1967, Vol 10, pp 101-105, https: //doi.org/10.1016/0017-9310(67)90186-Xspa
dc.relation.referencesY Cengel,A Ghajar,Transferencia de Calor y Masa,editorial McGrawHill, 4 Ed, 2004.spa
dc.relation.referencesMora J, Análisis de Turbinas de Gas con Álabes Refrigerados, Universidad de Sevilla, en lı́nea ,disponible en : http://bibing.us.es/proyectos/abreproy/90740/fichero/ TFG_memoria.pdf.spa
dc.relation.referencesA Lande, Complex Mesh Generation with OpenFOAM, University of South-Eastern Norway, 2021.spa
dc.relation.referencesW Colban, K Thole, D Bogard, A Film-Cooling Correlation for Shaped Holes on a Flat-Plate Surface,ASME Journal of Turbumachinery, vol 133, no 011002, pp 1-11, Enero 2011, doi:10.1115/1.4002064.spa
dc.relation.referencesY Cengel,J Cimbala,Fluid Mechanics Fundamentals and Applications,New York,editorial McGrawHill, 2006.spa
dc.relation.referencesF White,Fluid Mechanics, 4th ed,editorial McGrawHill.spa
dc.relation.referencesP.J Newton, G.D Lock, S.K Krishnababu, H.P Hodson, W.N Dawes, J Hannis, C Whitney Aerothermal Investigations of Tip Leakage Flow in Axial Flow Turbines—Part III: TIP Cooling, Journal of Turbumachinery. 2009, vol 131, pp 1-12 DOI:10.1115/1.2950060spa
dc.relation.referencesSIMSCALE, (2021, Septiembre 3), What is Transport Equation? .en lı́nea. Disponible en : https://www.simscale.com/docs/simwiki/numerics-background/ what-is-the-transport-equation/.spa
dc.relation.referencesD H Rhee,Y S Lee , H H Cho, Film Cooling Effectiveness and Heat Transfer of Rectangular-Shaped Film Cooling Holes,Proceedings of ASME TURBO EXPO,pp 1-11, Junio 2002, doi:10.1115/GT2002-30168.spa
dc.relation.referencesA Abdala,F Elwekeel , D Huang, Film cooling effectiveness and flow structures for novel upstream, Applied Thermal Engineering,pp 1-14, Mayo 2015,http://dx.doi. org/10.1016/j.applthermaleng.2015.05.074.spa
dc.relation.referencesW Zhou, H Hu, Improvements of film cooling effectiveness by using Barchan dune shaped ramps, International Journal of Heat and Mass Transfer, vol 103, pp 443-455, 2016, http://dx.doi.org/10.1016/j.ijheatmasstransfer.2016.07.066.spa
dc.relation.referencesOpenFOAM Wiki , The PIMPLE algorithm in OpenFOAM, disponible en : https://openfoamwiki.net/index.php/OpenFOAM_guide/The_PIMPLE_algorithm_ in_OpenFOAM, 2023, consultado en Junio de 2023.spa
dc.relation.referencesOpenFOAM Foundation , OpenFOAM User Guide, disponible en : https:// doc.cfd.direct/openfoam/user-guide-v6/fvsolution, 2022, consultado en Junio de 2023.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.lembIndustria de turbinas de gasspa
dc.subject.lembGas-turbine industryeng
dc.subject.lembTermotecniaspa
dc.subject.lembHeat engineeringeng
dc.subject.proposalRefrigeración por pelı́culaspa
dc.subject.proposalChorro en flujo cruzadospa
dc.subject.proposalEfectividad de enfriamientospa
dc.subject.proposalCoeficiente de transferencia de calor por convecciónspa
dc.subject.proposalCalor neto reducidospa
dc.subject.proposalFilm coolingeng
dc.subject.proposalJet in cross floweng
dc.subject.proposalCooling effectivenesseng
dc.subject.proposalHeat transfer coefficient by convectionspa
dc.subject.proposalNet heat flux reductioneng
dc.titleEvaluación de geometrías de canales de refrigeración por película en álabes de turbinas de gasspa
dc.title.translatedEvaluation of film cooling channel geometries in gas turbine bladeseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1022396889.2023.pdf
Tamaño:
11.27 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería Mecánica

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: